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ABSTRACT: 

While virtual copies of the real world tend to be created faster than ever through point clouds and derivatives, their working proficiency 

by all professionals’ demands adapted tools to facilitate knowledge dissemination. Digital investigations are changing the way cultural 

heritage researchers, archaeologists, and curators work and collaborate to progressively aggregate expertise through one common 

platform. In this paper, we present a web application in a WebGL framework accessible on any HTML5-compatible browser. It allows 

real time point cloud exploration of the mosaics in the Oratory of Germigny-des-Prés, and emphasises the ease of use as well as 

performances. Our reasoning engine is constructed over a semantically rich point cloud data structure, where metadata has been injected 

a priori. We developed a tool that directly allows semantic extraction and visualisation of pertinent information for the end users. It 

leads to efficient communication between actors by proposing optimal 3D viewpoints as a basis on which interactions can grow.

1. INTRODUCTION

The importance of cross-disciplinary understanding is essential 

to archaeological information extraction based on point clouds. 

However concepts and tools that simplify this process are rare, 

which complicates the merging of different experts’ perceptions 

around cultural heritage applications. Being able to share and 

exchange contextual knowledge to create a synergy among 

different actors is needed for planning and analysis of 

conservation projects. In this context, 3D digital exploration and 

investigations are a proven way to extract knowledge from field 

observations (Pieraccini et al., 2001; Remondino and Rizzi, 

2010). 

It relays through 3D content, often derived from 3D modelling 

techniques that shape surveyed or available data. Yet, 3D models 

such as meshes and parametric models interpolated from point 

clouds can generate interpretation blunders when made by non-

experts. This process often leads to a blurry understanding of 

underlying information unlike the direct use of point clouds 

which permits an easier transition from data acquisition to 

information extraction. It also provides an insight on the core 

surveyed data, its precision and implicitly its usability. However, 

* Main and Corresponding authors, contributed equally.

their massiveness, heterogeneity, weak semantics, varying 

resolution and unusual visualisation makes their understanding 

and manipulation a difficult process.  

Our paper is an attempt to bring communities together by 

providing new ways to collaborate through a web-based platform 

that intelligently manages the 3D visualisation of queries over a 

semantically rich point cloud. Decision making processes relays 

through efficient data visualisation techniques, to grasp pertinent 

information that constitute a reasoning groundwork. In this 

article, we study a highly detailed point cloud replica of ancient 

mosaics from the IXth century located in the Chapel of Germigny-

des-Prés (Loiret, France). Researches are conducted to expand 

mosaic manufacturing understanding. Essentially of 

heterogeneous materials, sizes and periods the study of each 

tessera by analysing spatially-derived properties such as 

repartition, position, neighbourhood, number and density is of 

great importance for the archaeologist team. As such, a first step 

consist in recognition and data classification. This process is 

derived from the Smart Point Cloud model (Poux et al., 2016a), 

by integrating domain knowledge gathered from studies and 

analyses of artworks directly onto the data to allow. 
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Because the dome is composed of about one hundred thousand 

tesserae, immediately identifying semantic query results via data 

visualisation techniques is a gateway to transparently 

communicate relevant information. To achieve it, we  use the 

method developed by (Neuville et al., 2016) based on the analysis 

of the computational display pixels. It determines an optimal 

viewpoint by maximising the visibility of objects selected by 

semantic queries.  

 

In a first part, we will present our approach for object recognition 

and semantization within a hybrid point cloud. Then we will 

describe the framework to calculate a 3D viewpoint that exploits 

efficiently metadata. Finally, we will present our developed 

cross-platform software to visualise semantical queries and 

constitute an intelligent environment. 

 

 

2. RESTORER’S DRIVEN INTEREST 

By studying cultural heritage artwork, experts can use new 

processes to conduct specific investigations directly on a digital 

replica. The disposal of a virtual clone which depict necessary 

information leads to new insights and extracted information. 

These 3D datasets provide general knowledge through clever 

archiving and can constitute training datasets for machine 

learning (Goldberg and Holland, 1988) frameworks. In 

archaeology, researchers also use 3D digital models to annotate, 

measure, visualize, and compare the knowledge gathered from 

studies and analyses of other available artwork. 

 

 

2.1 Archaeological study: the Carolingian oratory 

The Carolingian oratory in Germigny-des-prés (Loiret, France) 

hosts ancient mosaics dated from the 9th century, composed of 

approximatively one hundred thousand tesserae. The quality of 

the preserved artworks are an exclusive occasion for the study of 

mosaics and also of the glass. Indeed, the arranged tesserae 

creating this mosaic are predominantly made in glass - a rare 

material in an archaeological context - and whose provenance in 

the early Middle Age is still a mystery (Van Wersch et al., in 

press). A specific study regarding each tessera independently and 

by analysing different properties, repartitions or advanced 

extracted information are important information sources for 

archaeological research. 

 

 
Figure 1 The mosaic of Germigny-des-prés © Line Van Wersch 

Composed of tesserae from different materials, sizes and periods, 

it is a well preserved and restored mosaic that culminates at 

5.402m above the ground, presenting many challenges for 3D 

capture from both active and passive sensors. The dome is 

protected and the limited accessibility allows only a light 

scaffolding, too tight and unstable to establish a steady tribrach. 

 

  

2.2 The 3D digital copy: a multi-sensory point cloud 

Point clouds are a direct source of information physically 

describing a 3D state of the recorded environment. As such, they 

are an exhaustive representation of the real world at every scale: 

a “goldmine” underexploited. Due to the considerable progress 

of surveying and reality capture technologies, getting hold of 

point clouds continues to become easier, faster and incurring 

lower costs. While laser scanning is largely used for precise 

applications, image-based reconstructions prove useful in cases 

ranging from archaeological to full towns and complex 

architectural reconstruction (Remondino et al., 2014), making 

this technique a favourable way to get quick and visually pleasant 

point clouds. Fusing data from both active and passive sensors 

provides additional information that relays through higher 

representative feature for contextual structuration and 

visualisation. (Poux et al., 2016b) showed the benefits of 

combining different features from these sensors while addressing 

specific challenges being registration, resolution adaptation, and 

attribute fusion to obtain a multiscale representation from urban 

scale to building scale. Building on this concept we applied the 

workflow to obtain a highly representative multi-feature point 

cloud combining datasets with varying resolution from terrestrial 

laser scanner and dense image matching reconstructions. 

 

The dome, object of interest, has a height comprised between 

115.276 m and 116.360 m for the highest tessera (altitude NGF). 

We acquired the data using a phase-based calibrated terrestrial 

laser scanner: the Leica P30 from one optimized position by 

using an extended mounted tribrach (Figure 2). 

 

 
Figure 2 Top View and Side view of TLS data, with the optical 

TLS centre’s position (red cross) 

The terrestrial laser scanner was operated at 1550 nm for a 

maximum pulse energy of 135 nJ. The final accuracy of a single 

point at 78% albedo is 3 mm, where the final point cloud is 

composed of 30 336 547 points with intensity ranging from 

0.0023 to 0.9916 covering solely the mosaic ((b) in Erreur ! 

Source du renvoi introuvable.). Several pictures were taken at 

different positions in order to obtain a 3D point cloud of the 

mosaic. These pictures were shot using a Canon EOS 5D mark 

III camera equipped with a 24-105 mm lens. 286 pictures of 5760 

x 3840 in RAW, radiometrically equalized and normalized were 

used to reconstruct the point cloud. Different softwares  

benchmarked in (Nikolov and Madsen, 2016) were tested and the 

final image-based point cloud reconstruction was made using 

ContextCapture (Novel et al., 2015). The final point cloud mosaic 

covering 9.38 m² is composed of 275 257 253 points which 
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represent a density of 29 pts/mm² ((d) in Erreur ! Source du 

renvoi introuvable.). 

 

 
Figure 3 Point Cloud of the mosaic – bottom-up view 

Finally, the different signatures are fused as in (Poux et al., 

2016b) to obtain a spatial entity on which semantic information 

can be extracted. 

 

 

3. POINT CLOUD SEMANTICS 

Bringing intelligence to point clouds and creating a connection 

between available knowledge and classification procedures is a 

key step that permits semantic injection for information 

extraction.  Building on the concept of Smart Point Cloud in 

(Poux et al., 2016a), we  illustrate the global workflow for precise 

storage of information where point clouds are precisely classified 

with unique identifiers, allowing a greater precision with the 

metadata as it relates to the acquired geometry. Bridging effective 

data acquisition and fast rendering through efficient processing 

demands an adapted model to handle data heterogeneity, 

knowledge integration and indexing scheme. 

 

3.1 Point Cloud model 

“Intelligent environment” (Novak, 1997) as an interactive and 

smart structure to transparently communicate relevant 

information to users is an attractive solution for virtual 

reconstructions, especially point clouds. Identifying links and 

relations within segmented objects becomes essential to truly 

understand how each spatial entity relates to its surroundings. 

 

To perform spatial queries, indexing scheme such as octree 

derived indexing techniques can provide an efficient solution for 

out-of-core rendering and parallel processing, but inference 

reasoning stays limited. If within the point cloud and its 

attributes, all the necessary information can be found and easily 

conveyed without the need for time consuming and redundant 

tasks, it would become a more intelligent structure for processes.  

 

We define a classification, organisation, structuration and 

visualisation process through a flexible and highly contextual 

structure based on the Smart Point Cloud workflow, that can 

adapt to different domain and device expertise created by:  

1. Integration of the multisensory data; 

2. patch-oriented indexation including filtering and 

initial normalization; 

3. Smart recognition described in 3.2 including 

segmentation, classification, validation and 

refinement; 

4. Object-LoD Smart structuring & Octree indexing. 

This workflow is particularly suited to handle semantic injection 

and point cloud structuration for a tesserae-wise 3D digital 

replica, and is adapted to the use case of Germigny-des-Prés 

(Figure 5). After the operational block (which is not covered in 

this article) around the captured subject (where context and 

properties of the scene define the chosen methodology), the point 

cloud goes through a full process to extract semantic components 

from normalized signals as in Figure 4. 

 

 
Figure 4 Segmentation and Classification of point cloud within 

a Smart Point Cloud (Poux et al., 2016a) context 

The device expertise block conditions which attribute to filter, 

normalize and a weighted adjustment process through data fusion 

as in (Poux et al., 2016b) is carried on. The data indexing scheme 

needs to retain critical information while previsioning 

structuration searches (attribute-key, NN, semantics). For this 

use case PostgresQL was used as a RDBMS and GIST as the 

main internal indexing scheme. Nested Octrees are used for 

rendering in order to accommodate the point density and 

repartition. However, class attributes and features are stored in a 

different structure while retaining a direct link to the correct 

point/patch index, as discuss in (Weinmann, 2016).  

 

The domain block stores information in the same PostgresQL, 

directly exchanging information with the analytical block, 

executed through python scripting and C++ processing onto the 

database point data. The architecture of the domain knowledge 

lies on the same database server database keeping two different 

entities: the training data and the expert knowledge intelligence. 

Each of these modules participates into the classification and 

organization to obtain labelled data. The analytical results are 

evaluated regarding completeness, and either validated or refined 

if rejected. When validated, the results are passed onto a WebGL 

GUI described in 4. 
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Figure 5 Adaptation of the Smart Point Cloud workflow (Poux 

et al., 2016a) to Germigny-des-Prés tesserae semantic injection 

 

This whole pipeline describes an intelligent archeological 

environment creation, from data acquisition to collaboration and 

interaction where the end-user has access to relevant information 

deprecated in the structure through a knowledge update. 

 

The segmentation and classification steps heavily condition the 

results as well as the validating process, relating to the problems 

of data mining (Xindong Wu et al., 2014) for point cloud 

processing. 

 

 

3.2 Mosaic point cloud classification and integration 

Segmentation and features extraction are well studied areas 

within point cloud processes. However, the integration of 

knowledge is still rare, with few example of hybrid pipelines 

(Ben Hmida et al., 2012; Pu and Vosselman, 2009). The used 

approach  constitute a hybrid method inspired by previous work 

in shape recognition (Chaperon and Goulette, 2001; Lin et al., 

2013; Ochmann et al., 2016; Schnabel et al., 2007), region 

growing pipelines (Dimitrov and Golparvar-Fard, 2015; 

Nurunnabi et al., 2012; Rusu and Blodow, 2009) and abstraction-

based segmentation (Aijazi et al., 2013; Douillard and 

Underwood, 2011; Girardeau-Montaut, 2006; Girardeau-

Montaut et al., 2005; Samet and Tamminen, 1988) relying on 3D 

connected component labelling and voxel-based segmentation. 

Indeed, unstructured point cloud can benefit of structural 

properties that can be used as part of a segmentation process. 

 

Our approach illustrated in Figure 6 is based on available features 

and directly includes knowledge and semantic sources at both the 

segmentation stage, the classification step and the semantic 

injection. First, the point cloud is segmented regarding colour 

information by referring to the database table containing float 

RGB colour ranges for each material composing the mosaic. 

Then the gap is enhanced by superimposing intensity values over 

colour information. The segmentation is refined and reveals 

better point filtering. Then a multi-scale abstraction-based 

(global features extracted from a generalized spatial node such as 

a voxel, a sub-group or region identified spatially) routine that 

voxelates the 3D space at different abstraction levels and by 

constructing an octree structure to speed up computations. 

 

 
Figure 6 Hybrid segmentation and classification pipeline for an 

archaeological smart point cloud structuration 

These steps are extracted from analytical knowledge where 

density information constrain the initial bounding-box containing 

the points. An initial low level voxel structure is computed 

retaining the number of points as attribute. 26-connectivity study 

groups adjacent voxels if voxels aren’t surrounded by empty 

voxels. This allows to clean possible noise from difficult colours 

extraction. Then a multi-scale iterative 3D connected 

components algorithm at different octree levels starting at a voxel 

size of 10* 10*10 mm, recursively segments under-segmented 

groups (detected by injecting analytical knowledge regarding 

minimum Bounding-box size of processed material) by refining 

the voxel-based subdivision until the number of generated voxels 

is inferior to the density-based calculation of estimated voxels 

number. When subgroups dimensions correspond to material’s 

available knowledge, segments are added to the independent 

Tesserae segments. For absorbent materials that imply low 

intensity and high noise, the 3D distance map is used to detect 

points that belong to each tesserae. Then, for each detected 

segment, every point is projected on the RANSAC best fit plane, 

and a 2D outline algorithm calculate the convex hull of the 
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projected points to constrain the plane. The generated polygon is 

then studied to establish its complexity regarding the work of 

(Brinkhoff et al., 1995), and domain knowledge including size, 

geometry and spatial distribution (Table 1) leads to tesserae 

classification. 

 

Sample Available knowledge 

 Surface 
(in cm²) 

Approx. 

Geometry 

Reflectance 
(at 1.55 µm) 

Date 

Gold ~ 1 cm² ~ square H. Reflective XIX 

Gold < 1 cm² irregular ~ Mat < 

Faience ~ 20 

cm² 

tear, 

diamond 

Reflective XIX 

Silver ~ 1 cm² ~ square H. Reflective XIX 
     

Table 1 Tesserae knowledge and semantic properties 

Finally, semantic information is transferred to the point cloud that 

can be used for information extraction (Figure 7). 

 

 
Figure 7 Point cloud from left to right, Colour, colour 

segmented, abstraction-based segmented, classified 

Once every point from each sample has been classified, the 

information is stored on a server-side PostgresQL database, by 

first grouping each tessera in semantic patches and then grouping 

each class through relational joints. 

 

 
Figure 8 Segmentation, Classification and Semantization 

 

Therefore, only required information is extracted from this 

semantically rich point cloud. This include point cloud spatial 

attributes, minimum convex hull of each tessera, colour 

attributes, coordinate system, normal, orientation, size, density, 

… On an expert’s view, this gives the ability to reason about the 

data through information extraction and permits to avoid 

interpretation brought by data denaturisation. We obtain a 

tesserae-wise structure where each segment is connected to 

semantical information. Through data visualisation, we can 

address visual components that elegantly represent the analytical 

results while proposing an efficient way to interact with the data. 

 

 

4. REAL TIME 3D VISUALISATION 

Through the characterisation of a semantically rich point cloud 

data structure, performing queries on tesserae is now feasible. 

However, since the mosaic is composed of around one hundred 

tesserae, visualising efficiently the result of a query is quite 

arduous. That is why we provide to users a set of optimal 

viewpoints in order to directly focus their attention on the 

common requested tesserae. A processing step, transparent to 

users, is carried out and presented in this section. 

 

 

4.1 The 3D viewpoint management of requested tesserae 

Based on the algorithm developed by (Neuville et al., 2016) we 

manage the 3D viewpoint so as to determine an optimal position 

and orientation of the camera for the visualisation of three kinds 

of tesserae distinguished by their material: faience, gold and 

silver (Table 1). Through the previous steps of recognition and 

semantization described in 3.2, we are now able to exploit the 

semantically rich point cloud data structure in order to visualise 

efficiently the different sorts of tesserae. To achieve it, we 

perform a pre-processing step, totally transparent to users, in 

which we compute the optimal camera positions on a 3D 

COLLADA model of the mosaic which is constituted of the 

minimum convex hull of each tesserae information stored in the 

database.  

 

The algorithm looks at the pixels of the computational display 

which enables to avoid the under-object recognition 

phenomenon. It also allows to directly work on the final 

rendering of the 3D model which already integrates the use of an 

algorithm to process hidden faces. Finally, it can be used on any 

kinds of 3D data structure (vector, raster or point cloud) (Neuville 

et al., 2016).  

 

We implemented the application in WebGL, a JavaScript API for 

rendering 3D graphics within any compatible web browser. We 

used Three.js, a cross-browser JavaScript library which uses the 

WebGL framework and enhances it. In the first implementation 

illustrated in (Neuville et al., 2016), a region growing process 

was used to distinguish the objects. However, to enhance the 

computation performance by reducing the calculation time, we 

apply one unique colour per instance for each class (e.g. faience 

tesserae); all non- requested tesserae are coloured in black.   

(Figure 9).  
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Figure 9 Unique colourisation of a group of golden tesserae 

(bottom-up view) 

For each class of tesserae (gold, silver and faience), we compute 

a bounding box and we locate its center (Figure 10). The 

bounding box center becomes the center of the sphere on which 

the camera will move in order to determine the optimal camera 

position (Figure 11). The coordinates of the camera on the sphere 

are computed according to the following formulae (Neuville et 

al., 2016):   

 

 X = xcenter + r ∗ cos(ф) ∗ cos(Ѳ); 
 Y = ycenter + r ∗ sin(ф); 
 Z = zcenter + r ∗ cos(ф) ∗ sin(Ѳ);  (1) 

 

where  X, Y, Z = camera coordinates; 

xcenter,ycenter, zcenter = coordinates of the center of 

the sphere;  

 r = radius of the sphere; 

 ф = vertical angle; 

 Ѳ = horizontal angle. 

 

The assumption regarding the viewpoint direction is controlled 

by natural viewing; in our case, bottom-up view. The radius of 

the sphere has been computed in order to see all requested 

tesserae whether the camera position. With regard to the rotation 

increment, it has been fixed at 5 degrees which means that more 

than one thousand images of the mosaic will be analysed for each 

kind of tesserae. It is worth mentioning that the rotation angle is 

fixed arbitrary, but further research will extend the use case to 

determine an optimal rotation angle to deal with the performance 

and the accuracy of viewpoint calculation. Depending on the 

users’ requirements, it could be recalculated. Indeed the 

computation time is a function of different parameters (Neuville 

et al., 2016) : 

 

- the number of analyzed images (directly linked to the 

rotation increment); 

- the size (number of pixels) of the images; 

- the number of objects to detect; 

- the computer capacity. 

 

 
Figure 10 Bounding box (yellow) and its centre (red) related to 

the golden tesserae (bottom-up view) 

From each camera position, we compute the number of visible 

tesserae from the user request observed in the produced image. 

Since each instance of one sort of tesserae is coloured uniquely, 

the algorithm performs by counting the number of different 

pixels colours. Hence the number of distinct colours in the image 

corresponds to the number of tesserae seen from this camera 

position. The visibility of a tessera is fixed at one pixel but it can 

be changed according to the users’ needs. The camera position 

that maximises the view of requested tesserae corresponds to the 

optimal viewpoint. If two camera locations present the same 

number of observed tesserae, we apply a maximisation criterion 

regarding the pixels to determine the optimal camera position. 

 

 
Figure 11 Camera displacement on the sphere by only 

considering bottom-up views 

 

4.2 The web-based platform 

The World Wide Web is a democratized way to share and 

exchange information. As such, it constitutes a long-term mean 

to collaborate, and is independent of the location which is very 

important considering the need to be able on site to work with 

digital copies. Indeed, an application accessible anywhere and by 

multiple users at the same time is key for an archaeological 3D 

platform. Concurrency is also very important, and a platform 

should be able to scale up to multiple simultaneous connexions. 

As such, a client-side application and RESTful development 

constitute a good solution for a flexible web software. 
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Figure 12 First GUI iteration of the web-based platform for 

point cloud dissemination and 3D viewpoint management 

 

To integrate the semantically rich point cloud and the viewpoint 

management of queried tesserae, we developed a web software 

using jquery, Three.js, Potree (an Open Source JavaScript library 

for point cloud rendering) and tween.js. The platform includes a 

tool to directly allow semantic extraction and visualisation of 

pertinent information for the end users. It enables an efficient 

information relaying between actors. The web application is 

implemented in a WebGL framework and is accessible on any 

HTML5-compatible browser. It enables real time point cloud 

exploration of the mosaics in the Oratory of Germigny-des-Prés, 

and emphasises the ease of use as well as performances. A 

sidebar allows the user to select one kind of tesserae and to 

directly get into the optimal position in order to visualise 

efficiently the requested tesserae class.  

 

Since the previous optimal viewpoints are computed from a finite 

sphere, we gave the possibility to adjust the final computed 

viewpoint dynamically and in real-time. Indeed, depending on 

the user’s requirements, the viewpoint can be customised as a 

function of the visibility need of non-requested objects. In the 

case of tesserae class visualisation, we zoom in on the objects of 

the query so as to propose a viewpoint as close as possible to the 

requested tesserae. The optimal viewpoints for the three sorts of 

tesserae (faience, golden and silver) are presented in the next 

section.  

 

4.3 Results & Discussions 

By a simple interaction with the GUI, the users can access and 

share a common viewpoint result of a semantic query. In the test 

case, Figure 13 presents the optimal viewpoints for three classes 

of tesserae. It is worth mentioning that additional viewpoints 

could be computed which depends on the initial query. For 

instance, we could calculate multiple optimal camera positions 

for one specific sort of tesserae, depending on a needed surface, 

distance to rotation center, density estimate ... The latest could be 

particularly interesting for the golden tesserae since they are quite 

scattered in space. Furthermore, we could also investigate the 

impact of the statistical parameter used when two viewpoints 

present the same number of objects: maximum, average …  

 

 
Figure 13 Global 3D view of the mosaic (a) and the optimal 

viewpoints for the faience, golden and silver tesserae 

 

The tests were carried on three subsets of the global mosaic point 

cloud in order to validate the methodologies and the global 

pipeline from acquisition to visualisation and interaction. Future 

work will include a general classification, and the 3D viewpoint 

management possibilities will be extended to handle complex 

query scenario, as well as optimized performances.  

 

 

5. CONCLUSION 

In this paper, we developed an HTML-5 cross-platform web 

application that facilitates the knowledge dissemination of an 

ancient mosaic located in the oratory of Germigny-des-Prés. 

First, we created semantically rich point cloud through smart 

point cloud structuration. This process was carried by automatic 

segmentation and classification of tesserae that compose the 

mosaic. Then, we extracted the necessary requested information 

from the semantically rich point cloud data structure in order to 

visualise efficiently three sorts of tesserae distinguished by their 

material: faience, gold and silver. We computed optimal camera 

positions and orientations that maximise the visibility of 

requested tesserae. Then, the optimal viewpoints are dynamically 

rendered to users through the platform on which interactions can 

grow. 
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