
A QUADTREE SPATIAL INDEX METHOD WITH INCLUSION RELATIONS FOR THE

INCREMENTAL UPDATING OF VECTOR LANDCOVER DATABASE

X.G. Zhou1,*, H.S. Wang1,2

1School of Geosciences and Info-physics, Central South University, Changsha 410083, China -zxgcsu@foxmail.com

2School of Software, South China Normal University, Foshan 528225, whs2020@126.com

Commission IV, ICWG IV/III

KEY WORDS: Spatial index; Complex polygon; Inclusion relation; Quadtree; Incremental updating

ABSTRACT:

In vector landcover database, there are a lot of complex polygons with many holes, even nesting holes. In the incremental updating

(i.e., using the change-only information to update the land cover database), a new changed parcel usually has 2-dimensional

intersections (e.g., overlap, cover, equal and inside, etc.) with several existing regions, automatic updating operations need to

identify the affected objects for the new changes at first. If the existing parcels include complex polygons (i.e., the polygon with

holes), it is still needed to determine if there are 2-dimensional intersections between the new changed polygon and each holes of the

involved complex polygons. The relation between the complex polygon and its holes has not been presented in the current spatial

data indexing methods, only the MBB (Minimum Bounding Box) of the exterior ring of the complex polygon has been stored, the

non-involved holes can not be filtered at the first step of spatial access methods. As the refinement geometric operation is costly,

therefore the updating process for the complex polygons is very complicated and low efficient using the current spatial data indexing

methods. In order to solve this problem, an improved quadtree spatial index method is presented in this paper. In this method, the

polygons is divided to two categories according to the relations with the quadrant axes, i.e., disjoint to the axes and intersect with the

axes. The intersect polygons are still divided to 5 cases according to the intersection position among the polygons and the different

level quadrant axes. The intersection polygons are stored in the different level root nodes in our index tree, and five buckets denoted

as XpB, XnB, YpB, YnB, XYB are used to store the polygons intersecting the different level quadrant axes respectively. The polygons

disjoint to all quadrant axes are stored in the leaf nodes in this method. The authors developed the spatial index structure with

inclusion relations and the algorithms of the corresponding index operations (e.g., insert, delete and query) for the complex polygons.

The effectiveness of the improved index is verified by an experiment of land cover data incremental updating. Experimental results

show that the proposed index method is significantly more efficient than the traditional quadtree index in terms of spatial query

efficiency, and the time efficiency of the incremental updating is increased about 3 times using the proposed index method than that

using the traditional quadtree index.

* Corresponding author

1. INTRODUCTION

In vector landcover database, there are a lot of complex

polygons with many holes, even nesting holes. In the

incremental updating (i.e., using the change-only information to

update the land cover database), a new changed parcel usually

has 2-dimensional intersections (e.g., overlap, cover, equal and

inside, etc.) with several existing regions, automatic updating

operations need to identify the affected objects for the new

changes at first. If the existing parcels include complex

polygons (i.e., the polygon with holes even nesting holes), it is

still needed to determine if there are 2-dimensional intersections

between the new changed polygon and each holes of the

involved complex polygons.

In GIS, Spatial index is used to make refinement geometric

operations just execute only on a limited number of objects.

Common spatial index methods include Quadtree (Hjaltason &

Samet, 2002; Wei & Tanaka, 2012), R-trees (Guttman, 1984),

R+tree (Sellis, et al, 1987), R* tree (Beckmann, et al, 1990),

Grid spatial index, Hilbert R-tree, kd-tree, etc (Philippe et al,

2002; Wikipedia, 2018). Typically these methods are grouped

using the minimum bounding Box (MBB) to minimize the

index file size and increase the filter efficiency. While the

relationship between the complex polygon and its holes has not

been presented in the current spatial data indexing methods,

only the MBB of the exterior ring of the complex polygon has

been stored, the non-involved holes can not be filtered at the

first step of spatial access methods. For example, in Figure 1, C

is a complex polygon with more than 1000 holes, e.g., B, D, E,

F, P, etc. (Figure 1a). P1 is a new changed polygon ((Figure 1b).

Among the holes, P1 just have 2-dimensional intersections with

B and E. However, in updating the refinement geometric

operation has to be done between P1 and the all holes of C using

the current index method. As the refinement geometric

operation is costly, therefore the updating process for the

complex polygons is very complicated and low efficient using

the current spatial data indexing methods.

Noted that in the incremental updating of land cover database, a

new change usually just intersects with limited several polygons

(or several holes of the complex polygon). If the inclusion

relation between the complex polygon and its holes can be

presented in spatial index, the non-involved holes can be

filtered at the first step, the incremental updating efficiency for

land cover database will be highly improved. Furthermore,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-757-2018 | © Authors 2018. CC BY 4.0 License.

757

mailto:zxgcsu@foxmail.com
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###

linear quadtree indexx is dynamic and efficient in terms of

memory space and response time, and has been popular used in

commercial spatial DBMSs. Based on the above observations,

an improved quadtree spatial index method is presented in this

paper. In this method, the polygons is divided to two categories

according to the relations with the quadrant axes, i.e., disjoint to

the axes and intersect with the axes. The intersection polygons

are stored in the different level root nodes in our index tree, and

five buckets are used to store the polygons intersecting the

different level quadrant axes respectively. The polygons disjoint

to all quadrant axes are stored in the leaf nodes in this method.

A

B

K

G

J

H

E

F

I

C

P

S

M

Q
T

O

R

L

W

U

X Z

V

D

N
Y

A

B

K

G

J

H

E

F

I

C

P

S

M

Q
T

O

R

L

W

U

X Z

V

D

N
Y P1

(a) Data before updating (b) Increment parcel (c) Data after updating

Figure 1. Example Data of Land Cover Database Incremental Updating

The remainder of the paper is structured as follows. In Section 2,

the construction of the improved quadtree spatial indexing is

presented, including the structure of inclusion relations between

the complex polygon and its holes, the optimization of the

traditional spatial indexing quadtree and its construction. The

corresponding index quadtree modification operations caused

by the dynamic operations of spatial objects (e.g., insert, delete

and query) is discussed in Section 3. Based on the improved

quadtree spatial indexing for complex polygon, an experimental

test of this study and a comparison between our improved

quadtree index method and the MX-CIF quadtree index are

presented in Section 4. Section 5 provides a summary and

concludes the discussion.

2. THE CONSTRUCTION OF THE IMPROVED

QUADTREE INDEXING

As mentioned above, in the incremental updating of land cover

database, it is needed to store the inclusion relation between the

complex polygon and its holes. In current GIS topological

model, some topological relations (i.e., the connection relations

between the nodes and arcs; the adjacent relationship between

polygons) are stored explicitly. However, the inclusion relation

between the complex polygon and its holes is not explicitly

represented. Therefore at first a method used to store the

inclusion relationship is presented.

Complex polygon include hole and nested holes, in another

word, the inclusion relation include direct inclusion and indirect

inclusion. As figure 1(a) shows, the generalized region of F (i.e.

the union of F and its holes) is one hole of C; the generalized

region of H (i.e. the union of H and its hole- K) is one hole of F,

and the union of V, Q and I is another hole of F. There is no

direct inclusion relationship between C and H and K, in another

word, C is the ParentPolygon of F; H and the union of V, Q and

I, are the two Children Polygons of F. It is assumed that the

current polygon is noted as CP, the Parent Polygon is denoted

as PP, RIP is the ring of the current polygon in its parent, and

CPL is the Children Polygon List of the current polygon. Then

the direct inclusion relationship can be represented using the

structure: {CP, PP, RIP, CPL}.

There is a problem in the traditional quadtree index. The search

space is recursively decomposed into quadrants, the quadrants

are named North West (NW), North East (NE), South West

(SW), and South East (SE). The quadrants space is not overlap

at the same level. While the object duplication in neighbour

cells increases the index size seriously, for example, in figure

1(a), object E has to be stored in the quadrants of NW, NE, SW,

SE; B in NE, SW, SE; F in NW, NE, SW, etc., at the first level.

This will lay a burden on the index size and the dynamic

operations.

Based on this observation, an improved quadtree spatial index

method is presented in this paper. In this method, the polygons

is divided to two categories according to the relations with the

quadrant axes, i.e., disjoint to the axes and intersect with the

axes. The intersect polygons are still divided to 5 cases

according to the intersection position among the polygons and

the different level quadrant axes, i.e., intersection only at the X

positive axis, intersection only at the Y positive axis,

intersection only at the X negative axis, intersection only at the

Y negative axis, intersection at X and Y axes. The intersection

polygons are stored in the different level root nodes in our index

tree, and five buckets denoted as XpB, XnB, YpB, YnB, XYB are

used to store the polygons intersecting the different level

quadrant axes respectively. The polygons disjoint to all

quadrant axes are stored in the leaf nodes in this method. The

data structure of the nodes is as follows:

{NID, NMBB, Subtrees, PPtr, Depth, XpB, XnB, YpB, YnB,

XYB}

In the above structure, NID denotes the identity of the node;

NMBB denotes the MBB of the all polygons stored in this node,

i.e., the union of the MBB of the all polygons; Subtrees denotes

the Subtrees of this node; PPtr denotes the Parent pointer in the

tree; Depth denotes the depth of the node level; XpB, XnB,

YpB, YnB, XYB are the buckets used to store the polygons

intersecting the quadrant axes. The relation between the

complex polygon and its holes is stored in the polygon structure:

{PID, PP, ER, LIPs}. In this structure, PID denotes the

identity of the polygon, PP denotes the Parent polygon, ER

denotes the exterior ring, and LIPs denotes the list of inside

polygons. The improved quadtree spatial indexing method for

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-757-2018 | © Authors 2018. CC BY 4.0 License.

758

http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###

complex polygon is shown in Figure 2 using the data of Figure

1 (a) as example data. The left is the quadtree of Figure 1 (a),

the right inclusion relationship table of Figure 1 (a).

C Ø Crc B,D,E,F,G

F C Crf H,V,Q,I

V F Crvqi NULL

MNU

G

0

D

0

WX

0

Y

0

0

I

K

0

A

0

RP

0

Q O

0

L

0

J

0BCEFHSZ

T

0

0

V

Subtree Parent PointerMN Polygon Null Pointer

Figure 2. Improved Quadtree Index of Fig.1 (a) and the Nested Inclusion Relations among Polygon C, F, V

To build the the improved quadtree, at first, the MBB of all

polygons and holes are calculated (Wei & Tanaka, 2012) and

the inclusion table are constructed by the way. The search space

is recursively decomposed into quadrants until the number of

MBBs in each node is less than the threshold number; The

polygons whose MBB overlaps the quadrant axes are stored to

the five buckets XpB, XnB, YpB, YnB, XYB, the objects whose

MBB purely inside the quadrant are stored to the quadrant

nodes at different level respectively. In this improved quadtree,

each object is just stored in one node, i.e., the node

corresponding to the minimize quadrant includes its MBB.

3. OPERATIONS FOR THE IMPROVED QUADTREE

INDEXING

Query ususally include point and window query. As the

improved quadtree is aimed to solve the problem with the

complex polygons, we mainly discuss the window query in this

paper. For the window query, the following steps are included:

1) From the tree root to leaf, charge if any polygons overlapped

the argument MBB in the five buckets and the quadrant nodes

at each level, and construct the list of candidate MBBs;

2) Scan the list of candidates, for the complex polygons, select

the children polygon with RIP overlapped the argument MBB

to the result set; for the other polygons,;

3) For the other candidate polygons, if any point of the

argument window is inside the exterior ring, and not in the

candidate children’s polygon, add it to the result set.

In the updating process, dynamic insertion and deletion

operations are used frequently. We will describe the dynamic

operations in following.

To insert a polygon to the improved quadtree, at first, the

bucket or leaf will be found, then two cases may happen: 1) the

page is not full, a new entry is inserted; 2) the page is full, then

the quadrant is split. The inclusion relation table has to be

maintained during insertion process. Figure 3 is used as an

example to illustrate the insertion operation.

 1) P2 should be insert into the NW quadrant node at third level,

as the number of objects equals to 3, larger than the threshold

number 2, NW quadrant node is split;

2) P2 is stored in the root bucket at the forth level, the old

objects in the NW quadrant node at third level are stored to the

corresponding quadrant node at forth level;

3) Searching the father polygon of P2 upward from the NW

quadrant node at third level, get the father polygon of P2, i.e. C;

4) Using C1 to replace C, and update the inclusion relation table.

A

B

K

G

J

H

E

F

I

C

P

S

M

Q
T

O

R

L

W

U

X Z

V

D

N

Y

P2

MNU

G

0

D

0

P2 Y

0

0

I

K

0

A

0

RP

0

Q O

0

L

0

J

0BC1EFHSZ

T

0

0

V

0

0

W

0

X

(a) Insertion P2 to Sample Data shown in Figure 1(a) (b) the changed quadtree after inserting P2

Figure 3. Index tree after inserting P2 to the sample data shown in Figure 1(a)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-757-2018 | © Authors 2018. CC BY 4.0 License.

759

http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###

Deletion is the reverse operation of insertion, it may cause the

quadrant node union.

4. EXPERIMENTAL TEST AND COMPARISON

The improved quadtree index is implemented using VS2013.

An incremental updating method is used to test the improved

quadtree index for complex polygon objects. The methods

presented in this paper was intensively tested using a land cover

vector data of the Shanxi Province China. The area covers from

north latitude 36.5412 ° to 38.3987 ° , east longitude

108.3241° to 110.8301°. The base state is classified from

Landsat ETM+/TM 30m spatial resolution image in 2009. The

test region is composed of 104230 parcels (Figure 4.a)

originally. In order to get different test data, different the

smallest area threshold value is used to merge small polygons to

big ones. The base data polygons generally include many holes.

The most complex polygon includes 5573 holes. The change-

only data are the change parcels from 2009 to 2000 for the test

region and include 181 new parcels (Figure 4.b) that were

produced using a remote-sensing image change detection

software. To test the performance of our improved method, a

comparison between our method and the improved MX-CIF

(Wei &, Tanaka, 2012) is made.

(a) Vector Land Cover Data in 2009 (b) the increment data from 2009 to 2000

Figure 4. Experimental test Vector Land Cover Data before Updating

The costs of constructing the improved quadtree index for

different data is shown in table 1. In this experiment, the land

cover objects are stored in the same file (i.e. Shapefile), ten is

used as the threshold number of each node.

Number of

polygons

Levels Time

nodes

 second

6585 6 0.6671 777

12166 6 1.6406 2217

26003 7 5.0704 3289

56087 8 16.9004 9689

104230 9 43.1691 16073

Table 1. Costs for the improved quadtree index construction

To test the query efficiency, 5 times experiments are made. 100

query points and 100 rectangles are produced in the test area

randomly every time. The result is shown in table 2.

Table 2. Query Time with Our Index Comparing to CIF

Quadtree Index

As the purpose of this study is to improve the efficiency of

incremental updating for land cover database with many

complex parcels. The result is shown in table 3. In table 3, the

maximum holes is the holes of the most complex polygon in the

test data.

Polgs

Max

holes

Delete

polgs

Insert

polgs

Update time

(seconds)

Imprs

 MX-CIF
Our

method

Times

6585 614 824 381 77.107 26.622 2.9

12166 1079 951 455 99.348 29.618 3.4

26003 2140 1120 595 144.397 34.626 4.2

56087 3817 1378 869 208.727 39.866 5.2

104230 5573 1609 1228 286.135 46.021 6.2

Table 3. Incremental Updating Time with Our Index Comparing

to CIF Quadtree Index

In table 3, “Polgs” is the abbreviation of “polygons”. “Imprs” is

the abbreviation of “improvements”, it means the improved

times our method comparing to the CIF Quadtree, i.e. “Imprs =

MX-CIF/Our method”. The cost time of updating process

includes the time used to reconstruct the index structure and

inclusion table.

From table 2 to 3, we can conclude that, comparing to MX-CIF

quadtree index, the efficiency for query and updating are

improved very much using our method. Especially, the updating

efficiency has been improved to several times, furthermore,

experimental results show that the greater the dada and complex,

the more efficient our improved method is. When the polygon

number of the base state is more than 100000, and the holes of

the most complex polygon arrived 5573, the updating efficiency

is improved more than 6 times.

5. SUMMARY AND DISCUSSION

An improved quadtree spatial index method is presented in this

paper. In this method, the polygons intersect to the quadrant

axes are stored in the five buckets of different level root nodes,

and the polygons disjoint to all quadrant axes are stored in the

leaf nodes. The inclusion relations between the complex

polygons and their holes are stored in an inclusion table

explicitly. The algorithms used to construct the spatial index

 Point Query Window Query

 Our

method

MX-CIF Our

method

MX-CIF

 ms ms ms ms

1 3.261 7.300 56.309 102.695

2 2.942 6.552 55.674 81.362

3 3.441 6.413 51.864 79.996

4 3.032 7.859 64.634 92.702

5 2.882 7.021 51.239 84.249

average 3.112 7.029 55.944 88.201

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-757-2018 | © Authors 2018. CC BY 4.0 License.

760

http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###

structure and inclusion relationship table are developed, the

corresponding index operations (e.g., insert, delete and query)

are presented. The effectiveness of the improved index is

verified by an experiment of land cover data incremental

updating. Experimental results show that the time efficiency of

the incremental updating is significantly improved, and the

improvement is increasing with the data size.Comparison to the

existing methods, our method has the following characteristics:

1) The MBB of the holes of the complex polygons are stored

explicitly, that can improved the filter efficiency for the

updating process for the complex polygons.

2) The polygons intersect to the quadrant axes are stored in the

five buckets of different level root nodes, which much

decreased the duplicate storage of the objects cover neighbour

quadrants, and improved the query efficiency.

3) The inclusion relations between the complex polygons and

their holes are stored explicitly, which can improve the updating

efficiency for complex polygons.

The objects usually form a complete coverage of the space in

land cover (land use) database per se. While the objects can be

stored in one layer (i.e. in one file or table), or stored in several

different layers. However, the authors just implemented and test

the models and algorithms for the case of the objects stored in

one layer, i.e. the complex polygons and their holes are stored

in the same layer. The other case, i.e. the complex polygons and

their holes may stored in different layers will be studied in the

further studies.

ACKNOWLEDGEMENTS

The work described in this paper was supported by the National

Key Research and Development Program of China

(NO.2016YFB0501403) and the National Natural Science

Foundation of China (No. 41371366).

REFERENCES

Becker, C., Ostermann, J. Pahl, M., 2012. Mono-Temporal GIS

Update Assistance System Based on Unsupervised Coherence

Analysis and Evolutionary Optimisation. In: ISPRS Annals of

Photogrammetry, Remote Sensing and Spatial Information

Sciences, Vol. I-4, pp.233-238.

Murakami, S., Takemoto, T., Ito, Y., 2012. Data Updating

Methods for Spatial Data Infrastructure That Maintain

Infrastructure Quality and Enable Its Sustainable Operation. In:

ISPRS-International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, Vol. XXXIX-B4, pp.

29-33.

Guttman, A., 1984. R-Trees: A Dynamic Index Structure for

Spatial Searching. ACM SIGMOD International Conference on

Management of Data, Boston, Massachusetts.

Sellis, T. K., Roussopoulos, N., Faloutsos, C., 1987. The R+-

Tree: A Dynamic Index for Multi-Dimensional Objects.

International Conference on Very Large Data Bases, Brighton.

Beckmann, N., Kriegel, H.-P., Schneider, R., et al., 1990. The

R*-Tree: An Efficient and Robust Access Method for Points and

Rectangles[C]. ACM SIGMOD international conference on

management of data, Atlantic City, New Jersey.

Hjaltason, G. R., Samet. H., 2002. Speeding up Construction of

Pmr Quadtree-Based Spatial Indexes. The VLDB Journal, 11(2):

pp.109-137.

Kedem, G., 1982. The Quad-Cif Tree: A Data Structure for

Hierarchical on-Line Algorithms. 19th Design Automation

Conference, Las Vegas.

Wei, Y., Tanaka, S., 2012. Performance Improvement of Mx-Cif

Quadtree by Reducing the Query Results. International Journal

of Computer Theory & Engineering, 4(6), pp. 902-906.

Zimmermann, R., Ku, W. S., Chu, W. C., 2004. Efficient Query

Routing in Distributed Spatial Databases. ACM International

Workshop on Geographic Information Systems. ACM New

York. pp. 176-183.

Philippe Rigaux, Michel Scholl, Agnes Voisard, 2002, Spatial

Databases with Application to GIS, Academic Press, USA.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-757-2018 | © Authors 2018. CC BY 4.0 License.

761

http://cnc.dict-client.iciba.com/2013-01-22/?action=client&word=axis&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=b59b5380dd18bf135ceabceb90bc3366&uuid=D3A6FA6969D7925A3ABCEDC1AB22AC9E&v=2014.05.16.044&tip_show=3,1,2,4,5,6,&fontsize=0&channel=21.00###
https://www.acm.org/publications

