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ABSTRACT: 

 

Semantic segmentation, especially for buildings, from the very high resolution (VHR) airborne images is an important task in urban 

mapping applications. Nowadays, the deep learning has significantly improved and applied in computer vision applications. Fully 

Convolutional Networks (FCN) is one of the tops voted method due to their good performance and high computational efficiency. 

However, the state-of-art results of deep nets depend on the training on large-scale benchmark datasets. Unfortunately, the benchmarks 

of VHR images are limited and have less generalization capability to another area of interest.  As existing high precision base maps 

are easily available and objects are not changed dramatically in an urban area, the map information can be used to label images for 

training samples. Apart from object changes between maps and images due to time differences, the maps often cannot perfectly match 

with images. In this study, the main mislabeling sources are considered and addressed by utilizing stereo images, such as relief 

displacement, different representation between the base map and the image, and occlusion areas in the image. These free training 

samples are then fed to a pre-trained FCN. To find the better result, we applied fine-tuning with different learning rates and freezing 

different layers. We further improved the results by introducing atrous convolution. By using free training samples, we achieve a 

promising building classification with 85.6% overall accuracy and 83.77% F1 score, while the result from ISPRS benchmark by using 

manual labels has 92.02% overall accuracy and 84.06% F1 score, due to the building complexities in our study area.  

 

 

1. INTRODUCTION 

1.1 Background  

Remote sensing images have been widely used and play an 

important role in various applications, especially for mapping 

purposes. The VHR (Very High Resolution) airborne images 

with very detailed geographic information provide an 

opportunity to create large scale maps by detecting and 

classifying buildings, roads, water bodies, vegetation, etc.  Rapid 

progress on deep learning techniques in the last few years has 

drawn geo-scientists attention to implementing artificial 

geointelligence for an urban mapping application. Cheng et al. 

(2017) reviewed several benchmarks that contain remote sensing 

scene classification datasets used for neural networks, namely: 

UC Merced Land-Use, WHU-RS19, SIR-WHU, RSSCN7, 

RSC11, Brazilian Coffee, and NWPU-RESISC45. However, the 

benchmark dataset in remote sensing often has limited training 

samples in a specific area. The generalization ability for another 

area of interest is adversely affected. In this study, an existing 

high precision map is used to label the airborne VHR stereo 

images to provide large scale training samples. However, maps 

and images often have time difference, so a small amount of 

mislabels will be introduced. In this study, whether the 

classification is robust to these mislabels, in the sense of changes 

(such as building changes, trees growth, road changes, etc.) 

should be evaluated. Apart from these mislabels, unlike Toronto 

dataset (Wang et al., 2016) with perfect matches between maps 

and aerial images, there are three main resources, which may 

introduce mislabels are addressed . The three main resources are: 

a. The relief displacement of high objects in the image, 

especially for buildings, resulting in a serious positional 

mismatch between the image and the map.  

b. The map and images have different object representation. 

In the map, a building is defined based on the footprint of 

the walls on the map, while in the image, building only 

can be shown based on the roof. In this case, an 

overhanging roof creates the mismatched areas due to 

different shape and size of a building in the map and the 

image.    

c. The airborne stereo image is often has less accurate 

colors in the occluded area which can be seen from one 

image but not others.  

 

In classification, the pretrained FCNs (Long et al.) are proved 

with very good performance and high computational efficiency 

for semantic segmentation. However, many hyper-parameters in 

FCNs have significant impacts on the performance.  Moreover, 

the FCNs structures are constructed to extract features for images 

in ImageNet. However, the capability of the structure for 

extracting valuable features for VHR images are questionable.  

In this paper, we propose a novel and fully automatic approach 

to classify buildings from VHR stereo images by using existing 

maps to provide free training samples. The scientific 

contributions are as follows: 
a. We provide an approach to reduce the mislabels from 

relief displacement, different representation between the 

base map and the image, and occlusion areas in the 

image. 
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b. We test different learning rates and freeze different layers 

to select the best hyper-parameters for classification. We 

replace the convolutions in FCN with Atrous 

convolutions to extract more global features for our VHR 

data.  

c. We compare our building classification results with those 

from ISPRS benchmark. The comparable results show 

that FCNs are robust to a small amount of mislabels. 

 

1.2 Data specification and study area 

In this study, we aim to do VHR airborne images classification 

by using an updated base map version as the training samples. 

We use datasets that has five years time difference. However, the 

choice of the two datasets may make our study more challenging. 

However, it does not reduce the effectiveness of the provided 

approach. 

 

The datasets used in this study are specified as below: 

a. The Dutch large-scale base map which is called as BGT 

map. It has a vector format. We use the updated version, 

the Year 2016. This map is composed of several 

objects/map layers such as traffic area, bridge, building, 

terrain, plant cover, solitary vegetation, fence, road, 

tunnel, water-body, etc.  

b. The VHR airborne images have a spatial resolution of 3.5 

cm and are georeferenced with one pixel positional 

accuracy. These aerial images were acquired in 2011.  

c. The validation dataset for classification is obtained by 

manual delineation especially to obtain the changed 

building parts in the base map according to the airborne 

images.  

d. The ISPRS Benchmark dataset, the Vaihingen – 

Germany. It comprises of 16 raw airborne images and 16 

semantic label images. The comparable results show that 

FCNs are robust to a small amount of mislabels.  

 

Our study area is located in Amersfoort city of The Netherlands. 

The total size of the study area is 611 x 1050 m. A subset of our 

dataset is shown in Figure 1.  

 

  
a. The BGT map b. The VHR airborne images 

Figure 1. A subset of Amersfoort dataset 

 

2. RELATED WORK 

One of the reasons that CNNs are very powerful in computer 

vision task is that they can automatically extract the deep feature 

of the image instead of the man-craft features. Although the CNN 

have superior classification performance, it could only provide 

the “image-label” which means one image can only be classified 

into one class. In order to delineate the boundary for mapping 

purpose from remote sensing images, semantic segmentation 

should be performed. Many types of research (Farabet et al. 2013, 

Pinheiro et al. 2014) employed patch based CNNs to derive 

semantic segmentation by classifying the image patch centered 

in that pixel. However, this approach is computationally 

intensive. In order to keep the advantages of CNN but saving 

more computation budget,  FCNs (Long, 2015) is proposed with 

“pixel-label” classification by replacing the last fully connected 

layer with convolutional layers. By keeping convolutional layers 

from CNN, deep feature extraction still exists. Another advantage 

of the FCN architecture (Figure 2.) is that it has the ability to 

accept any size of the image and output a classification map with 

the same size. Fully convolutional networks (FCN) has been 

successfully applied in remote sensing images. It is proved with 

good accuracies and efficiency computations (Kampffmeyer et 

al., 2016, Bittner et al., 2017, Fu et al., 2017). 

 
Figure 2. The architecture of the FCN 

(source: Long et al., 2015) 

 
Large-scale benchmarks are significant to train the large-scale 

convolutional neural networks (CNN). ImageNet with 

tremendous amount of training samples facilitates the success of 

CNN in most of the computer vision tasks. However, ImageNet 

contains very limited training examples for remote sensing and 

urban mapping applications. Even for transfer learning, fine-

tuning still needs many training examples from the area of 

interest. To solve the issue above, Wang et al. (2016) create a 

large-scale benchmark dataset, TorontoCity, by using a high 

precision map to create ground truth for labelling airborne and 

mobile images in order to test different neural networks for 

various vision tasks. However, the problems of their research is 

that maps and aerial photos assume  perfectly matched and it is 

not true in most of cases. For example in Section 1.1, it illustrates 

many mislabeling. Instead of creating benchmarks for different 

applications by using maps, we directly apply semantic 

segmentation on VHR images by using maps to provide free 

training samples. As a result, the classification results will be 

used for change detection on the map to update the map. 

 

3. METHODOLOGY 

In this section, we describe the components of our approaches to 

conduct the VHR airborne image segmentation into three parts. 

The first step is to generate the labels from the base map (BGT). 

The second step consists of some procedures to provide clean 

training samples by removing the detected mislabeled areas. In 

the last step, the clean training samples are fed into the fully 

convolutional network. The workflow of our study is illustrated 

in Figure 3. 

 
3.1 Generate the label 

One of the factors for a successful FCN is depended on the 

quality and quantity of the training data. Thus, we aim to provide 

training samples with noise or mislabeled pixels as less as 

possible. A class aggregation is a necessary step since the BGT 
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map has several map layers or object classes. For creating the 

labels, we aggregate the BGT map into two classes: building and 

non-building.  

 

 
Figure 3. The Research Workflow 

 

3.2 Reduce the mislabel 

We conduct a series of procedures to provide clean training 

samples for anticipating some problems that may arise due to 

problems above in chapter 1.1. 

 

 

3.2.1 Removing the relief displacement: In the image, a 

high building may have a serious relief displacement due to aerial 

acquisition angle and height differences. The relief displacement 

causes a positional error of the building roof in the VHR images, 

which means that some pixels of the building roof are shifted 

from its true location. This relief displacement causes a building 

misalignment between the images and the base map. In most of 

the cases, the relief displacement of the airborne images can be 

removed by generating the true orthophotos. We apply a 

straightforward way to provide the true ortho-images by 

triangulation interpolation from colored point clouds generated 

by dense image matching algorithm from stereo images. We use 

Pix4D software to construct the RGB point clouds. These images 

are then used to provide training samples labelled by maps and 

also used for further reducing mislabels. 

 

3.2.2 Adjusting different buildings representation:        

The building representation that shows in the BGT base map is 

different from that in the images. The base map presents a 

building as a footprint of the wall, while image presents a 

building as a roof. Due to its dissimilarity, the pixels in  

overhanging roof part (an area where a building in the base map 

is smaller than a building in the image) have wrong labels from 

maps. As shown in Figure 4.a., the mismatched of building 

footprint and the real building roof. To avoid mislabeling 

problem in the overhanging roof areas, we conduct a plane 

segmentation (Vosselman, 2010) in the point clouds. After point 

clouds triangulation, the plane-segmented image is obtained. A 

continuous plane is detected as the overhanging roofs often 

continue the planar trend from inner roof parts as shown in Figure 

4.b. The overhanging roof is detected when the plane segment is 

partially located in the polygon. These plane pixels outside the 

building polygon is converted to black colors in the training 

image as the segments are not accurate in the building 

boundaries. Accordingly, the corresponding labels are also 

converted to non-buildings. 

 

  

a. Overhanging roof not 

presented in the map 

b. Overhanging roof 

detection  

Figure 4. Building mismatched in the overhanging roof 

 

3.2.3 Removing occlusion:      In the urban scene, many 

objects can be seen from one image not from another due to relief 

displacement. Point clouds are hardly reconstructed from these 

occluded areas from dense image matching. Therefore, we may 

have some gaps or areas without any point clouds presence. As 

we produce the true ortho-images from these point clouds by 

triangulating interpolation, the occluded areas will make large 

triangles, and the interpolated color is deteriorated. As shown in 

the left image of Figure 5., the occlusion areas near to the 

building have blurred color (inside the red box).  

 

 
Figure 5. The blurred pixels shows the occluded area 

(inside the red rectangle) 
 

These stretched or blurred pixel contains wrong color 

information that may cause mislabels. Therefore, in this step, we 

detect the blurred pixels by checking whether the pixels are 

interpolated from a triangle with its edge larger than 70 cm (20 

pixels). These detected pixels are converted to black colors, and 

the labels are marked as non-buildings. 

 

3.3  The FCN classification  

The convolutional layers from FCNs often borrow the pretrained 

networks (Long et al., 2015).  In this study, the VGG-16 

(Simonyan et al., 2014) is selected due to its superior 

performance. The VGG-16 is a convolutional neural network 

pre-trained by ImageNet. According to its state-of-art 

performance, many researchers use it for a basic building block 

to build their customize architecture. By using the applications, 

we do not have to train the whole network from the scratch but 

applying fine-tuning by feeding our training samples. 
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FCNs replace fully connected layers in CNNs with convolutional 

layers which preserves the spatial information of the input.  

However, when an image is passing through the convolutional 

layers, the pixel information of the image is losing significantly 

due to the pooling layers with downsampling process. FCNs use 

skip layers architecture to combine information from shallow 

layers and deep layers. By this way, we could combine global 

features from low layers with local features from high layers. The 

upsampling process is designed for regenerating image size as the 

input. 

 

There are two critical issues should be considered as follows:  

(1)  How to define an architecture to derive features from remote 

sensing images?  

Our dataset is very high-resolution images even to 3.5cm.  As the 

accuracy of boundary delineation is related to resolution, we keep 

this high resolution for processing.  The image size fed for FCN 

is often no more than 1000*1000 due to computational limits of 

a GPU. Therefore, the patch size is not more than 35m* 35m, that 

is often not enough for a large building. With a fixed size of 

convolutional layers in FCNs, max pooling and stride is then used 

to expand the receptive field of deep layers. The structure of 

VGG-16 in the FCN is very effective to extract local and global 

features for ImageNet images where the object of interest is in 

the center of the image. However, it may fail to extract effective 

global features to our dataset. Therefore, the atrous convolutions 

in Figure 6 are used to replace the convolutions in the VGG-16 

block. The atrous convolution kernel is a new fashion of 

convolution, which are similar with 3*3 kernel but it has space 

between the kernels. The advantage of atrous kernel which enable 

to extract the features by changing the size of the kernel while 

keeping weights in the kernel the same. 

 

 
Figure 6. The 1-D Atrous convolution representation 

（Liang et al., 2018) 

 
(2) How to fine-tune hyperparameters from pre-trained weight to 

fit for our dataset?   
We focused on ISPRS benchmark dataset (Cramer, 2010) for 

fine-tuning parameters. These parameters which result in the best 

classification performance are applied for our own dataset. In this 

study, the most critical parameter to tune is the learning rate. We 

tried different learning rates to find the best one. In addition, layer 

freezing is also considered in the paper. The previous layers in 

the deep neural network extract the low level features with 

respect to the images such as edges and corners, while the deep 

layers extract the high level features specific to training images. 

Therefore, in the fine tuning process, we freeze the previous 

layers in order to prevent updating the low level features from 

back propagation, at the same time, update the weights in the 

deep layers which is not frozen. 

 

4. RESULT AND DISCUSSION 

We applied building classification on Amersfoort dataset with 

FCNs using free training sample by reducing mislabels. The 

result  is compared with that of FCN for ISPRS benchmarks.  

  

4.1 Generate the label 

The extracted labels from the BGT for the FCN classification is 

shown in Figure 7. The labelled image is extracted from the 

aggregated map that has the same spatial resolution 3,5 cm. 

 

  
a. The BGT Map b. The training image 

Figure 7. The BGT map is aggregated into labelled image 

 

4.2 Reduce the mislabel 

4.2.1 Removing the relief displacement:  By using the 

stereo-images, we solve the misalignment problem between the 

base map and the images. In Figure 8.a. we can still see the 

building wall on the right side of the building, which means that 

there is a building misalignment in the base map (yellow area) 

with the image due to relief displacement. As shown in Figure 

8.b., the building in the true ortho image is perfectly matched 

with the base map (yellow area).  

 

  
a. Building misalignment between 

the map (yellow) and image  

b.  A matched building in 

the map and image 

Figure 8. Removing the misalignment problem 

 

4.2.2 Adjusting different building representation:      In 

Figure 9., the pixels of the overhanging roof in the image (inside 

the blue ellipse of Figure 9.a.) are detected and then assigned as 

zero value with black color (inside the blue ellipse of Figure 9.b.). 

In the end, these pixels are assigned as non-building pixels in the 

training samples. 

 

 

 
a. Image contains 

overhanging roof  

b. Image without 

overhanging roof  

Figure 9. Solving the building representation differences. 
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4.2.3 Removing the occlusion: Figure 10. illustrates the 

differences between the unclean and clean training image. In 

Figure 10.b., the occluded part of the image is removed and 

assigned as a non-building class. 

 

  
a. An occluded image b. A clean image 

Figure 10. Removing the occluded areas to provide clean 

training samples 

 

4.3 Fully convolutional classification 

4.3.1 Fine-tuning with learning rate and freeze layers:     

To test the FCN architecture and parameter setting, we use the 

ISPRS benchmark dataset (Cramer, 2010), the Vaihingen. The 

dataset consists of VHR orthorectified airborne images including 

the classified image. This datasets include 16 images with ground 

truth label. We use 12 images as the training samples and four 

images as the test samples. The result is evaluated based on the 

ground truth data. The classification accuracy is measured by 

four metrics: recall, precision, overall accuracy (OA) and F1 

score. Figure 11. shows the result of classification by tuning 

learning rates. We tested six learning rates on four quantitative 

measurements. When learning rate is 1e-5, the result is the best. 

Figure 12. shows the result by changing the freezing layers. We 

separately freeze the third layer, fourth layer and do without a 

freeze layer, and then compare the classification results still on 

four quantitative measurements. The test with a non-freeze layers 

presents the best performance. 

 

 
Figure 11. The learning rate of ISPRS dataset 

 

 
Figure 12. The learning rate of frozen convolutional 

layers 

 

4.3.2 Apply the optimal paramaters:     Since the tuning 

the parameter on our data set cost too much time, we adopt 

optimal parameters from ISPRS, that is learning rate equaling to 

1e-5 and without freeze layers. Two experiments are applied on 

a clean data which contains 234 images and noisy data with 171 

images. 63 images are used for validation. Clean data are applied 

with the three steps of reducing mislabels, while noise data don’t. 

As shown in Figure 13, the classification result for the same area 

on a noisy dataset is worse than the clean dataset. The reason is 

because the noisy data contains more mislabeled building pixels.  

The result of noisy data has lower recall value (71.57 %) than the 

clean data, which means that it has 7% less building detection 

than that in the clean data. The overall accuracy of noisy data is 

2% less and the F1 score is almost 4.4% less than the clean data.  

 

We also applied the FCNs to ISPRS benchmark dataset with the 

manually labeled training samples. The comparison of the clean 

data with ISPRS benchmark result shows that the overall 

accuracy of our clean data (84.81%) is 7.2% less, but the F1 score 

(83.22%) is similar. It may happen due to our study area 

containing higher buildings complexities (such as building with 

grass or trees on the roof,high details roof, and roof – ground 

similarities as shown in Figure 1.b) than the ISPRS Vaihingen 

area. 

 

 
Figure 13. Comparison of building classification result 

from clean and unclean training samples (grey color 

represents the bulding area) 

 

4.3.3 Apply an Atrous convolutions:      We apply the 

atrous kernel on the clean dataset. As shown in Table 1., the result 

of atrous kernel slightly better than the previous kernel since the 

Atrous uses a larger receptive field. The overall accuracy 

increases from 84.81% to 85.60% and F1 score increases about 

0.5%. This result gives a hint that the atrous convolution could 

help to get more global features in classifying our buildings.  

 

 Recall Precision Overall 

Accuracy 

F1 

Score 
ISPRS 90.27 79.75 92.02 84.06 
Noisy data 71.57 90.22 82.73 78.82 
Clean data 78.89 88.25 84.81 83.22 
Clean data  77.89 90.61 85.60 83.77 
+  Atrous     

Table 1. Performance of the FCN classifier 

 

Figure 14 and Figure 15 show an averall visual comparison of 

our FCN result with the ground truth data. Figure 14 shows the 

final output of the building classification results that is marked 

by light grey color. Figure 15 shows the ground truth data, where 

buildings areas are represented by dark grey color.  
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Figure 14. The building classification result 

 

 
Figure 15. The ground truth  

 
 

5. CONCLUSION AND RECOMMENDATION 

We provide a novel and fully automatic approach to conduct a 

building classification by using free training samples. Based on 

our evaluation, it is critical that the three main mislabeling 

problems should be addressed. With the clean training samples, 

the overall accuracy and F1 score is increased by 2.1% and 4.4%. 

By applying the fine-tuning with the hyper-parameters, we 

obtained satisfying results of the building classification. The use 

of atrous convolution able to increase the overall accuracy and 

F1 score by 0.5%, which means that a larger atrous kernel may 

have better performance. The building classification of 

Amersfoort dataset using automatic labels has a less overall 

accuracy than the ISPRS dataset using manual labels. The 

possible reason is that our study area has higher building 

complexities than ISPRS Vaihingen area. Moreover, the similar 

F1 score also shows a promising result of our approach.  
For a future work, adding the height information (such as Digital 

Surface Model) is worth to implement to increase the accuracy of 

FCNs, since some buildings have confusions with roads if only 

contexture features are considered. 
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