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ABSTRACT:

Progress monitoring of construction sites is becoming increasingly popular in the construction industry. Especially with the integration
of 4D BIM, the progression and quality of the construction process can be better quantified. A key aspect is the detection of the changes
between consecutive epochs of measurements on the site. However, the development of automated procedures is challenging due to
noise, occlusions and the associativity between different objects. Additionally, objects are built in stages and thus varying states have
to be detected according to the Percentage of Completion.
In this work, a framework is presented to derive work progress of construction sites based on point cloud data. More specifically, a
methodology is constituted to compute the Percentage of Completion of in-situ cast concrete walls. In the literature study, existing
methods are evaluated for their ability to track progress even in highly cluttered environments. In the practical study, we perform an
empirical analysis on a set of periodic point clouds to establish the obstacles and feasibility of the methodology. This work leads to a
better understanding of the progress monitoring paradigm which is still subject of ongoing research and will serve as the basis for the
further development of a set of automated procedures.

1. INTRODUCTION

A prominent feature of the Building Information Modeling (BIM)
process is the ability to model the available information of a struc-
ture during its life-cycle. A major application during the con-
struction phase is the attachment of the construction planning to
the physical model. These 4D BIM representations contain de-
tailed information on when specific objects are constructed and
are used for construction planning, resource management and fi-
nancial aspects such as the cost over time of the project (Volk et
al., 2014). Also, it allows the tracking of progression of a con-
struction site and whether objects are constructed conform the
as-design specifications.

Aside from the advantages for management purposes, the active
tracking of a construction site allows for the creation of an as-
built BIM model (Son et al., 2015). This model reflect the state
of the structure as it was actually built and has numerous applica-
tions in terms of project planning, facility management, structural
mechanics and so on (Hajian and Becerik-Gerber, 2009). In order
to create proper as-built models, dense accurate spatial informa-
tion, also known as point cloud data, is periodically acquired of
the construction site. An additional advantage of this procedure
is that there is a measured record of the situation on site which
can have legal significance.

It is within the scope of this research to investigate the opportu-
nities of progress monitoring on construction sites. More specifi-
cally, the focus of this work is on tracking of in-situ cast concrete
walls of building projects. The different types of analysis that
can be performed on point cloud data are evaluated and tested for
their feasibility. The goal is to provide contractors and construc-
tion supervisors with the tools to better manage their projects.
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The emphasis is on metric information interpretation as it forms
the basis for other information sources.

The remainder of this work is structured as follows. In this chap-
ter, the types of analysis with their respective deliverables and
challenges are discussed. The related work is presented in Sec-
tion 2. In Section 3. the methodology is illustrated. The test de-
sign and experimental results are proposed in Section 4. Finally,
the conclusions are presented in Section 5.

1.1 Deliverables

Construction site monitoring consists of a wide range of analyses
and deliverables. As previously stated, the focus is on the evalua-
tion of basic structural entities such as the walls. However, other
objects might also be tracked as they aid in the detection of the
walls (Ibrahim et al., 2009). Also, contemporary structures such
as supports are considered since these are frequently occurring on
construction sites, are a major cost factor and cause serious con-
fusion in the detection of the built entities (Eastman et al., 2011).
In this section, the different deliverables are discussed along with
the their point cloud specifications and challenges.

Reference It is important to notice that the analysis of progres-
sion point cloud data yields different types of information de-
pending on the reference. Both relative and absolute references
are considered for the assessment. The former uses consecutive
points clouds or subsets of the BIM as reference which reveals
the progression of the construction site between two data acqui-
sitions. The latter uses the initial point cloud measurements of
the site or the complete BIM to asses the overall progress. While
not being a deliverable itself, special attention is given to the ref-
erence as it controls which information deliverable an analysis
yields.
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Figure 1: The phases of the Percentage of Completion (PoC) of in-situ cast concrete walls.

Presence A straightforward analysis that can be made is the de-
tection of whether an object is present or not on the construction
site given a reference. It is an instance of change detection that
assigns a binary value to each object. For instance, the contractor
should be warned if an expected structure is not present due to
construction delays or erroneous plan interpretation. Similarly, it
can be used to flag unexpected objects on site or to locate certain
items. To provide any kind of useful information, this evaluation
should be robust against the clutter on site. Also, a careful inter-
pretation of the occlusions is mandatory to avoid false positives.
Typically, additional information or prior knowledge is incorpo-
rated in this detection to improve the detection rate.

Percentage of Completion (PoC) A more detailed instance of
change detection is the evolution of the Percentage of Comple-
tion of objects. It is a numerical value assigned to each object
that reflects its current state of progression (Zhang et al., 2009).
For instance, in-situ cast concrete walls progress from their initial
survey markings to anchors, rebar, moldings all the way to the fi-
nalized object (Fig. 1). It is crucial for further analysis that the
PoC is properly determined. For example, a quality assessment
should be performed on the appearance of an object and not on
its moldings. However, the PoC is challenging to determine since
an object’s appearance at different stages can look very similar
and is prone to occlusions. The difference should therefore be
distinguishable in the point cloud data. One approach is to com-
bine the observations of consecutive data acquisitions to establish
whether or not there is enough information to determine the PoC
and its changes (Gao et al., 2015).

Quantity take offs Resource management is a crucial task that
is performed by superintendents. Important resources on a tra-
ditional construction site include concrete, steel and moldings.
Depending on how much of an object is built, a certain amount
of materials is used. It is useful to provide the contractor with
detailed information concerning the amount of materials spent on
site. For instance, the amount of used concrete should be deter-
mined to provide a detailed cost overview and resource planning.
However, this information typically cannot be directly observed
but is derived from the built objects. Therefore, this evaluation
is performed in function of the material type rather than on ob-
ject level. Additionally, based on the Percentage of Completion,

an estimation can be made of the intermediate material usage of
larger objects. Similar to the PoC, this analysis suffers from oc-
clusions. Also, the materials of interest for the quantity take-offs
often are challenging to observe. For instance, steel rebar and an-
chors typically are slender objects of which the observations are
easily mistaken for clutter or noise. A crucial aspect is the waste
of materials which is a driving factor in quantity take-offs but
extremely difficult to determine based on remote sensing tech-
niques.

Quality Assessment The quality assessment is an analysis on
object level that determines whether an object was built according
to the as-design specifications. From a remote sensing perspec-
tive, this includes comparing the represented location, orientation
and dimensions of an object to its measured geometry. Similar to
the absolute and relative references of other analyses, this eval-
uation yields different information depending on whether an ab-
solute or relative quality assessment is performed. The former is
a general evaluation that determines whether an object is built in
the correct place with relation to the project coordinate system.
The latter is a more detailed analysis that evaluates an object ap-
pearance with relation to itself and its immediate surroundings.
This is commonly referred to as attribute or feature based devi-
ation detection (Akinci et al., 2006). A major challenge in this
analysis is determining which observations to use to measure the
deviations. Additionally, aside from occlusions and clutter, the
accuracy of the evaluation is highly influenced by the density of
the point cloud and its single point accuracy.

As-built BIM Based on the results of the quality assessment,
the existing as-design BIM is updated to as-built conditions. This
includes relocating the objects and adjusting the dimensions (Gao
et al., 2015). This procedure is also referred to as Scan-vs-BIM (Bosché
et al., 2014, Rebolj et al., 2017). Careful attention should be given
to the modeling specifications since deviations acquired from the
quality control can only be determined up to the accuracy and
density of the point cloud. Also, minor deviations may not result
in design changes since changing the model is labor intensive and
has major impact on the rest of the design. Rather than automat-
ically updating the model, it is better to provide detailed infor-
mation about each object to the BIM manager so they can decide
whether or not to update the model.
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Figure 2: Example of the Percentage of Completion (PoC) of in-situ cast concrete walls in different epochs. 3 walls are depicted with
varying PoC’s ranging from initial anchors to rebar to moldings and finally to finished structural object. The colorization of the point
cloud is based on the SNR value of the scanner and is only used for visualization.
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Figure 3: Overview of the workflow to compute the Percentage of Completion (PoC) of in-situ cast concrete walls: (A) the retrieval
of the expected PoC objects from 4D BIM including geometry and planning information, (B) the observed geometry from point cloud
data and (C-D) the estimation of the PoC from the subsequent epochs.

Aside from the metric deliverables, there are a number of non-
metric deliverables that can be indirectly derived from the point
cloud analysis. For instance, given the change detection, the
project scheduling can be automatically adjusted. This includes a
clash detection of the planning and required operations/materials
to construct a certain entity. In this research we will focus on the
PoC of the objects as it forms the basis for other analyses.

2. RELATED WORK

Currently, progress monitoring is still subject of ongoing research.
Typically, the field is divided into two major components, data
acquisition and data processing. The former focuses on the pro-
duction of dense point cloud data of the construction site using
imagery, RFID, Terrestrial laser scanners and so on (Zhu and
Brilakis, 2009, Bhatla et al., 2012, El-Omari and Moselhi, 2011,
Tuttas et al., 2016). The latter focuses on performing analysis
on a given a point cloud and providing decision makers with the
necessary information to monitor the site and to update the BIM.
This work solely discusses this second topic and thus considers
the point cloud to be independent of the data acquisition system.

Typically, the paradigm of detecting the presence of an object
is defined as determining whether or not a structural object is
built. Tuttas et al. (Tuttas et al., 2015) express this informa-
tion by confirming the presence of BIM objects in consecutive
point clouds. They discriminate the geometry of the BIM ob-
jects into their boundary surfaces and label each mesh triangle
individually based on its Euclidean distance to the point cloud.
Converting the as-planned BIM to a point cloud is also consid-
ered (Bosche and Haas, 2008, Bosché, 2012). For verification,
they compute the percentage of simulated points within a thresh-
old distance after locally aligning the measured point cloud with
adapted Iterative-Closest– Point-Algorithm (ICP). In addition to
the measurements, prior knowledge is considered. For instance,
Kim et al. (Kim et al., 2013a, Kim et al., 2013b, Kim et al.,

2013c) use an SVM classifier based on the expected and mea-
sured as-built status of object. They state that the sequence of
activity execution and the connectivity between components are
vital clues in the detection of the as-built status of an object.
Braun et al. (Braun et al., 2015a, Braun et al., 2015b) employ
a similar detection framework to track the built status of com-
ponents. They generate a relationship graph from the as-design
BIM based on connectivity. Turkan et al. (Turkan et al., 2012)
also use schedules and incorporate the detection of secondary ob-
jects. Overall, we look to expand their approaches with building
logics with structural support sequence knowledge to further en-
hance the results and compute the PoC of in-situ cast walls.

A common strategy is to perform the change detection once the
objects are fully completed. However, in a construction site this
is rarely the case as both completed and uncompleted entities are
observed on site (Fig. 2). Several approaches have therefore pre-
sented to extract progress information and PoC from point clouds
of construction sites. A promising work is that of Golparvar et
al. (Golparvar-Fard et al., 2015). They use a machine learning
scheme to detect physical progress on site. They integrate the as-
planned 4D BIM model into an image-based interactive viewer to
communicate changes on site. More specifically, they use a Sup-
port Vector Machines (SVM) classifier to label the voxel space
within the viewer either as progress or no progress. Behnam
et al. (Behnam et al., 2016) presents the production of progress
maps of infrastructure based on satellite footage. Closely aligned
with our work is the research of Kropp et al. (Kropp et al., 2018)
who estimate the completion state of objects based on computer
vision techniques. Overall, there is still a gap in the research of
reliably establishing whether an object is fully completed or not.
Our work is focused on this specific evaluation as it is vital for
the construction management to get progress information as soon
as possible instead of having to wait until the site is completed.

Research has also been performed towards quality control or qual-
ity assurance. Anil et al. (Anil et al., 2011) and Akinci et al. (Ak-
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inci et al., 2006) present a framework of which parameters are of
importance and how to communicate these to the decision mak-
ers. They stress the importance of discriminating between devia-
tion detections and defect detections that evaluates the deviations
with respect to existing specifications. Bonduel et al. (Bonduel
et al., 2017) presents a similar method along with a concrete ex-
ample of how to assign deviation analysis values to BIM objects.
Bosché et al. (Bosché et al., 2013, Bosché et al., 2014) automate
the process of quality assessment of the built status of MEP works
by matching the point cloud to the as-planned BIM. It is impor-
tant to notice that the accuracy of the point cloud is a driving
factor in the reliability of the assessment. Bhatla et al. (Bhatla et
al., 2012) therefore discuss the specifications of the point cloud
with relation to certain deviation analyses, revealing that highly
dense accurate point cloud data is required to make any sort of as-
sessment. In future work, we look to expand their works, which
focus on completed structures, towards the comparison between
4D BIM subsets and periodically acquired data sets.

3. METHODOLOGY

In this paper, a detection framework is proposed that determines
the PoC of the expected elements on site. An overview of the
general workflow is depicted in Fig. 3. First, a set of built and
expected objects is determined given the 4D BIM and additional
prior knowledge (Fig. 3a). In parallel, dense point cloud data is
acquired from the site (Fig. 3b). Next, a set of operations is con-
ducted to isolate the measurements of the construction changes.
These are then evaluated locally to determine the PoC based on
geometric features, detected changes and the prior PoC (Fig. 3c).
The resulting information is used to compute the construction
changes (Fig. 3d). The method is implemented in the Rhinoceros
6 software and extends the Volvox plugin developed in the DU-
RAARK project (Zwierzycki et al., 2016). The consecutive steps
are discussed in detail in the following paragraphs.

3.1 Prior Knowledge

The construction of a building involves the production of hun-
dreds if not thousands of structural objects. The estimation of
the PoC of these objects solely based on point cloud data is com-
putationally inefficient and error prone. Therefore, the PoC esti-
mation is limited to those objects that are expected to be built.
In this work, we determine the expected objects based on 4D
BIM and the building topology. The former is derived from the
project’s planning, which defines the order in which objects are
built. However, the order of the construction progression is typ-
ically abstracted to the major phases and thus additional infor-
mation is required to determine a more detailed order. We pro-
pose the use of building topology to narrow the number of ob-
jects that should be evaluated within a phase. More specifically,
it is our hypothesis that no object can be constructed without its
support. In this prototype, we translate this as two rules. First,
for every object that is determined as built, its neighborhood is
expected. Secondly, the objects supporting (underneath) an ob-
ject that is determined as built are also considered built. Given
the prior knowledge, the expected objects in consecutive point
cloud epochs is determined. Once the objects are determined,
their mesh geometry is isolated from the BIM model and will
serve as a reference for the PoC estimation.

3.2 Observations

The acquisition of point cloud data from construction sites can
be performed with various sensors. Terrestrial Laser Scanning

(TLS) is predominantly used for this purpose but alternative meth-
ods such as photogrammetry and RGBD sensors are also popu-
lar. The result of these methods are either structured or unstruc-
tured point clouds. Since it is within our scope to operate sensor-
independently, we operate on unstructured point cloud data which
can origin from any platform. Currently, we assume the point
cloud data to be registered and geolocated. Upon loading a point
cloud into Rhino, the Volvox grasshopper plugin restructures the
data as a voxel octree for efficient data processing. First, a voxel
subsampling of 2cm is employed to create a uniform point den-
sity and to compensate for noise. Next, the meshes of the ex-
pected geometry are used to segment the data. A buffered geom-
etry is constructed around the objects using offset b, after which
it is used to segment the point cloud. The result is a set of points
representing the vicinity of each of the expected objects.

3.3 Percentage of Completion

As discussed in the introduction, 5 consecutive states are defined
for the completion of in-situ cast concrete objects y ∈ ζ =
{non − existing, anchor, rebar,molding, built}. Addition-
ally, we define an ”occluded” state to accommodate for walls that
are not observed sufficiently to reliably determine their PoC. We
consider the estimation of the states Y of the observed walls as
a data association problem which can be solved with a classi-
fication model. We employ a decision function P (Y |X) with
pretrained weights ω developed in previous work (Bassier et al.,
2018), that processes a set of features x of each observed wall,
and outputs its most likely state y. In the prototype, 10 features
are defined. The first is the average point density given the sur-
face area of the walls. Additionally, we consider 3 point density
signatures for the other features.

The first signature is based on a rasterized projection of the points
on the major face of the walls. First, The voxilized point cloud is
projected onto the hearthplane of each wall. Next, a fixed spatial
grid is generated on this hearthplane. The second feature is given
by the percentage of grid points lying within a threshold tg of
the projected point cloud. The second signature is based on the

point density distribution along the normal of the largest face of
the wall. For built walls observed from both sides, it is expected
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that the histogram contains 2 peaks with little noise in between.
Similar conclusions can be drawn for the other states. The 4 fea-
tures directly derived from the histogram are the noise outside the
peaks rout as an average ri and rj , the noise within the peaks rin
and the height of both peaks pi, pj . Additionally, the deviation
between the distance between the peaks and the theoretical thick-
ness of the wall is considered an indicator for the PoC. The third

signature is based on the point density distribution along the ver-
tical slope of the wall. For built walls, a consistently high point
density in vertical direction is expected. 3 features encode this
information as the relative average point density in the lower ph1,
middle ph2 and top ph3 section of the wall. Additionally, the per-
centage of points below the typical anchor height is stored as a
feature. The features are combined in feature vectors which are
encoded in such a way that zero indicates low associativity and 1
indicates a high associativity.

The states of observed walls are computed by feeding the fea-
ture vectors X to the Random Forests model. The splits of the
model are trained by learning them from known observations. A
balanced set of features with known states is used to minimize
the error of the splits. We bootstrap aggregate a large number of
weak learners to significantly lower the variance of the model.
The choice of model is driven by the high variance of the inputs
and the specificity of the features. The result is the most likely
state of each wall.

3.4 Construction changes

Once the state is determined for the observed walls, the construc-
tion changes can be derived. In this prototype, we consider the
construction process to be feedforward were states can only de-
velop to higher states. For instance, a built wall cannot demode
to molding in a subsequent point cloud epoch. An exception is
made for the ”occluded” class were the previously observed state
is adopted. Given the construction changes, the progression of
work on the site is determined.

4. EXPERIMENTS

The prototype is tested on a construction site in Ghent, Belgium.
Three point cloud epochs are observed of a subsection of the site
that is under construction (Fig.4a). During each epoch, the site
was captured using TLS. The data was not cleaned and contains
significant noise and clutter. Over 50 million points were cap-
tured of the 32 surrounding walls in different states. As stated
in the methodology, a voxel subsampling of 2cm is used which
drastically lowers the amount of data. Additionally, the prior seg-
mentation based on the buffered expected geometry is performed
with b = 0.3m, resulting in a further data reduction. For each of
the 32 walls, the 10 features were extracted. For the grid gener-
ating, a spatial pattern of 0.1x0.1m was used in u,v direction. As

an initial test, we 5-fold cross-validate the Random Forest model
for all 32 walls in the three consecutive epochs. Figure 4b depicts
the recall and precision matrices of the evaluation. Currently,
there aren’t sufficient molding observations to provide a reason-
able cross-validation and the non-existing and occluded states are
merged because of the limited data. The remainder of classes
show promising results. On average, 73.3% of the states were
correctly determined which is promising despite the presence of
noise, clutter and the limited dataset. For the estimation of the
built walls, recall values of up to 90% are reported. However,
several problems still remain. First of all, there is significant con-
fusion between anchors and non-existing or occluded walls. This
is to be expected due to the low point count of these classes and
their similar point density signatures. Secondly, there are several
circumstances that inherently cause problems in the classifica-
tion. Figure 4c-f depicts some of the encountered issues such as
mixed state occurrences. These are observations of walls that are
in multiple states. For instance, a part of a wall is still in rebar
while the remainder is already built. This is a temporary issue due
to the way walls are constructed and is expected to be mitigated
in subsequent epochs. There are also issues with the edges of
the construction pit, which are very similar to constructed walls.
Model abstractions such as grout walls also inherently cause is-
sues since they are in fact not in-situ cast concrete walls. A final
issue we encountered was noise due to the buffered segmenta-
tion. Especially for walls that have neighboring walls in different
states, the buffer introduces noise which complicates the state es-
timation.

5. DISCUSSION & CONCLUSION

This paper presents an unsupervised method to estimate the Per-
centage of Completion of in-situ cast concrete walls on construc-
tion sites. More specifically, we propose the use of machine
learning decision models to classify the state of the observed
walls based on point cloud data. Our approach is sensor-independent
and uses point density signatures as features to the decision func-
tion. A Random Forests model is employed for the state estima-
tion to target the high variance datasets of construction sites.

In the prototype testing, 3 consecutive point cloud epochs are
evaluated. 32 walls in different states are used to train the classifi-
cation model. The initial cross-validation results indicate promis-
ing results for the Percentage of Completion estimation. Espe-
cially, the built walls are found with high recall. Several short-
commings will be dealt with in future work. For instance, mixed
state occurrences currently cause major confusion in the state es-
timation. We will solve this through discretizing the input BIM
objects. Also, we will further investigate the buffer segmenta-
tion to reduce noise. Finally, The prototype will be extended to a
full scale test to investigate the robustness and scalability of the
method.
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Figure 4b: Cross-validation confusion matrices of the prototype Random Forests model on the progress monitoring data set. The left hand 

labels are the true classes while the bottom labels are the predicted classes. 

Figure 4c: Mixed state occurrence errors: Walls with parts 

in different states are inherently prone to misclassification. 

Figure 4e: The buffered point cloud extraction introduces 

noise especially in the vicinity of neighboring objects. 

Figure 4a: Point Cloud Data of consecutive epochs at an interval of 2 weeks: (left) week 22, (middle) week 24 and (right) week 26. The point 

clouds are colorized according to their acquired intensity values. Red indicates poor measurements while blue depicts high quality points. 

Figure 4d: Modeling abstractions such as grout volumes 

that were modeled as in-situ cast concrete walls do not 

correspond to predefined states. 

Figure 4f: Observations from the edges of the construction pit 

introduce confusion in the state estimation of the neighboring walls. 

Figure 4: Experimental results of the Percentage of Completion estimation of in-situ cast concrete walls in consecutive point clouds 

epochs of a construction site. 
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