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ABSTRACT:  

 

Satellite remote sensing can effectively estimate the particulate matter on a large scale. Polar-orbiting satellites have limited frequency 

of observations, which cannot help us understand PM2.5 evolution. The observation frequency of Himawari-8, a geostationary 

meteorological satellite, increases to at least once every 10 min. Besides, this satellite can provide the hourly aerosol optical depth 

(AOD). PM2.5 concentration is closely associated with changes in wind speed. The air quality changes with the variations of wind 

direction and speed. In Hubei Province, the daily average wind speed varies greatly, while the wind significantly impacts the PM2.5 

diffusion. In the present study, a mixed effect regression model is developed which predicts ground-level hourly PM2.5 concentrations 

in Hubei province and analyzes the hourly time variation trend and spatial distribution characteristics of the near ground PM2.5 

concentrations using the annual Himawar-8 Level 2 aerosol product in 2016. The estimated hourly PM2.5 concentrations are consistent 

well with the surface PM2.5 measurements with high 𝑅2 (0.74) and low RMSE (20.5 ug ∙ 𝑚−3). The average estimated PM2.5 in Hubei 

province during the study is about 46.1 ug ∙ 𝑚−3 . A clear regional distribution is shown in the spatial distribution of PM2.5 

concentrations, and the PM2.5 concentrations in the central and eastern regions of Hubei Province is significant higher than that of the 

western region; from the perspective of time change, the pollution peak appears at 15 o'clock in the local time, the average concentration 

of PM2.5 reaches 50.1±21.8 ug ∙ 𝑚−3; the pollution reaches the lightest at 9 o'clock a.m., and the average PM2.5 concentrations is 

41.7±17.5 ug ∙ 𝑚−3. These results are conducive to assessing surface PM2.5 concentrations and monitoring regional air quality. 

 

 

1. INTRODUCTION 

Fine particles (PM2.5), which are exposed to air, refer to particles 

with an aerodynamic diameter of 2.5 μm or less. It is one of the 

vital components of air pollution and the major cause of haze as 

well. As the latest research suggests, the burden of air pollution 

has continued to raise in the global environment since 1990 

(Forouzanfar et al., 2015). The impact of PM2.5 is primarily 

reflected in the harm to human respiratory health, variations in 

surface temperature and atmospheric precipitation, etc. As the 

epidemiological studies have suggested, PM2.5 is associated with 

an increase in the incidence and the mortality of cardiovascular 

and respiratory diseases. Respiratory disease may be induced 

when we breathe submicron-sized particles in our lungs (Pope et 

al., 2002; Dominici et al., 2006; Wan Mahiyuddin et al., 2013). 

The reports show that 3.7 million people worldwide died of 

environmental air pollution-induced diseases in 2012, which has 

aroused the attention from people all over the world (Pope et al., 

2002; Dominici et al., 2006). Thus, long-term, large-area PM2.5 

monitoring and accurate PM2.5 concentration prediction are 

critical for air quality and public health. 

 

The traditional PM2.5 ground monitoring network provides 

important space and time information for PM2.5 concentration 

and composition in the atmosphere. Besides, it has great potential 

to study air-related climate and air quality issues (Yap et al., 

2012). Yet it inevitably has some limitations. Ground monitoring 

fails to obtain PM2.5 concentration in large-scale space due to the 

limited space coverage of observation instruments and high 

operating costs, especially for many developing countries, e.g., 
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China. Before 2013, only a few cities in China (including Nanjing 

and Guangzhou) had research monitoring sites (Chen et al., 2010; 

Wei et al., 2009). Due to the lack of spatial and temporal 

continuity of ground PM2.5 measurements, researchers face 

difficulties in accurately assessing the spatiotemporal variations 

of PM2.5 concentration, which brings substantive limitations to 

epidemiological studies in China.  

 

Satellite remote sensing technology provides a more effective 

monitoring and estimation method for epidemiological studies 

(Hoff et al., 2009). The limitations of the ground PM2.5 

monitoring network can be eliminated in terms of time and space 

by studying satellite-measured aerosol optical depths (AOD), 

especially where ground monitoring networks are not available 

(Engel-Cox et al., 2004; Liu et al., 2005; Schaap et al., 2009). In 

the early studies, the relationship between PM2.5 and satellite 

AOD was analyzed using a simple linear regression model, and 

the local scale factor of the global atmospheric chemistry model 

was employed. It was found that the AOD obtained through 

satellite remote sensing measurements is capable of effectively 

monitoring PM2.5 pollution (Chu et al., 2003; Koelemeijer et al., 

2006). In recent years, many studies have established links 

between PM2.5 and satellite AOD using advanced statistical 

models (Generalized Linear Regression, Generalized Additives, 

Geographically Weighted Regression, and Land Use Regression 

Models). Besides, the meteorological parameters (boundary layer 

height, temperature, relative humidity) and land use information 

(elevation, population, vegetation cover) were also incorporated 

into the AOD-PM2.5 relationship as a common variable to 

improve model performance in the noted studies (Koelemeijer et 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-77-2018 | © Authors 2018. CC BY 4.0 License.

 
77

mailto:442544764@qq.com


 

 

al., 2006; Kumar et al., 2007; Liu et al., 2007a; Gupta and 

Christopher, 2009; Tian and Chen, 2010; Li et al., 2011; Wu et 

al., 2012; Hu et al., 2013 Sorek-Hamer et al., 2013). Yet the 

estimation accuracy of the noted model can still be improved. In 

these studies, the effect of wind speed and direction on the 

inversion of PM2.5 concentration were rarely considered. Wind 

has a great influence on the diffusion of PM2.5 concentration. In 

the space environment, the concentration of PM2.5 should not be 

constant, but vary with the wind speed. 

 

In addition, most of the above noted studies use MODIS AOD 

data to estimate ground PM2.5 concentrations. Yet the data 

provided by such polar-orbiting satellites is limited by the 

frequency of observations (e.g., MODIS only makes two 

observations per day). Accordingly, this still cannot clarify the 

evolution of PM2.5 in terms of continuity. The Himawari-8 

weather satellite, as a geostationary meteorological satellite, is 

one of the sunflower series satellites designed and manufactured 

by the Japan Aerospace Exploration and Development 

Corporation. It is a new-generation meteorological satellite 

launched by Japan on October 7, 2014. Himawari-8 is the first 

stationary meteorological satellite, capable of taking color 

images around the world. The previous polar orbiting satellites 

were restricted by the frequency of observations, and the 

observation frequency of Himawari-8 increased to at least once 

every 10 min, covering a third of the earth (Western Pacific, East 

Asia, Southeast Asia and Oceania). Furthermore, the 

performance of continuous observation of clouds and other 

movements of Himawari-8 are also improved (Shang et al., 2017; 

Tian et al., 2010). 

 

In the present study, a mixed-effect regression model is improved 

on the basis of AOD data provided by Himawari-8 satellites, 

meteorological data and ground observation data. Various 

meteorological factors are established to estimate regional scales 

hourly ground PM2.5 concentration, and the ability of wind speed 

meteorological factors is comprehensively evaluated to explain 

the spatial-temporal differences of PM2.5 in Hubei Province. 

 

2.  STUDY AREA AND DATASETS 

2.1 Study area 

The Hubei Province locates in Central China. The region consists 

of 12 prefecture-level cities (Wuhan, Huangshi, Shiyan, Yichang, 

Xiangyang, Ezhou, Jingmen, Xiaogan, Jingzhou, Huanggang, 

Xianning and Suizhou) and 1 prefecture (Enshi Tujia and Miao 

Autonomous Prefecture). It takes up an area of 185,900 square 

kilometers, located in the central region of mainland China. 

Influenced by the subtropical monsoon humid climate, Hubei 

Province is hot and humid in summer and dry and cold in winter. 

The average annual temperature in Hubei Province reaches 15-

17°C, and the average annual rainfall is nearly 800-1600mm. The 

region is densely populated, the local heavy industry is developed, 

and the northerly winds are strong. The pollutants in the north 

continue southward. The local climatic conditions in Hubei are 

not conducive to the spread of pollutants, which makes this 

province one of the regions with the most severe PM2.5 pollution 

in China (Zheng, Y et al., 2016). The location of the study area is 

shown in Fig. 1. 

 
Fig. 1. Location of the study area 

 

2.2 Datasets 

2.2.1 Ground PM2.5 measurements: 

The mass concentration of PM2.5 applied in the present study is 

extracted from the official website of China Environmental 

Monitoring Center (http://113.108.142.147:20035/emcpublish/), 

and a data set covering the year of 2016 is selected. The 

distribution of PM2.5 ground monitoring points involved in this 

study is shown in Fig. 2. It shows that the PM2.5 monitoring 

stations are primarily distributed in urban areas. 
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Fig. 2. Spatial distribution of PM2.5 surface monitoring stations in Hubei Province 

 

2.2.2 Satellite AOD retrievals: 

The AOD data employed in this study is extracted from 

Himawar-8 Level 2 aerosol products, and a data set covering the 

year of 2016 is selected. Himawari-8 satellites are capable of 

providing nearly one-third of the Earth's coverage (West Pacific, 

East and South-East Asia, and Oceania) （Shang et al.,2017;Tian 

et al.,2010）with AOD data and angstrom indices with a time 

resolution of 10 min and a spatial resolution of 5 km. 

 

2.2.3 Meteorological data: 

The meteorological data applied in this study is extracted from 

the reanalysis dataset (ERA-Interim) in the European Centre for 

Medium-Range Weather Forecasts (ECMWF). The European 

Centre for Medium-Range Weather Forecasts went into 

operations on August 1st, 1979 to produce medium-term weather 

forecasts, and it has run two "re-analysis" programs. ERA-

Interim is one of the ECMWF reanalysis data sets. Since 1979, 

ERA-Interim has provided global climate reanalysis data and 

updated it in real time.  

 

 

 

In this study, the meteorological data used consist of surface 

temperature (K), surface pressure (Pa), wind speed (m/s), relative 

humidity ( %), and boundary layer height (m). 

 

2.2.4 Land cover data: 

This study also analyzes the impact of land cover downloaded 

from the NASA (http://neo.sci.gsfc.nasa.gov/). The MODIS 

Level 3 monthly mean normalized difference vegetation index 

(NDVI) with a spatial resolution of 0.05° x 0.05° is used. The 

area with a NDVI value greater than 0.4 is selected as a plant 

cover area, while others are taken as soil-dominated surface 

（Liu et al., 2014）.The DEM data of the study area is yielded 

by NASA with a spatial resolution of 90 meters. In the PM2.5 

prediction model of this study, NDVI data and DEM data serve 

as covariates （Ma et al., 2014）. The details of the data sets 

applied in this study are listed in Table 1. 

 Data Type Time resolution Spatial resolution Data Sources 

1 PM2.5 Ground PM2.5 1 hour Site CEMC 

2 AOD Satellite AOD 10 min 5km Himawari-8 

 

Meteorological 

Data 

Temperature 4 hours 0.125° ECMWF 

3 

Wind 4 hours 0.125° ECMWF 

Pressure 4 hours 0.125° ECMWF 

Relative Humidity 6 hours 0.125° ECMWF 

Boundary Layer 

Height 
3 hours 0.125° ECMWF 

4 
Land Cover 

Data 

NDVI 16 days 0.05° NASA 

DEM not available 90m NASA 

Table 1. Data sets for this study
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3. METHOD 

3.1 PM2.5 estimated model 

Studies have suggested that meteorological conditions including 

temperature and relative humidity can strongly impact the 

relationship between PM2.5-AOD. Since the extinction 

characteristics of particles vary significantly with the increase of 

the moisture absorption of aerosols (Liu et al., 2005; van 

Donkelaar et al., 2006), some researchers proposed the use of 

meteorological factors to improve AOD and Methods for the 

relationship between ground PM2.5 concentrations (Koelemeijer 

et al., 2006; Liu et al., 2007a; Tian and Chen, 2010; Wang et al., 

2010). 

 

In Hubei Province, the average daily wind speed varies to a large 

extent, and the wind has a huge impact on the diffusion of PM2.5 

(Chou Tianxiong et al., 2017). These differences in daily 

meteorological conditions lead to a special relationship between 

AOD and PM2.5. Thus, we develop a mixed-effect regression 

model that considers the magnitude and direction of wind speed 

to predict PM2.5 concentrations. The changes are added, and land 

use information is introduced to calibrate the PM2.5 concentration 

prediction. The model consists of two parts, i.e., fixed effects and 

random effects. The complete model is as follows: 

 
𝑃𝑀2.5 = 𝛽0 + 𝛽1𝐴𝑂𝐷 + 𝛽2𝐵𝐿𝐻 + 𝛽3𝑇𝐸𝑀 + 𝛽4𝑃𝑅𝐸𝑆

+𝛽5𝑊𝐼𝑁𝐷𝑠𝑝𝑒𝑒𝑑
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + 𝛽6𝑅𝐻 + 𝛽7𝐷𝐸𝑀 + 𝛽8𝑁𝐷𝑉𝐼 + 𝜀

      (1) 

𝜀~𝑁(0，𝜎2) 

Where PM2.5 refers to an hourly mean of the mass concentration 

of the near ground PM2.5, the unit is ug ∙ 𝑚−3. AOD is the aerosol 

optical thickness value provided by Himawari-8. BLH refers to 

the boundary layer height obtained by ECMWF data, and the unit 

m. RH are the relative humidity of the ground surface measured 

by the foundation, its unit is %, and the TEM is near ground 

temperature measured by the foundation, its unit is K. And PRES 

is near surface pressure, the unit is Pa and 𝑊𝐼𝑁𝐷𝑠𝑝𝑒𝑒𝑑
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is the 

component of the size and direction of the surface wind speed, 

with the unit of m/s. The vertical wind speed and horizontal wind 

speed are used on a two-dimensional plane to synthesize them 

into a total wind speed, representing the wind speed in any 

direction. DEM is the digital elevation model information of the 

study area. The unit is the m and NDVI is the monthly mean 

value normalized difference vegetation index, without unit. 𝛽0 is 

the fixed intercept and 𝛽1~𝛽8 are the corresponding regression 

coefficients in the equation which are associated with the 

prediction variables. 𝜀 represents the observation error, and the  

𝜀~𝑁(0，𝜎2) is a site term which accounts for the spatial 

difference of the AOD-PM2.5 relationship due to differences in 

site specific characteristics（i.e., surface reflectivity, topography 

PM2.5 emissions, and pollution transported to the observation 

sites）.  

 

To reduce the noise generated by data error and the influence of 

spatial difference, and to ensure the spatiotemporal consistency 

of the predictors, the spatial and temporal prediction factors are 

combined with the specific random effects to adjust the data in 

time and space. The nearest match is employed to match the 

meteorological data and the data of PM2.5 ground monitoring site. 

The Himawari-8 AOD data are matched for each grid by the non-

zero pixels mean values within the radius of 5 km around the 

PM2.5 ground monitoring site. 

 

4. RESULT 

4.1 Model validation 

The method of 10-fold CV is used in this study to evaluate the 

performance of the PM2.5 prediction model. Its basic idea is to 

group the original data. All data randomly fall into ten equal-

sized and non-overlapping subsets. One partial set is applied for 

verification, and the other nine partial sets are for training. The 

PM2.5 prediction model is trained with nine subsets. The 

validation repeats 10 times. Each subsample is validated once, 

and a single estimate is finally yielded by the average of 10 

results. Then, the PM2.5 concentration predicted during all 10-

fold cross-validation process is compared with the measured 

PM2.5 concentration at the ground station, the coefficient of 

determination ( 𝑅2 ) between the PM2.5 concentration are 

determined and estimated, and the mean absolute error(MAE) 

and Root Mean Square Error (RMSE) are used to evaluate the 

performance of the model. 

 

4.2 Himawari-8 AOD spatial distribution  

The spatial distribution of the Himawari-8 AOD data at different 

times of daytime in 2016 is shown in Fig. 3. It is suggested from 

the results in Fig. 2 that the spatial distribution of AOD shows 

higher values in the central and eastern regions of Hubei Province, 

while the AOD values in the western regions are lower. The mean 

AOD yielded from Himawari-8 is 0.28±0.24. The highest 

average AOD value during the day appears at 15 o'clock, is was 

0.35±0.29; the lowest AOD value is at 10 o’clock, which is 

0.25±0.22 (Table 4). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-77-2018 | © Authors 2018. CC BY 4.0 License.

 
80



 

 

 
Fig. 3. Spatial distribution of Himawari-8 AOD data at different times of 2016 

 

 

4.3 Estimated PM2.5 

The PM2.5 mass concentration from the China Environmental 

Monitoring Center releases hourly, while the Himawari-8 AOD 

data is yielded every 10 min.  The means of the Himawari-8 AOD 

for each hour are computed to match the hourly PM2.5 mass 

concentration.  

 

To assess the meteorological and land-use parameters applied in 

the final model to improve the accuracy of the fitted model, AOD 

serves as the sole independent variable, and different predictors 

are added to fit the model, as listed in Table 2. By calculating the 

coefficient of determination (𝑅2), mean absolute error (MAE), 

and root mean squared error (RMSE) between measured and 

predicted PM2.5 concentrations, the final model performance is 

evaluated. MAE is defined as (sum of absolute error 

values)/(number of observations). RMSE is defined as the square 

root of the mean squared error, the square root of the ratio of the 

square of the observed value to the true deviation and the number 

of observations. 

 

Test 
Prediction  

parameters 
𝑅2 RMSE MAE 

1 AOD 0.75 19.40 13.30 

2 
AOD;TEM;DEM;RH; 

BLH;PRES;NDVI 
0.76 19.10 13.20 

3 
AOD;TEM;DEM;RH; 

BLH;PRES;NDVI;WIND 
0.77 19.03 13.12 

Table 2. Comparison of accuracy of different prediction 

parameters fitting model 

 

In accordance with the statistical results, Test 1 and Test 2 

suggest that meteorological parameters and land use parameters 

have a significant positive impact on the model, i.e., compared 

with the test model using AOD as the only independent variable, 

the mixed-effects model with the hourly-level-specific random 

effect shows better performance. Test 3 suggests that after 

considering the magnitude and direction variables of the wind 

speed in the model, the coefficient of linear correlation analysis 

is 0.77, the mean absolute error is 13.12ug ∙ 𝑚−3, and the root 

mean square error reaches 19.03ug ∙ 𝑚−3. The accuracy of the 

model is slightly improved. According to the statistics of each 

fitting result, by introducing meteorological parameters, land-use 

information, wind speed and other predictors, the model fitting 

results become better, and globally better than a single variable 

model fitting result. 

 

The cross validation scatter plot of the PM2.5 concentration 

measured by the ground monitoring site at different hours in the 

daytime and the PM2.5 concentration estimated by the model 

fitting at different hours of the day are shown in Fig. 4. In these 

scatter points, the color represents the number of data points of 

the corresponding pixels. In the improved hybrid effect model, 

the determining coefficient 𝑅2  of all time is more than 0.68, 

which can verify the feasibility of the proposed model in Hubei 

Province, and the model can be reasonably predicted. Yet the 

decision coefficient 𝑅2  of cross validation at different time 

periods (e.g., 𝑅2 is 0.76 at 15:00 and a minimum of 0.68 at 9:00) 

means that the performance of our improved model is better in 

the afternoon than that at other daytime. One possible reason is 

that when PM2.5 concentration exceeds60ug ∙ 𝑚−3, we choose all 

Himawari-8 AOD valid values within 5 km radius given the 

consistency of space-time prediction factor. Besides, our model 

often underestimates this prediction, so it cannot be well shown 

in the large grid unit. The measured values of the ground stations 

at different times and the predicted PM2.5 concentrations are 

listed in Table 3. 
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Fig 4. Cross-validation plot of the estimated PM2.5 concentration by the model fit 

 

 
Local 
time 

N 𝑅2 
Predicted 

PM2.5 
Measured 

PM2.5 

all 19957 0.74 61.9±34.1 61.9±39.9 

9:00 2698 0.68 52.7±27.5 52.3±32.2 

10:00 3043 0.71 55.2±29.5 55.1±35.5 

11:00 2472 0.72 66.7±37.0 67.1±42.9 

12:00 2282 0.74 58.1±32.0 57.7±36.5 

13:00 2170 0.76 63.0±33.8 63.1±38.9 

14:00 2264 0.74 65.5±35.9 65.6±43.3 

15:00 2514 0.76 68.7±36.4 68.6±43.4 

16:00 2514 0.73 66.7±37.0 67.1±42.9 

Table 3. Averages of estimated and measured PM2.5 at different 

hours of cross-validation 

 

4.4 Spatial distribution of PM2.5 

Based on the PM2.5 prediction model proposed in this study, the 

spatial distribution of the hourly PM2.5 concentrations in Hubei 

Province in 2016 is calculated. The results are shown in Fig. 5. 

The spatial distribution of PM2.5 concentration estimated by the 

model and the spatial distribution of AOD shown in the Fig.3 and 

Fig.5 suggest that there is a certain geographic correlation 

between AOD and PM2.5. The average PM2.5 concentration in 

Hubei Province is 46.1±20.1 ug ∙ 𝑚−3. The spatial distribution of 

PM2.5 in Hubei Province has obvious regional distribution 

characteristics, as shown in Fig. 5. The high value areas are 

connected together. The average PM2.5 concentration in the 

central and eastern regions is significantly higher than that in the 

western region, and the PM2.5 concentration is comparatively 

high. The places are primarily distributed in Xianning, Suizhou 

and Xiaogan. The heavily polluted areas are located in Wuhan 

and Jingmen. The pollution of PM2.5 is relatively light in Shiyan, 

Enshi Tujia and Miao Autonomous Prefecture; from time 

perspective, the distribution of PM2.5 concentration in Hubei 

Province reaches its highest at 15 o'clock with an average PM2.5 

concentration value of 50.1±21.8 ug ∙ 𝑚−3; and at 9 o'clock is the 

lowest which with the average PM2.5 concentration 41.7±17.5 

ug ∙ 𝑚−3 (Table 4). It is suggested that the variation in the hourly 

grade Himawari-8 AOD are not completely consistent with the 

changes of the PM2.5 concentration values; for instance, the PM2.5 

concentration value is the smallest at 9 o'clock (41.7±17.5 ug ∙
𝑚−3) while the average  lowest AOD appears at 10 o'clock. There 

is one hour lag. Several factors may have a synergistic effect on 

the change of PM2.5 concentration, which include land use 

information, weather information, etc. 
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Fig 5. Spatial distribution of PM2.5 concentrations at different times in Hubei Province in 2016. 

 

 

Local time AOD 
Predicted 

PM2.5 

all 0.28±0.24 46.1±20.1 

9:00 0.26±0.22 41.7±17.5 

10:00 0.25±0.22 45.9±19.9 

11:00 0.25±0.22 48.4±20.6 

12:00 0.26±0.23 42.3±19.3 

13:00 0.27±0.23 43.6±18.7 

14:00 0.32±0.26 47.9±20.4 

15:00 0.35±0.29 50.1±21.8 

16:00 0.34±0.26 48.9±21.0 

Table 4. AOD values and PM2.5 concentrations at different 

times in Hubei Province in 2016 

 

5. DISCUSSION 

The data measured by ground monitoring sites can only 

accurately reflect the air quality pollution within a certain area. 

Given the sparse distribution of the traditional ground monitoring 

station measurements in space, satellite remote sensing data with 

large-scale spatial coverage has become extensive as one of the 

most important methods for estimating PM2.5 concentrations in 

geographical space. Aerosol Optical Depth, which is defined as 

the integration of the extinction coefficient of the medium in the 

vertical direction. It is a description of the effect of the aerosol on 

light reduction. Since the atmosphere is not evenly distributed in 

the vertical direction, coupled with the cloud layer, ice and snow, 

aerosol colloidal properties, as well as air relative humidity, the 

AOD value actually has no good linear relationship with 

atmospheric suspended particulate matter (PM) concentration. 

The relationship between surface PM2.5 concentration and AOD 

is associated with the vertical distribution and particle size 

distribution of aerosols （Li et al 2016;Zhang et al 2015） . 

Given the vertical distribution of atmospheric suspended 

particulates from the physics perspective, the vertical distribution 

correction of satellite AOD can improve the correlation between 

satellite remote sensing products and atmospheric suspended 

particulates （Chu et al.,2015; Barnaba et al.,2010）. Besides, 

the correction of the influence of humidity on AOD is also 

necessary. The traditional "gravimetric method" is capable of 

measuring the concentration of PM2.5. After heating the airborne 

particulate matter to 50 degrees Celsius, the "dry" PM2.5 

measurement is likely to reduce the mass of the aerosol 

particulate matter (The moisture absorption and growth 

characteristics of aerosol particles make AOD affected by 

humidity) （Song et al.,2014）. 

 

In the present study, relevant factors including meteorological 

parameters and land use information are considered in the PM2.5 

prediction model, respectively. Among these factors, BLH and 

RH are correction factors for vertical distribution correction and 

humidity correction. Besides, in this model, the effects of wind 

speed and direction are also considered in the model performance. 

As the results suggest, wind speed has significant inverse relation 

with PM2.5 concentration, and has a greater influence on the 

accuracy of model fitting. 

 

It is found that the meteorological parameters and land use 

parameters have an obvious positive impact on the model, i.e., 

the mixed effect model with hourly specific random effects 

shows better performance than the test model using AOD as the 

only independent variable. In accordance with the statistical 

indexes of the fitting results, the model fitting results are better 

after the introduction of the weather parameters, land use 

information and wind speed prediction factors. Besides, they are 
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better than the single variable model fitting results in the overall 

situation. 

 

Furthermore, the average AOD predicted PM2.5 concentration in 

the PM2.5 monitoring points within the 5 km radius may not 

represent all the measurements. 

 

CONCLUSIONS 

This study is based on the Himawari-8 satellite remote sensing 

AOD product dataset in 2016 combined with meteorological 

model data, ground observation data and land use information. A 

mixed effect regression model is built to estimate PM2.5 

concentration in Hubei Province. The model estimates the 

temporal and spatial distribution characteristics of PM2.5 

concentration in the area. It is significant and necessary for us to 

understand the evolution of PM2.5 mass concentration. The 

results suggest that: 

 

(1) Based on the physics relationship of AOD-PM2.5, an 

improved mixed-effect model is developed using Himawari-8 

AOD data to estimate the PM2.5 concentration on the ground. In 

accordance with the results of 10-fold cross-validation (e.g., the 

coefficient of determination 𝑅2 is 0.77, and the root-mean-square 

error is 19.03ug ∙ 𝑚−3 ), the model is capable of fully and 

accurately estimating the surface PM2.5 concentration. 

 

(2) Analysis of the temporal and spatial changes of PM2.5 in 

Hubei Province in 2016 suggests that the spatial distribution of 

PM2.5 shows a clear regional distribution, with the high value 

areas as a whole, and the average PM2.5 concentrations in the 

central and eastern regions are significantly higher than that in 

the western region. The places with higher concentrations of 

PM2.5 are primarily distributed in Xianning, Suizhou, Xiaogan 

etc. The heavily polluted areas are located in Wuhan and Jingmen, 

and the PM2.5 pollution is comparatively light in Shiyan and 

Enshi Tujia and Miao Autonomous Prefectures. From the 

perspective of time, the distribution of PM2.5 concentration in 

Hubei Province reaches the highest value at 15 o’clock, and 

reaches the lowest at 9 o’clock.  

 

(3) Wind greatly impacts the diffusion of PM2.5. Test 3 suggests 

that the accuracy of the linear correlation analysis results is 

improved after considering the magnitude of the wind speed and 

the influence of the direction. In the synthesis of statistical results 

for each fitting result, by introducing meteorological parameters, 

land use information and wind speed and other predictors, the 

model fitting results become better, and globally better than a 

single variable model fitting results. 
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