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ABSTRACT:

In this paper, a method is proposed for solving relative translations of 3D point clouds collected by Mobile Laser Scanning (MLS)
techniques. The proposed approach uses the attributes of the 3D points to generate and match 2D-projections, by employing a simple
correlation technique instead of matching in 3D. As a result, the developed method depends more on the number of pixels in the 2D-
projections and less on the number of points in the point clouds. This leads to a more cost-efficient method in contrast to 3D registration
techniques. The method uses this benefit to provide redundant translation parameters for each point cloud pair. With the utilization of
image-based evaluation criteria the reliable translation parameters are detected and only those are used to compute the final solution.
Consequently, the confidence levels of each final estimation can be computed. In addition, an indication of robustness showing how
many estimations where included for the computation of the final solution is included. It is shown that the method performs fast due
to its simplicity especially when medium image resolution’s such as 0.15m are used. Reliable matches can be produced even when the
overlap of the point cloud sets is small or the initial offset large as long as the offsets are distinguishable in the projections. Furthermore,
a technique is proposed to obtain capabilities for sub-pixel accuracy estimations, as the accuracy of the estimations is restricted to the
grid cell size. The technique seems promising, but further improvement is necessary.

1. INTRODUCTION

1.1 Problem statement

Point cloud data is an important source of 3D spatial information,
as vast amounts of highly dense 3D points can be collected with
laser scanning techniques in a considerably short amount of time.
Mobile Laser Scanning (MLS) techniques are used for the rapid
and cost-effective recording of street view data. During a MLS
process it is usually necessary to record a certain scene more than
once to retrieve a complete representation of it, for instance at a
road junction. In such cases, point clouds representing (part of)
the same scene but retrieved at different epochs do not perfectly
match. In contrast they tend to have offsets in the X, Y, Z coordi-
nates (Figure 1).

This deviation between the point clouds is caused due to
environment-depending limitations of the Global Navigation
Satellite Systems (GNSS) signals, which constitute the main
source of positioning information. Namely, when signal multi-
pathing or blockage occurs the navigation solution has poor qual-
ity or can even be unavailable. The positioning in such cases de-
pends on an Inertial Measurement Unit (IMU), which calculates
positions based on displacements from an initial known position
(Levi and Judd, 1996). However this leads to the accumulation of
potential encountered positioning errors.

The use of point cloud data retrieved from MLS techniques re-
quires the integration of all the 3D scans collected at different
times from different observation points in a common reference
system, a process known as global registration (Sanchez et al.,
2017). However, prior to that it is necessary to perform rela-
tive alignment of the overlapping point clouds to facilitate the

Figure 1. (a) and (b): Two point clouds representing part of the
same scene but captured at different times are visualized from a
diagonal point-of-view. (c): An overlay of (a) and (b), where the

magnified parts highlight the offsets between (a) and (b).
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construction of a single 3D point cloud model. Relative regis-
tration also known as local alignment or matching, refers to the
estimation of the transformation parameters that are needed to
match one point-cloud with another (Magnusson et al., 2007).
Locally and ultimately globally registered point clouds can be
used for several purposes such as object recognition, cultural her-
itage modeling, disaster management or even as alternatives to
surveying processes such as coordinates extraction of cadastral
parcels.

1.2 Paper objectives

The main focus of this work is to assess the extend to which it is
attainable to solve the 3D relative registration challenge by cre-
ating projections from the point clouds and aligning in 2D. Only
translation parameters are estimated, neither rotation nor scaling
are considered as translation errors may be quite large in case of
limited GNSS visibility, in comparison with rotation and scaling
errors. Particularly, there might be rotation errors in Z axis of the
mobile platform around the 1

10
of a degree. This happens when

the driver of the recording vehicle takes successively the same di-
rection in turns for some period of time. With regard to scaling,
when performing MLS for a long time without strong GNSS re-
ception in theory, the scale factor of the point clouds will not be
exactly equal to 1.

A method is proposed with which the quality of an alignment be-
tween a pair of scans could be automatically assessed. In addition
an approach is proposed to gain translations of sub-pixel accuracy
as the matching is performed between imagery. The quality eval-
uation method is independent of highly accurate ground truth data
such as reference points that could be used for comparison. Enor-
mous amounts of reference points would be required for large
scale projects so as to judge the quality of relative registrations.

In summary, the proposed image-based method for the registra-
tion of mobile laser scanning point clouds consists of several im-
portant aspects:

• Creation of 2D projections so that the 3D point clouds are
best described.

• Computation of the transformation parameters that align rel-
atively 3D overlapping point cloud pairs by matching 2D
imagery.

• Automated determination of the final results’ quality.

• Development of a sub-pixel accuracy technique to improve
the drawback of discrete grid cell size.

1.3 Motivation

Some of the advantages of reducing the dimensionality of the
problem, relate to the limitations faced by the Iterative Closest
Point (ICP), which is commonly used for pairwise registration of
point clouds in 3D. It requires computationally expensive and ex-
tensive search of point correspondences between the point clouds
(Godin et al., 1994). Also, ICP-based methods perform poorly
when points in one scan do not have correspondences in the other
(Pomerleau et al., 2013), which is very common in MLS data
(Figure 1a and 1b). Furthermore, this algorithm delivers incor-
rect results if the initial position of the point clouds is not close to
the required matching position, or simply put the offset is large
((Shetty, 2017), (Sanchez et al., 2017)). This can be the case in

MLS data when streets separate dense blocks of high structures or
when tall trees are present, as then the GNSS reception is highly
restricted. Another advantage of reducing to 2D but not related
to ICP, is that the computation time when employing 2D registra-
tions processes can be decreased. The reason is that the method
becomes then less dependant on the (large) number of points, and
more on the number of grid cells.

2. RELATED WORK

2.1 3D local point cloud registration

3D relative registration techniques may be preferred as they do
not require compressing data into discrete grid cells. Many re-
searches employ a variant of the Iterative Closest Point (ICP)
(Besl and McKay, 1992) algorithm, the most commonly used al-
gorithm for the local registration of 3D overlapping scans in 3D
(Byun et al., 2017). The algorithm establishes iteratively corre-
spondences between the points of two point cloud sets and com-
putes the spatial distances between them. It terminates when the
sum of the spatial distances between the correspondences is min-
imum (Sanchez et al., 2017).

The Iterative Closest Compatible Point (ICCP) algorithm (Godin
et al., 1994), reduces the search space of points correspondences
by finding firstly those that are compatible according to their in-
tensity value and then the one that lays at a minimum distance.
Despite this, the compatible points are recomputed at each iter-
ation which is a costly operation, and ICCP, like ICP, estimates
correct results when most of the points in the one set have a cor-
respondence in the other. Additionally, even when the intensity
value of two points is compatible and their distance is minimum,
it is not guaranteed that the correspondence is correct. If the off-
set between the 2 scans is large, then other compatible points may
be closer. The trimmed-ICP algorithm (Chetverikov et al., 2002)
sorts the square distances between the points and minimizes their
sum by iteratively excluding a number of extreme values. Thus,
it can eliminate faulty estimated correspondences. However, it
requires knowledge regarding the overlap of the scans, so as to
know how many point correspondences to trim. Iterative Clos-
est Point using Invariant Features (Sharp et al., 2002) improves
the selection of point correspondences by extracting quantities of
the point clouds that are invariant to rotations and translations,
such as the points’ curvature. The correspondences are computed
between points of the detected features like in an ICP approach.
The results are sufficient for coarse registration purposes, which
means that the scans do not completely match, but shift closer to
the matching position (Sharp et al., 2002).

2.2 2D local point cloud registration

A 2D point cloud registration technique proposes the creation of
bearing angle images from 3D point clouds (Lin et al., 2017).
This type of images is used as it can highlight the depth dis-
continuities and direction changes of a scene (Scaramuzza et al.,
2007), useful properties for 2D matching. A 2D feature-based
matching method is used to find corresponding pixels between
an image pair. As a result, for each pixel correspondence it is
possible to retrieve an equivalent set of corresponding 3D points.
These are used in a least squares approximation to derive the
transformation parameters. Due to the 2D matching, the compu-
tation cost is significantly less than ICP. However, it is shown that
the precision of the method is not better than that of generalized-
ICP, which is a plane to plane ICP registration (Segal et al., 2009),
because sometimes outlying correspondences are included.
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2.3 Quality of local registration

The quality of relatively registered data was evaluated in a re-
search by assessing whether the overlapping region after the
alignment represents the same physical surface (Huber and
Hebert, 2003). Two measures of surface consistency were used.
The Euclidean distance between corresponding points of two
overlapping point clouds and the angle between the normal vec-
tors of corresponding points. A surface is considered consistent
when these two measures are less than a threshold. In another
work, similarly to the Euclidean distance, a mean-square error
(MSE) was computed after correspondences were found (King et
al., 2005). The matching solution is accepted as soon as the MSE
is close to the approximate noise of the sensor. In addition, a
’non-randomness score’ is used to detect the random alignments
or mis-alignments due to repetitive structures, such as a row of
windows in a building. This score results from the matching
of distinctive structures detected on the two point clouds. If the
transformation parameters are close to the first registration esti-
mation, then this accounts as a proof that the estimated solution
is non-random.

2.4 Sub-pixel accuracy

As mentioned, the relative transformation parameters between
point clouds are estimated in this project by matching imagery.
As a result, the parameters can have at maximum the accuracy of
the images’ grid cell size. Techniques to retrieve values of sub-
pixel accuracy, or in other words, accuracy higher than that of
the pixel, are explored. A second order polynomial is fitted on
the values of some pixels of interest (Zhang et al., 2009). Figure
2 illustrates three pixels in a row P1, P, P2 as point entities. It
can be seen than the polynomial fitting operates like an interpo-
lation method as values of sub-pixel accuracy can be retrieved.
For instance, information is acquired regarding the highest value
between the area that the three pixels cover. This is the value
Wmax of the point Pmax and not the value W of the point P,
as one would think by examining the discrete pixel values. In
another work, the fitting of a 1D Gaussian function is discussed
(Naidu and Fisher, 1991) and applied with the same concept as
explained for the polynomial fitting.

Figure 2. Interpolation of pixel values with a second order
polynomial. P1, P, P2 illustrate the locations of three pixels as

points placed in the middle of the pixels. W1, W and W2 are the
corresponding pixel values.

3. METHODOLOGY

3.1 Pre-processing

The proposed method assumes that the 3D mobile laser scanned
data are stored in tiles, for instance of 50 meters in X axis by 50
meters in Y axis. Each tile of 3D points is simply mentioned in
the rest of the paper as a ’point cloud set’. The procedure begins
with the computation of the surfaces’ normal vectors on each 3D

point of a point cloud set by using the Principal Component Anal-
ysis (PCA) method (Shlens, 2014). For the calculation of the nor-
mal vectors at each point, the neighbouring points are considered
so as to compute the vector that is perpendicular to the surface fit-
ted by the points’ neighbourhood. In order too make the normal
vectors direction consistent, the trajectory points of the moving
vehicle are used as vantage points. These are used to orientate
the normal vectors towards the laser scanner direction.

The next step is to pair the point cloud-sets. Despite the fact that
the positioning of the 3D data could be degraded due to the lack of
GNSS reception, it is still possible to detect the overlapping point
cloud sets from their coordinates by assuming a buffer zone. As
soon as the overlapping point clouds are known, all the possible
and unique combinations of pairs of point clouds sets are formed.

3.2 From 3D to 2D

For every point cloud pair the combined minimum and maximum
X, Y, and Z coordinate is computed. These are meant to be used
as the boundaries for the two 2D projections generated from the
two corresponding point cloud sets in a pair. In such a way, it is
feasible to spot and compute the positioning offsets in the created
imagery. Next, each point cloud set is projected on three planes
resembling a top and two orthogonal views. Namely, we project
the point clouds sets in the XY-plane (Figure 3), in the XZ-plane
(Figure 4) and in the YZ-plane (Figure 5).

Figure 3. Projection of Figure 1a on the XY-plane.

Figure 4. Projection of Figure 1a on the XZ-plane.

Figure 5. Projection of Figure 1a on the YZ-plane.

According to the plane we project, the relevant combined bound-
aries of the two point cloud sets are utilized (see Section 3.1). For
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example, for the creation of the XY-plane we use the boundaries
in X and Y. These, along with a specified grid cell size, are used
to define the number of the grid cells and their edges. Subse-
quently, the 2D-coordinates of the points are used to spatially bin
the points into 2D grid cells. Thereafter, attributes of the points
are used as the information illustrated on the 2D-projections. We
use points’ characteristics that could best describe the 3D infor-
mation in 2D. Specifically, these are the density of the points
within the grid cells, the intensity, the depth, the gradient of the
intensity, the gradient of the depth and the calculated normal vec-
tors of the points. As a result, a set of image pairs is produced for
every point cloud pair.

Each grid cell of a density image simply illustrates the total
amount of points that fall in the 2D cell. The density is considered
an important characteristic because long and thick features, such
as walls or the ground, will be represented with high amounts of
points (i.e. bright pixels). Thus these features can be highly dis-
tinguishable in a certain pair of projections. However, one object
captured in two overlapping point cloud sets may be represented
with less (or more) dense points, according to the recording ve-
hicle’s position. Nevertheless, even if the laser scanner captured
a scene from a long distance, a wall will still be represented by
more points than a pole. To minimize the effect of having dif-
ferent densities of points in the two point cloud sets, the density
values in the projections are normalized up to the same value.
Examples of density imagery in the three projections are given in
Figure 6.

Figure 6. The three images produced from the point cloud set of
Figure 1a illustrating density values.

The intensity of each 3D point, which is the strength of each re-
ceived laser signal is also used to create a second type of images.
By using the points’ intensity, features like painted lines on the
roads become visible, as it can be observed at the upper left cor-
ner of an XY-plane shown in Figure 7.

Figure 7. The three images produced from the point cloud set of
Figure 1a illustrating intensity values.

Because a 2D grid cell can possibly include points of different
intensities, the mean of the intensities is computed to output a
single intensity value per grid cell.

Corresponding objects in a point cloud pair may be represented
by points of different intensity, due to the different position of
the recording vehicle. Thus, the intensity images are used for
the construction of images where the pixels’ values depict the
gradient of the intensity. The gradient images can be useful for
highlighting corners and edges. These will not differ in two pro-
jections resulted from point clouds sets recorded from different
observation points (Figure 8).

Figure 8. The three images produced from the point cloud set of
Figure 1a illustrating gradient of intensity values.

Depth projections depict how far the objects of an image are with
respect to each projected plane’s view point. Particularly, the 2D
grid cells contain the coordinates of the 3rd dimension. For ex-
ample, the grid cells of an XY-plane illustrate the Z-values of the
points. In that case, the cells which contain points with higher
elevation will be brighter, and the cells which contain points with
lower elevation will be darker. Similarly the depth values are as-
signed on the other two planes (Figure 9).

Figure 9. The three images produced from the point cloud set of
Figure 1a illustrating depth values.

As the depth projections represent the value of a coordinate, cor-
responding objects in a point cloud pair may be represented by
points of different depth due to the positioning error. For that
reason, gradient of depth images are created (Figure 10).

Finally, the grid cells of the 2D projections are filled with the
values of the normal vectors. These images contain values in 3
colour channels, one for each direction of the vector. The normal
vectors are used to create imagery illustrating the orientation of
the features’ surfaces (Figure 11). Furthermore, 2D projections
are constructed that illustrate the vector’s value only in X, only in
Y and only in Z direction. By doing this, the surfaces’ orientation
are strengthened. As example, Figure 12 shows the values of the
normal vectors in Z direection.
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Figure 10. The three images produced from the point cloud set
of Figure 1a illustrating gradient of depth values.

Figure 11. The three images produced from the point cloud set
of Figure 1a illustrating normal vector values.

The images that show the normal vectors’ at the Z direction il-
lustrate brighter values when a normal vector points towards the
Z direction. In contrast, they illustrate darker values when the
surfaces are not perpendicular to the Z direction.

Figure 12. The three images produced from the point cloud set
of Figure 1a illustrating the Z values of the normal vectors.

Nine types of images are used to represent each point cloud set.
For each image type a set of an threes projection is produced.
Overall, 27 image pairs are constructed for each point cloud pair
(Figure 13).

3.3 Image registration

An image registration technique is applied to match produced im-
ages that contain common visual information (Gaidhane et al.,
2014) in order to retrieve the translation parameters. A template
matching method, which determines the location of a template
image (smaller sample) within a reference image (larger sample)
is used (Sarvaiya et al., 2009). The implemented method is based

Figure 13. The 27 produced image pairs from each overlapping
point cloud pair.

on a simple cross correlation statistical analysis of the bright-
ness values of the two images. Particularly, the template image
shifts over every possible location of the reference image, pixel
by pixel. At every location, a degree of similarity between the
two images is calculated with the cross correlation approach. The
similarity degree equals to the sum of all the multiplications be-
tween the corresponding pixels of the template and the reference
image (Ding et al., 2001). The best match is the location where
the highest similarity value is found. Despite the fact that a cross
correlation method is sensitive to intensity differences between
the two images (Sarvaiya et al., 2009), it is used in this project
because high correlations can still be obtained, as long as the
values of the pixels follow the same pattern (Ding et al., 2001).
Additionally, the method performs successfully even when small
rotation and scaling is presented (Sarvaiya et al., 2009).

The template matching technique is implemented twice, the first
time one image of a pair is considered to be the reference and
next the other. There are two reasons for that. Firstly, for the
current application there is no knowledge with regard to which
point cloud set in a pair has correct absolute position, or even if
any of them has. Second, the expectation is that the same transla-
tion parameters will be retrieved from both matchings once with
negative and once with positive sign. As mentioned, the template
matching technique requires that the reference image considers a
larger sample. Thus a border of pixels with zero value is added
to the reference image. The amount of extra pixels is determined
according the maximum expected translation error.

The so-called score map, is the output of the image registration
method. It is a 2D array that contains the similarity values com-
puted between the template and reference image at all the possi-
ble overlay positions. Its size equals to W − w + 1, H − h + 1
in pixels, where W and H the width and the height of the refer-
ence image, and w and h the width and the height of the template
image, correspondingly. An example of the resulted score map’s
size according to some specific parameters is given in Table 1. A
score map with these parameters is shown in Figure 14. As the
matching of each image pair is applied twice with swapped roles
between the reference and the template image, one of the two re-
sulted score maps is flipped horizontally and vertically. Then it is
superimposed onto the other score map to retrieve the final score
map. The next step is the detection of the location of the maxi-
mum correlation value in the score map, shown with red in Figure
14. This is the location of the template image into the reference
image, namely the 2D translation between the images.
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Image W (m) H(m) W (pix) H (pix)

Image 1 50 50 1000 1000
Border 10 10 200 200

Image 1 as reference 60 60 1200 1200
Image 2 50 50 1000 1000

Score map 10.05 10.05 201 201

Table 1. Parameters that define the size of a score map resulted
from images’ of 50m by 50m with grid cell size 0.05m and

border of 5m in each side.

Figure 14. Left: An example of a score map image resulted from
image registration (with the parameters described in Table 1).
Right: For better understanding of the score map’s concept the

score map is also visualized in 3D.

3.4 Optimal Solution and Reliability Evaluation

For the quality evaluation of the relative transformations we adapt
and use theoretical knowledge about the reliability and precision
of spatial data from the ’Adjustment theory’ mainly developed
(Baarda, 1968) and applied (Sweco Nederland B.V., 2016) for the
processing and quality control of survey data. Thorough relevant
information will be given in a future thesis work.

To apply the theoretical knowledge we mainly use image pro-
cessing techniques. For every image pair of a point cloud pair,
three evaluation criteria are applied on the resulted score maps.
The highest similarity values of the score maps computed with
two different methods must be the same. Also, there should only
be one highest similarity value and if there are more there must
be a significant difference between the values of the highest two.
Lastly the highest peak’s value must be higher than a threshold.
Subsequently, only the reliable score maps (which pass all the
criteria) are used for the computation of the final translation pa-
rameters that match a point cloud pair. The optimum solution is
the average of the accepted solutions. It is accompanied with its
standard deviation and the amount of image pairs eventually used
for the computation of the mean, as an indication of robustness.

3.5 Sub-pixel Accuracy

The accuracy of the results with the proposed method can not
be better than the accuracy of the images’ grid cell size. Thus
an interpolation method is proposed with which translation pa-
rameters of sub-pixel accuracy can be retrieved. The method is
applied on the score maps and particularly on the highest similar-
ity pixel value and its neighboring pixels. We assume that if we
would be aware of how the values in a score map are distributed,
then the type of distribution could be used for interpolation. To
gain insight into this, we create 3D visualizations of some score
maps resulted from high resolution images, like the example in
Figure 14. The conclusion is that the correspondence values of

many score maps seem to be distributed with a 2D Gaussian or
a 2D Laplacian distribution. According to the input point clouds
the distribution of the similarity values in the score maps varies.
Therefore, the selection of single distribution will not be the per-
fect solution. Nevertheless, we examine the suitability of a Gaus-
sian distribution as the light incident on the laser scanner sensor
is distributed nearly normally. Particularly, a least squares adjust-
ment method is applied to find the optimal 2D elliptical Gaussian
fit. Then the location of the highest amplitude of the 2D Gaussian
surface is used as the 2D match location.

4. IMPLEMENTATION

The proposed method was implemented in Python 2.7. For the
experiments a computer with Core(TM) i7 processor, CPU power
2.7GHz and 16GB RAM was used. No multi-processing or any
other technique that could minimize the time execution was used
to this point. Point cloud data from the West Paris, France and
Sciedam, The Netherlands were provided by the company Cyclo-
Media Technology B.V. In total 57 LAS files of point cloud tiles
of 50m x 50m were processed. The overlapping point clouds
pairs were 181. This, multiplied by 27 types of images gives a
total of 4887 image registrations.

5. RESULTS

5.1 Execution Time

Approximately 51, 55, 77 and 257 minutes needed for the cre-
ation and registration of 4887 image pairs with image cell size
of 0.5m, 0.3m, 0.15m and 0.05m correspondingly. Each image
type refers to the reading of the 3D points, their binning into grid
cells, the creation of the corresponding image and the application
of the correctness evaluation criteria on the resulted score maps.
The depth images include also the creation of the depth gradient
images. The intensity images include in addition the retrieval of
the intensity values from the LAS files and the generation of the
intensity gradient images. The registration of the images is for the
0.5m, 0.3m and 0.15m grid cells faster than the creation of every
image. The image registration of images with cell size 0.05m is
more than 6.5 times slower than the registration with grid cell size
0.15m. The detection of the optimal solution is almost constant
for all the cells sizes as it is not depended on the amount of cells,
but on the amount of image pairs.

Figure 15. Execution time of algorithm’s main steps when using
grid cells size of 0.5m, 0.3m, 0.15m and 0.05m.

5.2 Case 1: Big overlap, changes in the scene

The registration result of the example point clouds shown in Fig-
ure 1c, is shown in Figure 16. Many points of the two point cloud
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sets shown in Figure 1 do not have a correspondence in the other
point cloud. It can also be seen in Figure 1b that there are changes
in the scene. These are the points illustrated with light blue colour
on the overlapping part. Despite these, the overlap between the
two is quite big and this has influenced positively the registration
as shown in Figure 16. The standard deviations of the final solu-
tions and the amount of image types used for their calculation are
given. All the image types passed the evaluation criteria. How-
ever, for the X and Y translations not all the image types gave the
same results which is shown in their standard deviations.

Figure 16. Relative transformation result of the example shown
in Figure 1 with imagery of resolution 0.15m.

5.3 Case 2: Small overlap and different densities

Many points from the point cloud of Figure 17b do not have a
correspondence in the point cloud of Figure 17a and their densi-
ties are very different. The two point clouds are superimposed in
Figure 17c showing their offsets before registration. The magni-
fied part highlights the small offset in Z between the two. The
registration result is shown in Figure 17d. The optimum Z offset
given from imagery with cell size 0.15m, is 0.20m, the overall
standard deviation 0.0m and the image types’ results included in
the final estimations were 4 out of 9.

Figure 17. a) and b) are two overlapping point cloud sets. c) The
point clouds are superimposed before registration. d) Shows the

result of the registration with imagery of resolution 0.15m.

5.4 Case 3: Point clouds with large offset

Two point clouds with large offset in Z, and their registration re-
sult are illustrated in Figure 18. It can be seen at the magnified
part of Figure 18d that there is still a small offset in Z (and X) af-
ter the registration. The Z offset with bin width 0.05m is 1.83m,
the standard deviation 0.15m and the redundancy number 8/9.
The Z offset with bin width 0.15m is 1.85m, the standard devia-
tion is 0.13 and the redundancy number 9/9.

Figure 18. a) and b) are two overlapping point cloud sets. c) The
a) and b) are superimposed. d) The result of the registration with

imagery resolution 0.05m.

5.5 Sub-pixel accuracy

We examine to which extent the transformation parameters re-
sulted from: a) registering imagery of low resolution and apply-
ing the proposed sub-pixel accuracy method, could approach the
transformation parameters resulted b) from registering imagery
of high resolution. The grid cell size of the low resolution im-
agery used for the experiments was 0.2m, and 0.05m of the high
resolution imagery. Figure 19a indicates with box plots the ab-
solute differences in X, Y and Z between the two approaches.
Four large outliers are encountered. For visualization purposes
the Figure 19a is magnified as shown in Figure 19b. The sub-
pixel approach is successful for dx, dy and dz that are closer to
zero. More than 25% of the dx, dy and dz are equal to or less
than 0.05m. More than 50% of the dx, dy and dz are smaller than
the accuracy of the low resolution images (0.2m). This indicates
that the accuracy of the corresponding translation parameters was
enhanced.

Figure 19. Differences between the translations resulted from
the registration and the sub-pixel accuracy method of images

with low resolution and the translations resulted from the
registration of images with high resolution 0.05m

6. CONCLUSIONS

In this paper a method is proposed for relative point cloud reg-
istration by using the attributes of the points to create and match
imagery. The execution time of the algorithm is barely depen-
dant on the number of points in the tiles. It is also shown that the
cross correlation technique used for the image registration per-
forms very fast due to its simplicity. The method benefits from
this and estimates redundant solutions which contribute to the de-
termination of the confidence levels of the results. Some of the
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results were investigated. Even when points in one scan do not
have correspondence in the other, it is possible to produce a cor-
rect match if there is some overlap between them. Also, when
there are large offsets between the scans, the algorithm converges
to a solution that is close to a perfect one. The standard devi-
ations of the results are not always small showing that the cre-
ated imagery from the point clouds could be improved to pro-
duce more robust registrations. For example, only the ’mean’ of
the points’ attributes that are binned into a cell is used to pro-
duce a single pixel value. Other statistical measures should be
evaluated, too. Another reason for the large standard deviations
could be that the evaluation criteria of the score maps do not reject
all the bad results of. Thus, more sophisticated techniques must
be researched to evaluate the strength of the similarity values in
the score maps. Further future work would be the integration of
the proposed relative registration method in a global registration.
Then it would also be necessary to determine if the absolute posi-
tioning of any of the overlapping point clouds can be trusted more
than the other. The error retrieved from the relative registration
could be distributed between the overlapping scans to support the
global registration.

Moreover, an interpolation method that employs an elliptical 2D
Gaussian function to retrieve transformation parameters of sub-
pixel accuracy is proposed. The method seems promising as for
many translation parameters higher accuracy is reached. How-
ever, there are many cases where the method is not successful.
Two conclusion are drawn. First, the Gaussian fitting is good but
not the optimal option. Second, possibly the values in some score
maps where the 2D Gaussian is fitted do not form a 2D peak. The
improvement of the method is taken into account for future work.
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