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ABSTRACT: 

 

In recent, the trajectory data of moving objects is getting bigger and bigger, and it has become a very important part of the social big 

data. Its compression is an indispensable operation of data processing, and also it is the basis of the data storage, analysis and mining 

of moving objects. In the related research, there are two kinds of methods for the trajectory compression. One is to compress 

trajectory data based on its own spatial-temporal characteristics, another kind of methods is the map-matched trajectory compression. 

However, for offline trajectory compression, methods based on spatial-temporal characteristics do not take the road network 

constraints into account. If road networks are considered, the map matching is needed first, and it will greatly affect the efficiency of 

trajectory compression. Therefore, this paper proposes a new trajectory compression algorithm that combines the spatial-temporal 

characteristics from trajectories themselves and structural characteristics from road networks to improve the compression precision 

and efficiency.  

 

 

*  Corresponding author 

 

1. INTRODUCTION 

With the rapid development of mobile positioning technologies, 

the trajectory data of moving objects is getting bigger and 

bigger, and it has become a very important part of the social big 

data. The spatial-temporal trajectory of a moving object is a 

sequence of nodes with position, attribute, and time (Sun et al., 

2016). Although it contains a great deal of knowledge, it cannot 

be used and applied directly as its amount is very huge and 

accompanied by much noise. In a real environment, many 

redundant data are recorded for a moving object due to the loss 

of satellite signals by obstructions from buildings. In addition, a 

same position is recorded for too many times as the object stops 

at a place for a long time. So, its compression, which is so 

called the trajectory compression, is an indispensable operation 

of data processing, and also it is the basis of the data storage, 

analysis and mining of moving objects. The trajectory 

compression can be adopted to provide different scales of the 

trajectory data for various application fields and environments. 

 

In the related research, there are two kinds of methods for the 

trajectory compression. One is to compress trajectory data based 

on its own spatial-temporal characteristics, e.g. synchronous 

Euclidean distance (Meratnia and de By, 2004), or spatial-

temporal 3-dimantional space (Cao et al., 2006; Trajcevski et 

al., 2006). They are used to improve the normal curve 

compression methods, such as Douglas-Peucker (DP) algorithm 

(Douglas and Peucker, 1973), in remaining the spatial-temporal 

feature and increasing the compression accuracy. In order to 

control errors (Muckell et al., 2014), such methods usually 

remove nodes in a trajectory by setting thresholds of distances 

(position), angles (direction) or rates (time), and can be divided 

into the offline and online ways (Lee and Krumm, 2011; 

Potamias et al., 2006). However, the relationship between a 

moving object and its geospatial environment is not considered. 

For examples, a moving object, especially a car, should be 

constrained by road networks. So, the semantic information 

cannot be maintained after compression with such methods. 

 

Another kind of methods is the map-matched trajectory 

compression. Due to constraints of road networks, a trajectory is 

no longer represented on a 2-dimensional space but the road 

network space (Kellaris et al., 2013), and it is always matched 

to the networks first. Then, the trajectory is compressed based 

on spatial-temporal characteristics (Song et al., 2014), structure 

optimizations (Sandu Popa et al., 2015) and semantic 

segmentations (Feng et al., 2013; Liu et al., 2014; Richter et al., 

2012). Such methods can make the compressed trajectories 

more reasonable. However, the matching algorithms have some 

certain errors and they are complex, especially the global 

matching methods (Lou et al., 2009). In addition, although a 

trajectory can be compressed greatly by the method based on 

semantic segmentations, it has lost its original data form, and 

lots of information are lost.  

 

Therefore, this paper proposes an improved spatial-temporal 

trajectory compression method with consideration of road 

networks. The idea of this method is that a queue is established 

for all nodes in a trajectory under certain constraints based on 

the feature points inside the road network. By removing the 

nodes in the queue, it can achieve the trajectory compression to 

any scale quickly. 

 

2. METHOD 

A spatial-temporal trajectory of a moving object is a sequence 

of nodes with position, attribute and time, and it can be 

represented as follows, 
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where xi and yi are position, and ti is the recorded time.  

 

It can be shown from the equation that a moving trajectory 

contains spatial position and time information, and it has the 

spatial and temporal characteristics. In addition, a moving 

trajectory is an artificial trajectory that shows a matching 

relationship with a road network. 

 

The main idea of the method is to give a ranking for all 

trajectory points according to their importance which are 

restricted by the spatial-temporal characteristics and the road 

network. It can be proceeded as follows steps. 

 

 Step 1, to rank all trajectory points by a Binary Line 

Generalization (BLG) tree; 

 Step 2, to extract feature points of a road network; 

 Step 3, to adjust the ranking according to the feature 

points as constraints; 

 Step 4, to compress trajectories by removing low 

ranking points. 

 

2.1 Step 1: Trajectory points ranking 

The BLG tree (Oosterom, 1991) is a binary tree structure 

generated when a curve compression is performed using the 

divide-and-conquer D-P algorithm (threshold is set to 0). In the 

tree, the root node is the most important feature point, because 

its distance to the baseline, which is connected by the curve 

endpoints, is the longest. The distance can be regarded as the 

eigenvalue of the node. The left and right child nodes of the 

root node are the important feature points of their subsets 

respectively, and so on until all points are added to the tree. The 

details of the BLG tree construction are provided by (Meratnia 

and de By, 2004), and an example of the tree is illustrated in 

Figure 1. 

 

 
(a) 

    
(b)   (c) 

Figure 1. An example of the BLG tree and its ranking 

In Figure 1, (a) is a curve example that consist of point sets {A, 

B, C, D, E, F, G, H, I, J, B}. A and B are the endpoints, and line 

AB is the initial baseline. Point G is selected as the root as its 

distance to the baseline AB is the longest (15.3). Then, points 

are split into two subsets {A, C, D, E, F, G} and {G, H, I, J, B}, 

points F and I are the two children of G. By analogy, the tree 

can be established. Figure 1(b) shows the result of the BLG 

tree, and the number above the node is the distance between the 

point and its corresponding baseline. 

 

The BLG tree can represent the eigenvalues of trajectory points 

and their relations, but the importance rank of trajectory points 

cannot be determined yet. If it is directly ranked according to 

the eigenvalues, the "inheritance relationship" among the 

trajectory points will be destroyed. Taking C and F in Figure 

1(b) for example, F is the parent node of C, but the eigenvalue 

of C (9.9) is larger than F (8.8). If ranking the trajectory points 

according to the level of the tree first and then the eigenvalue of 

node in the same level, the "inheritance relationship" is 

preserved, however, the node with a high eigenvalue but low 

level will be removed first. As shown in Figure 1(b), the level of 

I is higher than C, but the eigenvalue of C is far greater than I. 

Therefore, an improved ranking method needs to be proposed 

according the eigenvalue with constraints of the “inheritance 

relationship”, and its ranking result is shown in Figure 1(c). 

 

2.2 Step 2: Feature points extraction 

In road networks, junctions and corners are always considered 

as the characteristic points due to its spatial structure. 

Therefore, in this research, the feature points in a trajectory are 

the ones that close to the junctions of road networks where the 

moving object passes by. Figure 2 shows an example. 

 

pip1

pi+1

pn
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Figure 2. An example of feature points in a trajectory 

In Figure 2, Tra in red colour is a trajectory, p1 and pn are the 

endpoints. v1 and v2 are junctions. The point in dashed circle is 

the closest to v2, and it is a feature point of Tra.  

 

In the work, all feature points need to be ranked according to 

their feature value. A feature point in a trajectory is used to 

show its road network structural characteristics, so its value can 

be given by its corresponding road junction or corner. It can be 

calculated by the road level value associated with the junction 

or corner as,  

 

 

1

n

v i

i

s ce


 , (2) 

 

where ce is the road level, and there  are n roads connecting to 

the junction or corner. Roads can be classified as express roads, 

trunk roads, secondary trunk roads and branch roads, and their 

level values are set to 4, 3, 2, and 1, respectively. 
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Here, we take all closest trajectory points to road junctions as 

constraint conditions. 

 

2.3 Step 3: Ranking adjustment 

1. To take the feature points of the road network 

structure extracted from the trajectory as constraint points, 

and queues the constraint points according to the size of 

the feature values;  

2. To segment the entire trajectory according to the 

position order of the constraint points. If the number of 

constraint points is n, the original trajectory is divided into 

n-1 sub-trajectories, and the BLG tree is constructed for 

each sub-trajectory.  

3. To rank all BLG trees of n-1 sub-trajectories are 

collaboratively. 

 

2.4 Step 4: Trajectory points compression 

After ranking adjustment, we can remove the corresponding 

proportion of points from the tail of the queue according to the 

needs of the compression ratio, so as to achieve fast arbitrary 

scale compression. The compression ratio is set according to the 

actual situation. For example, the compression ratio is directly 

provided, otherwise, if the data scale requirement is provided, 

the calculation method of the principles of selection (Topfer and 

Pillewizer, 1966) can be used according to the requirement of 

the scale transformation, and the compression ratio is derived 

from the scale conversion ratio. 

 

3. EXPERIMENT AND RESULT 

 

3.1 Experiment design 

This research takes 2 real trajectory datasets generated by 2 

taxis over a period of 1 week in Beijing city (Figure 3). For the 

experiment, the proposed compression algorithm is applied to 

test the datasets, and we also provide an accuracy assessment 

method.  

 

In the experiment, the results are analysed by comparing the 

proposed road network constrained compression (RNCC) 

method with the classical TD-TR (top-down time ratio) 

algorithm, which is improved from the DP (Douglas-Peucker) 

algorithm, in both aspects of efficiency and accuracy. 

 

 

Figure 3. Experimental trajectory data and road networks 

 

3.2 Assessment method 

Since the trajectory is usually distributed on the road network, 

this research proposes the concept of network homomorphic 

distance error. The network homomorphic distance error is to 

first match the trajectory to the road network, and use the 

matched result as the original data, and then calculate the 

homomorphic distance error between the compressed trajectory 

data and the matched trajectory data. The calculation formula is 

as shown in Equation (3), and an illustration is shown in Figure 

4. 
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(3) 

 

where Trao is the original trajectory, Trac is the compressed 

trajectory, and n is the number of points in Trac. NSDi is the 

distance between trajectory point i and its homomorphic point 

in the road network. 
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Figure 4. Network homomorphic distance error 

 

3.3 Experiment result 

3.3.1 Compression result 

From the compression result, the RNCC method can not only 

retain the feature points of spatial-time morphological features, 

but also maintain good maintenance for road network nodes. As 

shown in Figure 5, they are the 90% compressed results of one 

trajectory data. (a) shows that the TD-DR method can better 

maintain the point where the spatial features are prominent 

(time characteristics are lost). However, the RNCC method 

preserved not only the points with prominent spatial features, 

but also the feature points of the trajectories close to the road 

network. The red circles in Figure 5 are obvious difference. 

 

 
(a) TD-DR 
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(b) RNCC 

Figure 5. Part compressed results 

 

3.3.2 Efficiency analysis 

Since the TD-DR algorithm controls the compression ratio 

through the threshold, it is difficult to obtain an arbitrary 

compression ratio result, and the RNCC algorithm can easily 

obtain the result of any compression ratio. Therefore, the 

threshold data is used to perform TD-DR compression on the 

trajectory data, and the corresponding compression ratio is used 

to perform the RNCC algorithm compression process. After the 

experiment, eight thresholds such as 1, 5, 10, 20, 40, 60, 80, 

and 100 m are used for compression, and the compression ratios 

of the two data are 0.52, 0.69, 0.78, 0.85, 0.91, 0.93, 0.94, 0.95 

(trajectory 1) and 0.22, 0.30, 0.37, 0.48, 0.62, 0.71, 0.76, 0.79 

(trajectory 2) respectively. 

 

 

Figure 6. Efficiency comparison 

 

The results are shown in Figure 6. (a) is trajectory 1, and (b) is 

trajectory 2. The blue line is the running time of the TD-DR 

algorithm under different thresholds. The orange and grey line 

are the running time of the RNCC algorithm. Since the running 

time of the RNCC algorithm is mostly spent on the ranking 

process, therefore, from a single scale (compression scale) 

compression, the running time (orange line) of the RNCC 

algorithm is more than the TD-DR algorithm. However, from 

multiple scales compression, only one ranking process is 

required, and its time should be calculated on average. 

Therefore, its running time is much lower than that of the TD-

DR algorithm. 

 

3.3.3 Accuracy analysis 

Figure 7 shows the accuracy comparison between the TD-DR 

algorithm and the RNCC algorithm after the compression of the 

two data. The accuracy calculation uses the network 

homomorphic distance calculation method introduced in 

Section 3.2. At the same time, in order to eliminate the error of 

the original data, the accuracy is that the network homomorphic 

error after the trajectory compression is subtracted from the 

network homomorphic error of the original data. It can be seen 

from the figure that: (a) the error increases with the increase of 

the scale, but when the compression ratio is 0.5, 0.6, the error is 

reduced or even negative, which indicates that the accuracy of 

the data is higher than the original data; (2) When the 

compression ratio is small, the accuracy of the two methods are 

almost the same. When the compression ratio is greater than 

0.6, it is obvious that the error of the RNCC algorithm is 

smaller, especially in trajectory 2. 

 

 

Figure 7. Accuracy comparison 

 

4. CONCLUSION AND RESPECTIVE 

From the experiment, there are some conclusions can be 

addressed:  

a) Compression results from both algorithms are the 

same, but the proposed algorithm is more efficient. In 

addition, it is more suitable for multi-ratio compression 

once the point ranking is established.  

b) The accuracy of this algorithm is higher than the TD-

TR algorithm. The larger the compression ratio, the higher 

the accuracy. When the compression ratio is larger than 

50%, the result is more significant.  

(b) trajectory 2 

(a) trajectory 1 

TD-DR RNCC(Single) RNCC(Average) 

TD-DR RNCC(Single) RNCC(Average) 

(a) trajectory 1 

TD-DR 

RNCC 

(b) trajectory 2 

TD-DR 

RNCC 
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c) The proposed algorithm can preserve both the spatial 

characteristic and the road structure characteristic of 

original trajectory at the same time. 

 

This is not a competed work. For the future work, we will 

compress and simplify the trajectory from the perspective of 

trajectory semantics. The compression of the current moving 

trajectory is more focused on spatiotemporal features or road 

network features, and less on semantic features, such as various 

staying semantic features of trajectories and landmark semantic 

features. The purpose of the trajectory compression is not only 

to reduce the amount of data, but also to extract the features of 

the trajectory at different scales through the compression and 

simplification of the trajectory, thereby serving different 

application scenarios. 
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