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ABSTRACT: 

 
Biodiversity characters of the landscape provide basis of prioritizing the sites in conservation effort. There is an urgent need for rapid 
assessment of existing biodiversity using state-of-art tools and technologies at large scale. The purpose of the study is to model and 
prioritize biological richness based on multi-criteria decision analysis (MCDA) for conservation priority and management planning. 
Vegetation type map for year 2017 was developed for generation of various landscape indices e.g. fragmentation, patchiness, porosity, 
juxtaposition etc. The Spatial Biodiversity Model (SBM) prepared for similar landscape of Uttarakhanda, India which is scale, 
resolution and location independent for spatial biodiversity richness modelling was executed in R programming platform. Satellite 
data, non-spatial data and ancillary data were used to generate Biological Richness (BR) map which is categorized into 4 classes as 
low, moderate, high and very high (biodiversity rich) including non-forest area to quantify BR area. The result shows that largest area 

is under very high biological richness class followed by high, moderate and low BR area. Overall accuracy and Kappa Statistics of 
LULC/vegetation type classification is 82.61% and 0.8013 respectively. The spatial regression analysis for final output validation has 
been made with ground based species diversity data where R2 value for Shannon-Wiener index and Margalef’s diversity index are 0.64 
and 0.56 respectively. The results also re-emphasize the role of geospatial techniques in the quick appraisal of predicting biological 
richness. The study result is applicable in systematic inventory of biological resources, land use planning, conservation prioritization 
and policy support. 
 

1. INTRODUCTION 

 
Increasing human intervention and excessive exploitation of 
resources have resulted in great changes and provide alarming 
signals of accelerated biodiversity loss (Roy and Tomar 200). 
Due to immense pressure on biological resources, mainly to 
drive the global economic engine, the global biodiversity is 
under tremendous threat (Gordon et al., 2011; Kersebaum et al., 
2015). Climate change impacts are becoming increasingly 

evident in the Himalayan region (Shrestha et. al., 2012, Zomer 
et. al., 2014) which has profound implications for mountain 
communities (Ebi et. al., 2007), its biodiversity including major 
non-timber forest plants (Chitale et. al., 2018), ecosystem 
services (Beniston 2003), water resources (Immerzeel et. al., 
2010), agricultural systems (Maikhuri et. al., 2001), and both 
regional and global climate processes. In the present scenario, 
with the extinction rate in most areas overtaking the process of 

biodiversity inventory, there is an urgent need for rapid 
assessment of biodiversity which is robust and is replicable over 
large area (Sing et. al., 2017). Landscape ecology seeks to 
understand the ecological functions of larger areas and 
hypothesizes that spatial arrangement of ecosystems, habitats or 
communities has ecological implications (Romme, Knight, 
1982; Turner, 1987). Distribution of biodiversity is mainly a 
function of climatic conditions, edaphic and topographic regimes 
which are perfect for speciation (Beltran et al., 2014; Zhai et al., 

2015). The mosaic of natural areas and land use provide the 
scenario for loss of the endemic species due to reduced 
population size in the remnant patches as well as create 
conditions for exotic species to invade new areas (Prasad et al., 
2010; Roy et al., 2016). This provides a unique opportunity to 
use the land use ad land cover (LULC) and the geographical 
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variability of biodiversity to model the spatial distribution of the 

biodiversity. 
 
There have been numerous approaches (Behera, Roy, 2010; Orsi 
et al., 2011; Wilson et al., 2016, Myers et al., 2000; Roy, Tomar, 
2000) to quantify the biological diversity using empirical 
approaches like biodiversity hotspots. Recently, the application 
of general ecological model (Harfoot et al., 2014; Yu et al., 2016) 
to simulate the global patterns of ecosystem structure and 

function to reflect the biodiversity has been used at a global level. 
But these models are generally coarse and are not able to capture 
the spatial variability of the biodiversity distribution. An 
innovative work was done by Roy et al. (2012) to model the 
spatial distribution of biodiversity in Indian landscape in a GIS 
based model using remote sensing and ground based inputs. But 
this approach is scale dependent and also has some limitations to 
address the spatial distribution of biodiversity at high resolution 

and site specific variability in the speciation process.  
 
Hence, there is need for platform independent, open system 
model architecture with respect to the technological 
advancements and community participation for continuous 
upgradations of various scientific algorithms. In this study, we 
have modeled and prioritized pattern of biological richness 
through fragmentation and biotic disturbance gradients using 
spatial biodiversity model (SBM) in R programming platform (R 

Development Core Team, 2015) for conservation priority and 
other management decision. The SBM was successfully applied 
in similar landscape of Uttarakhanda State of India by Singh et. 
al., 2017 as a platform independent solution using open system 
architecture. 
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2. MATERIALS AND METHODS 

 

2.1 Study site 

 

The study site is located in the western Nepal and stretched 
between 28°04’20” and 28°47’03” N and 83°07’00” and 
84°42’40” E having geographical area of 6,042 Sq. km. The 
altitude of the landscape have an extreme topographic variation 

ranging from 346 m in south to 8,147 m in the North. It consists 
of world's deepest gorge, the Kali Gandaki Gorge (6967 m deep). 
Fig. 1 represents the area selected for the study. Out of 19 
districts under Chitwan-Annapurna Landscape (CHAL), current 
research site is in 3 districts viz: Myagdi, Kaski and Lamjung 
districts. The CHAL is a priority due to the urgency of 
conserving hydrological flows in the major river basin and of 
creating north-south corridors for seasonal migrations. In 1999, 

the CHAL was identified as a conservation landscape to maintain 
north-south ecological connectivity between Chitwan National 
Park (CNP) in the south and Annapurna Conservation Area 
(ACA) in the north. The landscape depicts high diversity of 
plants and is currently facing threats of degradation due to over-
exploitation of natural resources as a result of anthropogenic 
pressure (Silwal et. al., 2018). There hasn’t conducted similar 
study yet. Hence, the landscape is selected to characterize 

biological diversity for conservation prioritization and 
management decision. 

 

2.2 Datasets and model 

 
This study has utilized satellite Remote Sensing data, non-spatial 
data and ancillary data to generated vegetation type maps, forest 
fragmentation maps, disturbance maps, and biological richness 

maps in R statistical computing environment. The spatial 
biodiversity model (SBM) developed for similar landscape of 
Uttarakhanda, India was used in this study. Geospatial analysis 
was carried out in R, ArcMAP, ENVI and ERDAS IMAGINE. 

2.2.1 Satellite Remote Sensing Data 
Landsat 8 Operational Land Imager (OLI) images of latest two 

seasons (April and November 2017) and Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) Global 
Digital Elevation Model (GDEM) with 30m horizontal 
resolution were retrieved from USGS earth data portal 
(NASA/METI/AIST/Japan Space systems, and U.S./Japan 
ASTER Science Team 2018). Because of specified cloud free 

data were not available, the best available archived data i.e. 
below 10% cloud covered data were used. 
 

2.2.2 Field inventory data and ancillary data 
The phytosociological data of 86 geo-tagged field sample plots 

encompassing the different forest strata of Myagdi, Kaski and 
Lamjung districts was used for validation of the output of the 
study. The field inventory was carried and phytosociological 
data was generated for forest carbon assessment in CHAL, Nepal 
(ICIMOD 2016). The road network and settlement locations was 
created from OpenStreetMap using public participation on web. 
Census data was retrieved from https://geonode.wfp.org.  
 

2.3 Model description and flowchart 

 
The Spatial Biodiversity Model (SBM) established by Singh, et 
al. (2017) for Uttarakhand state of India was executed using R 
statistical computing environment which allows to include more 
user defined indices as per the requirements of the study 
landscape (R Development Core Team, 2015). The model has 
four different components i.e. (i) Input: Primary and secondary 

data sets e.g. vegetation types map derived from multi-season 
satellite data (Landsat 8 OLI), socioeconomic data e.g. road 
network, settlement locations, census data etc., field sample plot 
species data, DEM from ASTER GDEM data and user defined 
additional landscape parameters e.g. kernel size, vegetation type 
classes etc. (ii) Spatial Biodiversity Model (SBM): It is core 
engine having two level of data processing. Level 1 data 
processing includes computation of spatial landscape parameter 

and indices and terrain complexity parameters. Level-2 data 
processing includes derivation of Disturbance Index (DI) map 
using multi-criteria decision analysis and sensitivity analysis. 
(iii) Changing process: Output of DI, terrain complexity (TC), 
species richness (SR), biodiversity value (BV) and ecosystem 
uniqueness (EU) was used as input parameters to derive 
Biological Richness (BR) map of study area. (iv) Output 
validation: The validation was carried out based on spatial 
correlation method using field sample plot data. 

Multi-criteria decision making (MCDM) and a wide range of 
related analytical techniques offer a variety of decision making 
processes to expose and integrate choices with available MCDM 
methods in order to solve “real-world” GIS-based planning and 
management problems (Karnatak et al., 2007). In this study, 

spatial landscape modelling approach was adopted based on 
highly suitable spatial landscape indices namely fragmentation 
(edge index), patchiness, porosity, interspersion, juxtaposition, 
biotic interference (road, settlement), population density, species 
richness, ecosystem uniqueness and biodiversity values using 
open source and platform independent environment. A spatial 
model incorporating ground based biodiversity attributes of the 
landscape elements, vegetation types/LULC patterns, 

disturbance regimes of the landscape and terrain complexity 
have been used to delineate the spatial pattern of BR. Overall 
research flowchart is presented in fig. 2. 

2.3.1 Spatial landscape indices 
The application of the spatial landscape indices is to quantify 
landscape pattern to reflect its capability to support specific 

ecosystem functions. Distribution of biodiversity is the function 
of the climate, topography and the external factor in the region. 
If topography and climate remain constant, variability in a 
landscape influences the distribution of biodiversity in space in 
which biotic interference plays vital role. Spatial indices provide 
a computational environment to scale up the observation of local 
impacts to regional level. It also allow to process and analyse 

Figure 1. Location of Study Area. (ASTER GDEM 2011 
and DFRS 2015) 
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effect at a scale which is relevant from the human prospective of 
valuation and management.  
 
The suitability of the indices i.e. fragmentation, patchiness, 
porosity, interspersion, juxtaposition, human disturbance, 

population density, terrain complexity, species richness, 
ecosystem uniqueness and biodiversity value was based on the 
evaluation of the importance in biodiversity distribution derived 
from available relevant literature. Spatial biological richness 
modelling was carried out for CHAL landscape of Nepal using 
landscape indices and it was first and historic work in this 
domain till date. The suitable spatial indices was designated and 
implemented using R programming language and statistical 

computing environment. 
 

2.3.2 Analytic hierarchy process 
Analytic hierarchy process (AHP) is a decision-making 
technique utilized for solving complex problems, with many 
parameters of interrelated objectives or concerned criteria 
(Rimba et al., 2017).  Based on separability analysis of different 
communities in various vegetation types, associated topographic 
variability, and socio-economic parameters, a knowledge base of 

weightages for computation of landscape indices e.g. 
juxtaposition is developed by normalizing it using AHP (Chen et 
al., 2013; Karnatak et al., 2007; Prakash, Barua, 2015; Saaty, 
1977). The developed model is run after parameterizing the 
above mentioned inputs (Fig. 2) to generate the various 
landscape indices required for level-2 processing. 
 
The level-2 data processing of the model includes derivation of 

DI map using AHP based multi-criteria decision analysis for 
generation of BR map. At this stage, the model derives 
fragmentation (edge index), patchiness, porosity, interspersion, 
juxtaposition, human disturbance (Euclidean distance: road, 
settlement) and population density as landscape parameters. 
However, additional user defined parameters can also be 
included based on study area and availability of data sets. The 
linear combination of weights and landscape parameters are used 

to compute DI of study area. The model also computes the 
variability in terrain complexity using parameters such as slope, 
aspect and elevation which are derived from ASTER GDEM. 
As an intermediate result, the DI is computed via linear additive 
method which is given below: 

𝐷𝐼 = 𝐹𝑟 ×𝑊𝑡 + 𝑃𝑎 ×𝑊𝑡 + 𝑃𝑟 ×𝑊𝑡 + 𝐼𝑟 ×𝑊𝑡 + 𝐽𝑡 ×
𝑊𝑡 + 𝐸𝑑 ×𝑊𝑡 + 𝑃𝑑 ×𝑊𝑡      (1) 

Where, Wt (t=0-1.0) are the weightages computed through AHP. 

In the next level of processing, the corresponding normalized 
weights for each landscape parameter are derived using AHP.  
 

Finally, the BR map is computed via linear additive method: 
 

𝐵𝑅 = 𝑇𝐶 ×𝑊𝑡 + 𝑆𝑅 ×𝑊𝑡 + 𝐸𝑈×𝑊𝑡 + 𝐵𝑉 ×𝑊𝑡 + 𝐷𝐼 ×
Wt                                         (2) 
 
where, Wt (t=0-1.0) are the weightages computed through AHP. 
 

According to Equation (2), BR input parameters have been 
selected based on the study objectives, data availability and 
spatial scale as the base parameter for the model. Moreover, there 
is a facility in SBM to include new parameters, as per user 
requirement. Thereafter, all judgments have been made by the 
decision maker and all pairwise comparison matrices have been 
determined to quantify AHP process. In order to derive a 
significant interpretation of the consistency ratio, the threshold 

value of evaluation criteria was computed following Saaty’s 
(1980) principle. 
 

2.4 Pre-processing satellite images 

 
Layer stacking is the process of “stacking” images from the same 
area together in order to form a multilayer image and spectrally 
image enhancement. For layer stacking, of the OLI sensor with 
individual bands from 2 to 7 was extracted and stacked 

respective row and path spectral bands. The study area is present 
in zone 45 of Universal Transverse Mercator (UTM) coordinate 
system, World Geodetic System (WGS) 84. 
 
Image enhancement is the technique by which the low contrast 
of satellite images is improved to make the image more 
interpretable. ‘Standard deviation stretch’ is the algorithm to 
enhance image contrast and the spectral behavior of the satellite 

imageries. The magnitude of the enhancement depends on the 
standard deviation value defined by the analyst. The ‘Standard 
deviation stretch’ algorithm was used to improve the image 
contrast to identify the classes (Hashimoto et al. 2011). An 
interval value between –2.5 to +2.5 standard deviations from the 
mean of the existing pixel values was used in this study. This 
stretched the values to the complete range of output screen 
values. In addition, the study used the contrast brightness utility 

of ERDAS IMAGINE to enhance visual details of the satellite 
images. 
 

2.5 Vegetation types classification approach 

 
The vegetation type can be defined as an embodiment of unique 
physiognomy, structure, and floristics (intrinsic factors), 
influenced by the climate, topography, and anthropogenic factors 

(extrinsic factors). Champion, Seth's (1968) classification 
scheme follows a hierarchical approach wherein climatically 
driven forest ecosystems systems with distinct physiognomy and 
phenology are primarily classified as type groups. These type 
groups are further subdivided into sub- groups based on 
dominant compositional patterns and region and location 
specific formations controlled by edaphic and disturbance 
conditions. Stainton (1972) recognized 35 forest types on the 
basis of detailed floristic studies and classified into 10 major 

groups in Nepal. The existing classification systems precisely 
used ground data in deciphering the patterns of species 
assemblages but did not provide the explicit spatial boundaries 
of these assemblages. Such spatial explicit boundaries of 
vegetation types are important for studying the patterns of 
vegetation diversity and long-term monitoring. The delineation 
of such boundaries for larger spatial extents based on geospatial 
tools and field information have become time and cost effective. 

Two-season Landsat 8 OLI images of 2017 were utilized 
optimally to map the vegetation types depending on the forest 

Figure 2. The flowchart to characterized biological diversity 
using SBM in Nepal Himalaya 
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phenology, i.e., leaf fall and peak growth seasons. Satellite data 
pertaining to the time windows of November and April were 
used to take into account the phenological variations required for 
delineation of different vegetation types.  
 

The on-screen visual interpretation technique using maximum 
likelihood classification (MLC) and support vector machine 
(SVM) classifiers were selected for the land cover classification 
of OLI data. The Google Earth Map and altitude zone maps were 
used to define classes. Wherever necessary, field data were used 
to delineate the vegetation type and locale-specific classes. The 
MLC has been the most popular parametric classifier used for 
remote sensing data classification (Foody et al. 1997; Jia et. al., 

2011). The MLC assumes that a hyper-ellipsoid decision volume 
can be used to approximate the shape of the data clusters. 
Moreover, for a given unknown pixel, the probability of 
membership in each class is calculated using the mean feature 
vectors of the classes, the covariance matrix and the prior 
probability (Duda, Hart, 1973). The unknown pixel is considered 
to belong to the class with the maximum probability of 
membership. The SVM classifier is the most widely used non-

parametric statistical learning classifier with no assumptions 
made regarding the underlying data distribution. This method 
typically performs better in land cover classification studies (Pal, 
Mather, 2005; Pal, Foody, 2012, Foody, Mathur, 2004). The 
surface reflectance value of bands 2, 3, 4, 5, 6 and 7 of OLI data 
were used for land cover classification using MLC and SVM 
classifier. 

2.6 Vegetation types classification accuracy 

 
To validate the land cover classification performance using OLI 
data, the classification results using the MLC and SVM 
classifiers were assessed via visual observations and quantitative 
classification accuracy indicators. Randomly selected sample 
pixels were used to quantitatively assess the land cover 

classification accuracy. The total sample pixels used for the 
classification accuracy estimation were 6150 pixels for forest, 
3607 pixels for snow, 1580 pixels for water body, 386 pixels for 
built up area, 278 pixels for agriculture, 680 pixels for barren 
land and 1679 pixels for reject class e.g. shadow and cloud. The 
overall classification accuracy, producer’s accuracy, user’s 
accuracy and Kappa statistics were then estimated for 
quantitative classification performance analysis (Congalton, 

Green, 1999, Foody 2013, Tso, Mather, 2001, Foody 2009). 
 

2.7 Model validation 

 
The spatial BR map can be validated with ground based species 
diversity information (Shannon-Wiener index) of the study 
landscape. The phytosociological data collected by ICIMOD as 
part of Forest Carbon Assessment in CHAL landscape project 

using RS and GIS (ICIMOD, 2016) was used to compute the 
Shannon-Wiener index (Shannon, 1948) for individual field plot 
(86permanent sample plots representing cold alpine semi-desert 
to sub-tropical humid climates) of 15.45 m radius plots for tree, 
5.64 m radius sub-plots for saplings, 2.82 m radius sub- plot for 
shrubs and 1 m radius sub-plot for counting 
regeneration/seedling. Correction for the slope was applied 
whenever required. Shannon-Wiener index values was plotted 
against BR map values and correlation coefficient for herbs, 

shrubs and tree diversity was observed. The higher the R2 values, 
the better the model fits user’s field data. The regression curve 
represents the actual condition reflecting variation in the 
compositional structure of the plant species communities with 
the varying levels of the BR index map. 

3. RESULTS 

 

3.1 Vegetation types and land use 

 
The sum total of vegetation types and land use for 2017 consist 

of 13 classes viz: Tropical Moist Deciduous Forest, Subtropical 
Broadleaved Hill Forest, Sub-Tropical Pine Forest, Montane 
Wet Temperate Forest, Himalayan Moist Temperate Forest, Sub-
alpine Forest, Dry Alpine Scrub, Barren land, Agriculture, Built 
up area and Settlement, Waterbody, Snow and reject class 
(Shadow and Cloud). The predominance of forest land is evident, 
constituting 50.80% of the total geographical area followed by 
snow (17.11%),  agriculture (15.22%), barren land (15.09%), 

settlement (0.99%), waterbody (0.58%) and reject class (.20) 
(Fig. 3). 

3.2 Species composition in forest types 

 

Tropical Moist Deciduous Forest is distributed in the southern 
belt of Lamjung and Kaski districts along the Siwaliks where 
dominated species was Shorea robusta. The su-btropical broad 
leaved forests is dominated by Schima wallichii and Castanopsis 
indica and associate species are Phyllanthus emblica, 
Lagerstroemia parviflora etc. (Silwal et. al., 2018). Subtropical 
pine forests are characterized by Chir pine (Pinus roxburghii). In 
Monte Wet Temperate Forest, dominated species in lower 

mountain region are Quercus lamellose, Castanopsis tribuloides, 
Lauraceae spp. whereas Quercus semecaprpifolia, Acer spp. and 
Rhododendron spp. dominated in the upper area. Pinus 
wallichiana, Abies spectabilis and Tsuga dumosa dominated in 
the Himalayan Moist Temperate Forest. Abies spectabilis, Betula 
utilis and Rhododendron species are the key species of the Sub-
Alpine Forest. Common species of the Dry Alpine Scrub are 
Juniperus spp. and Rhododendron spp in the study landscape.  

3.3 Forest Fragmentation index 

 
The derived map is representing forest and non-forest area. The 
moving window size of 11x11 pixel was used to model 
fragmentation map using R statistical computing platform. The 
computed forest fragmentation (edge index) map (Fig. 4) has 

integer values ranging between 0 and 100. Based on natural 
breaks classification, fragmentation map is categorized into 4 
classes as low (dense forest), moderate, high and very high 
including non-forest area to quantify forest habitat fragmentation 
and increase in forest edge within the study area. Low class 
corresponds to dense forest and very high class is highly 
fragmented landscape. Shrinkage of core forest patches is the 
biological diversity indicator of increasing forest degradation 

Figure 3. Vegetation types and land use map of 2017 
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and fragmentation. The highest percentage of geographical area 
is covered by dense forest and followed by moderate 
fragmentation, high fragmentation and highly fragmented forest 
area.  

3.4 Disturbance index 
 
The prediction of the spatial pattern of landscape disturbance 
map is an important requirement for characterizing biological 
diversity. The computed DI map (Fig. 5) has integer pixel values 
ranging from 0 to 100. On the basis of the natural breaks 

classification, the DI map is categorized as forest, low, moderate, 
high and very high for identifying the spatial characteristics and 
extent of anthropogenic disturbance affecting the forest in study 
area. The forest corresponds to very low disturbed class and very 
high is highly disturbed region. The derived DI map is depicting 
the regions of high disturbance as well as forest edges. DI map 
showed that highest percentage of geographical area is under low 
disturbance class and followed by moderate disturbance class, 

high disturbance class and very high disturbance class 
respectively. 

 

 

3.5 Biological richness 

 
The biodiversity value, species richness and ecosystem 

uniqueness were generated with the field sample plot data and 
knowledgebase. The terrain complexity data was computed as 
weighted function of aspect, slope, elevation and their weighted 
spatial variability. The BR map is computed as linear weighted 
additive method of biodiversity value, species richness, terrain 
complexity, ecosystem uniqueness and DI.  

The computed BR map has integer pixel values ranging from 0 
to 100. Based on natural breaks classification, BR map (Fig. 6) 

are categorized into 4 classes as low, moderate, high and very 
high including non-forest area to quantify the biodiversity rich 
area.  

The BR map predicted highest area under very high BR class, 
followed by high BR class, moderate BR class and low BR class. 
Statistics of percentage of area distribution is depicted in bar 

graph (Fig. 7) 

 

3.6 Accuracy assessment 

 
The overall accuracy of the vegetation type classification, 
assessed on the basis of field sample plot data was 82.61% and 

Kappa Statistics of 0.8013.The spatial BR map is validated with 
ground based species diversity information (Shannon-Wiener 
index and Margalef diversity index) of the study area. The 
phytosociological data collected from field as part of Forest 
Carbon Assessment of CHAL level using RS&GIS (ICIMOD 
2016) was used to compute the Shannon-Wiener index 
(Shannon, 1948) and Margalef diversity index (Margalef, 1958) 
for individual field plot (86 sample plots representing the 

different ecosystem of the study area). The Shannon-Wiener 
index values and Margalef’s diversity index value have been 
plotted against BR map values separately and the correlation 
coefficients for the tree diversity have been observed to be 0.64 
and 0.56 as shown in Fig. 8 (a) and (b) respectively.  

 

 

 

Figure 5. Disturbance index map of study area 

Figure 4. Forest fragmentation (edge index) map of study 
area 

Figure 7. Area (%) statistics of forest fragmentation, 
disturbance and biological richness in four different classes 

Figure 6. Biological richness map of study area 
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4. DISCUSSION 

 
Shrinkage of core forest patches is an indicator of increasing 
fragmentation. The loss of biodiversity has been attributed to the 
destruction of habitat, isolation of fragments of formerly 

contiguous habitats and edge effects within a boundary zone 
between forest and deforested areas. With increase in the 
anthropogenic degradation of the natural areas, there is a need 
for periodic and rapid assessment of the biodiversity distribution 
across the landscape. CHAL is considered significant for 
biodiversity conservation because of its floristic richness and 
high level of endemism. A national level study carried by Reddy 
et al. (2017) show that the land cover legend for 2014 is 

consisting of 21 classes, i.e. tropical dry deciduous sal forest, 
tropical moist deciduous sal forest, subtropical broad-leaved 
forest, subtropical pine forest, lower temperate broad leaved 
forest, upper temperate broad leaved forest, lower temperate 
mixed broad leaved forest, upper temperate mixed broad leaved 
forest, temperate needle leaved forest, subalpine forest, 
plantations, tropical scrub, subtropical scrub, temperate scrub, 
alpine scrub, grassland, agriculture, water bodies, barren land 

and settlements. Current study assesses 13 LULC classes 
including 7 forest types where about 50% area is under forest in 
the landscape. According to the study of Reddy et al., 2017, the 
predominance of agricultural land is evident, constituting 28.2% 
of the total geographical area followed by forest (26.8%). The 
overall loss of dense forest is high as compared to open forest. 
The loss of an area of 1768 Km2 (6.9%) of dense forest was 
found from 1975 to 2014 in Nepal (Reddy et al., 2017). Tropical 

deciduous sal forests show more spatial changes followed by 
Subtropical broad leaved forest from 1975 to 2014 in Nepal. 
Regarding the historical fragmentation, the total number of forest 
patches increased from 1930 to 2014. (Reddy et al., 2017). 
Current research finding shows that more than 18% forests of the 
landscape is affected by anthropogenic disturbances, which in 
turn affect the biological richness of the landscape. This study 
found that the main cause of disturbance in forest is 
anthropogenic activities i.e. grazing, lopping, felling for timber 

extraction, forest fire, forest road and encroachment in the study 
landscape which is in line with DFRS, 2015. This has resulted in 
the fragmentation of the landscape and the loss of many endemic 
species. The progressive fragmentation might have significant 
ecological implications for species dependent on interior regions 
of forest patches (Echeverrı´a et al., 2006). 
 

5. CONCLUSION 

 
Proper documentation of biological resource is essential for 
conservation and sustainable use of natural wealth in the benefit 
of mankind (Tangley, 1990). This study provides spatial 
information on fragmentation, disturbance and biological 
richness of study site. Approximately 50% area is under forest 
which ensure high potential of biodiversity in the landscape. 
Fragmentation and disturbance area under high to very high class 

is about 15% and 5% respectively and still greater than18% area 
is under BR area. 
 

6. RECOMMENDATION 

 
The existing databases on floristic and detailed ecological and 
edaphic databases relating to selected few study areas are not 
geo-spatially linked. The absence of a spatially linked database 

of plant population structure, population dynamics, and abiotic 
driving and driven variables and other limiting factors makes it 
difficult to characterize, monitor and conserve species. Nepal is 
representative of the land cover diversity in the Hindu Kush 
Himalayas region. The HKH region has been identified as a 

blank spot for data by the Inter-Governmental Panel on Climate 
Change, indicating the need to develop regional database and 
sharing mechanisms (Sharma et. al., 2010). In this context, this 
study provides spatial information on fragmentation, disturbance 
and biological richness of study site. Result of this study is 

expected to contribute in systematic inventory, conservation 
prioritization and management decision of forest resources in the 
study landscape. Finally, up scaling of the similar research 
covering larger extent in Nepal and beyond the boarder is 
recommended. 
 

ACKNOWLEDGEMENTS 

 

The first author gratefully acknowledges Centre for Space 
Science and Technology Education in Asia and the Pacific 
(CSSTEAP) for financial support during the study. The authors 
are thankful to the Director, Indian Institute of Remote Sensing, 
ISRO and CSSTEAP Dehradun, India for his support during the 
study. The authors are thankful to ICIMOD for providing the 
field data. 

 

REFERENCES 
 
Behera, M.D. and Roy, P.S., 2010: Assessment and validation of 
biological richness at landscape level in part of the Himalayas 
and Indo-Burma hotspots using geospatial modeling 
approach. Journal of the Indian Society of Remote 
Sensing, 38(3), pp.415-429. 
 

Beltrán, B.J., Franklin, J., Syphard, A.D., Regan, H.M., Flint, 
L.E. and Flint, A.L., 2014: Effects of climate change and urban 
development on the distribution and conservation of vegetation 
in a Mediterranean type ecosystem. International Journal of 
Geographical Information Science, 28(8), pp.1561-1589. 
 
Beniston, M., 2003: Climatic change in mountain regions: a 
review of possible impacts. In Climate variability and change in 
high elevation regions: Past, present & future (pp. 5-31). 

Springer, Dordrecht. 
 
Champion, S.H. and Seth, S.K., 1968. A revised survey of the 
forest types of India. A revised survey of the forest types of India. 
 
Chen, Y., Yu, J. and Khan, S., 2013: The spatial framework for 
weight sensitivity analysis in AHP-based multi-criteria decision 
making. Environmental modelling & software, 48, pp.129-140. 

 
Chitale, V., Silwal, R. and Matin, M., 2018: Assessing the 
Impacts of Climate Change on Distribution of Major Non-
Timber Forest Plants in Chitwan Annapurna Landscape, 
Nepal. Resources, 7(4), p.66. 
 
Congalton, R.G. and Green, K., 1999: Assessing the accuracy of 
remotely sensed data: principles and practices. CRC press. 

DFRS, 2015: State of Nepal's Forests. Forest Resource 
Assessment (FRA) Nepal, Department of Forest Research and 
Survey (DFRS). Kathmandu, Nepal. 
 
Duda, R.O. and Hart, P.E., 1973: Pattern recognition and scene 
analysis. 
 
Ebi, K.L., Woodruff, R., von Hildebrand, A. and Corvalan, C., 

2007: Climate change-related health impacts in the Hindu Kush–
Himalayas. EcoHealth, 4(3), pp.264-270. 
 
Echeverría, C., Coomes, D., Salas, J., Rey-Benayas, J.M., Lara, 
A. and Newton, A., 2006: Rapid deforestation and fragmentation 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5/W3, 2019 
Capacity Building and Education Outreach in Advanced Geospatial Technologies and Land Management, 10–11 December 2019, Dhulikhel, Nepal

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-5-W3-121-2019 | © Authors 2019. CC BY 4.0 License.

 
126



of Chilean temperate forests. Biological conservation, 130(4), 
pp.481-494. 
 
Foody, G.M. and Mathur, A., 2004: A relative evaluation of 
multiclass image classification by support vector 

machines. IEEE Transactions on geoscience and remote 
sensing, 42(6), pp.1335-1343. 
 
Foody, G.M., 2009: Classification accuracy comparison: 
hypothesis tests and the use of confidence intervals in 
evaluations of difference, equivalence and non-
inferiority. Remote Sensing of Environment, 113(8), pp.1658-
1663. 

Foody, G.M., 2013: Ground reference data error and the mis-
estimation of the area of land cover change as a function of its 
abundance. Remote Sensing Letters, 4(8), pp.783-792. 
 
Foody, G.M., Lucas, R.M., Curran, P.J. and Honzak, M., 1997: 
Mapping tropical forest fractional cover from coarse spatial 
resolution remote sensing imagery. Plant Ecology, 131(2), 
pp.143-154. 

 
Gordon, A., Langford, W.T., Todd, J.A., White, M.D., 
Mullerworth, D.W. and Bekessy, S.A., 2011: Assessing the 
impacts of biodiversity offset policies. Environmental Modelling 
& Software, 26(12), pp.1481-1488. 
 
Halkos, G.E. and Tzeremes, N.G., 2010: Measuring biodiversity 
performance: A conditional efficiency measurement 

approach. Environmental Modelling & Software, 25(12), 
pp.1866-1873. 
 
Harfoot, M.B., Newbold, T., Tittensor, D.P., Emmott, S., Hutton, 
J., Lyutsarev, V., Smith, M.J., Scharlemann, J.P. and Purves, 
D.W., 2014: Emergent global patterns of ecosystem structure 
and function from a mechanistic general ecosystem model. PLoS 
biology, 12(4), p.e1001841. 
 

Hashimoto, N., Murakami, Y., Bautista, P.A., Yamaguchi, M., 
Obi, T., Ohyama, N., Uto, K. and Kosugi, Y., 2011: 
Multispectral image enhancement for effective 
visualization. Optics express, 19(10), pp.9315-9329. 
 
ICIMOD, 2016. Forest Carbon Assessment in Chitwan-
Annapurna Landscape. Field Data, International Centre for 
Integrated Mountain Development (ICIMOD), Kathmandu, 

Nepal. 
 
Immerzeel, W.W., Van Beek, L.P. and Bierkens, M.F., 2010: 
Climate change will affect the Asian water 
towers. Science, 328(5984), pp.1382-1385. 
 
Jia, K., Wu, B., Tian, Y., Zeng, Y. and Li, Q., 2011: Vegetation 
classification method with biochemical composition estimated 

from remote sensing data. International journal of remote 
sensing, 32(24), pp.9307-9325. 
 
Karnatak, H.C., Saran, S., Bhatia, K. and Roy, P.S., 2007: 
Multicriteria spatial decision analysis in web GIS 
environment. Geoinformatica, 11(4), pp.407-429. 
 
Kersebaum, K.C., Boote, K.J., Jorgenson, J.S., Nendel, C., 

Bindi, M., Frühauf, C., Gaiser, T., Hoogenboom, G., Kollas, C., 
Olesen, J.E. and Rötter, R.P., 2015: Analysis and classification 
of data sets for calibration and validation of agro-ecosystem 
models. Environmental Modelling & Software, 72, pp.402-417. 
 

Maikhuri, R.K., Rao, K.S. and Semwal, R.L., 2001: Changing 
scenario of Himalayan agroecosystems: loss of agrobiodiversity, 
an indicator of environmental change in Central Himalaya, 
India. Environmentalist, 21(1), pp.23-39. 
 

Margalef, D. R. 1958: Information theory in ecology. Gen. Syst. 
3:36-71 
 
Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, 
G.A. and Kent, J., 2000: Biodiversity hotspots for conservation 
priorities. Nature, 403(6772), p.853. 
 
NASA/METI/AIST/Japan Space systems, and U.S./Japan 

ASTER Science Team 2018: ASTER Global Digital Elevation 
Model NetCDF V003. NASA EOSDIS Land Processes DAAC. 
Accessed 2018-01-23 
from https://doi.org/10.5067/ASTER/ASTGTM_NC.003. 
 
Orsi, F., Church, R.L. and Geneletti, D., 2011: Restoring forest 
landscapes for biodiversity conservation and rural livelihoods: A 
spatial optimisation model. Environmental Modelling & 

Software, 26(12), pp.1622-1638. 
 
Pal, M. and Foody, G.M., 2012: Evaluation of SVM, RVM and 
SMLR for accurate image classification with limited ground 
data. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 5(5), pp.1344-1355. 
 
Pal, M. and Mather, P.M., 2005: Support vector machines for 

classification in remote sensing. International Journal of Remote 
Sensing, 26(5), pp.1007-1011. 
 
Prakash, C. and Barua, M.K., 2015: Integration of AHP-TOPSIS 
method for prioritizing the solutions of reverse logistics adoption 
to overcome its barriers under fuzzy environment. Journal of 
Manufacturing Systems, 37, pp.599-615. 
 
Prasad, P.R.C., Rajan, K.S., Dutt, C.B.S. and Roy, P.S., 2010: A 

conceptual framework to analyse the land-use/land-cover 
changes and its impact on phytodiversity: a case study of North 
Andaman Islands, India. Biodiversity and conservation, 19(11), 
pp.3073-3087. 
 
R Development Core Team, 2015. R:, 2015. A Language and 
Environment for Statistical Computing. R Foundation for 
Statistical Computing. Vienna, Austria. URL. http://www.R-

project.org/. 
 
Ramesh, K.V. and Goswami, P., 2007: Reduction in temporal 
and spatial extent of the Indian summer monsoon. Geophysical 
Research Letters, 34(23). 
 
Reddy, C.S., Pasha, S.V., Satish, K.V., Saranya, K.R.L., Jha, 
C.S. and Murthy, Y.K., 2018: Quantifying nationwide land cover 

and historical changes in forests of Nepal (1930–2014): 
Implications on forest fragmentation. Biodiversity and 
conservation, 27(1), pp.91-107. 
 
Romme, W.H. and Knight, D.H., 1982: Landscape diversity: the 
concept applied to Yellowstone Park. BioScience, 32(8), pp.664-
670. 
 

Rimba, A., Setiawati, M., Sambah, A. and Miura, F., 2017: 
Physical flood vulnerability mapping applying geospatial 
techniques in Okazaki city, Aichi prefecture, Japan. Urban 
Science, 1(1), p.7. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5/W3, 2019 
Capacity Building and Education Outreach in Advanced Geospatial Technologies and Land Management, 10–11 December 2019, Dhulikhel, Nepal

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-5-W3-121-2019 | © Authors 2019. CC BY 4.0 License.

 
127

https://doi.org/10.5067/ASTER/ASTGTM_NC.003
http://www.r-project.org/
http://www.r-project.org/


Roy, A., Bhattacharya, S., Ramprakash, M. and Kumar, A.S., 
2016: Modelling critical patches of connectivity for invasive 
Maling bamboo (Yushania maling) in Darjeeling Himalayas 
using graph theoretic approach. Ecological modelling, 329, 
pp.77-85. 

 
Roy, P.S. and Tomar, S., 2000: Biodiversity characterization at 
landscape level using geospatial modelling technique. Biological 
conservation, 95(1), pp.95-109. 
 
Roy, P.S., Roy, A. and Karnataka, H., 2012: Contemporary tools 
for identification, assessment and monitoring 
biodiversity. Tropical Ecology, 53(3), pp.261-272. 

 
Shannon, C.E., 1948: A mathematical theory of communication. 
Bell system technical journal, 27(3), pp.379-423. 
Saaty, T.L., 1977: A scaling method for priorities in hierarchical 
structures. Journal of mathematical psychology, 15(3), pp.234-
281. 
 
Saaty, T.L., 1980: The analytic hierarchy process McGraw-

Hill. New York, 324. 
 
Sharma, E., Chettri, N. and Oli, K.P., 2010: Mountain 
biodiversity conservation and management: a paradigm shift in 
policies and practices in the Hindu Kush‐
Himalayas. Ecological Research, 25(5), pp.909-923. 
 
Shrestha, D., Singh, P. and Nakamura, K., 2012: Spatiotemporal 

variation of rainfall over the central Himalayan region revealed 
by TRMM Precipitation Radar. Journal of Geophysical 
Research: Atmospheres, 117(D22). 
 
Silwal, R., Baral, S.K. and Chhetri, B.K., 2018. Modeling taper 
and volume of Sal (Shorea robusta Gaertn. f.) trees in the western 
Terai region of Nepal. Banko Janakari, pp.76-83. 
 
Silwal, R., Maharjan, S., Shrestha, B., Chitale, V. and Murthy, 

M., 2018: An Innovative Approach for Understanding the 
Patterns in Distribution and Extraction of Non-Timber Forest 

Products in Chitwan Annapurna Landscape, Nepal. Indian 
For, 144, pp.243-251. 
 
Singh, H., Garg, R.D., Karnatak, H.C. and Roy, A., 2018: Spatial 
landscape model to characterize biological diversity using R 

statistical computing environment. Journal of environmental 
management, 206, pp.1211-1223. 
 
Stainton, J.D.A., 1972. Forests of Nepal. Hafner Publishing 
Company. 
 
Tangley, L., 1990: Cataloging costa rica's 
diversity. BioScience, 40(9), pp.633-636. 

 
Tso B, Mather PM. 2001 Classification methods for remotely 
sensed data. London: Taylor and Francis. 
 
Turner, M.G., 1987: Landscape Heterogeneity and Disturbance. 
Springer-Verlag, New York. 
 
Wilson, M.C., Chen, X.Y., Corlett, R.T., Didham, R.K., Ding, 

P., Holt, R.D., Holyoak, M., Hu, G., Hughes, A.C., Jiang, L. and 
Laurance, W.F., 2016: Habitat fragmentation and biodiversity 
conservation: key findings and future challenges. 
 
Yu, L., Belyazid, S., Akselsson, C., van der Heijden, G. and 
Zanchi, G., 2016: Storm disturbances in a Swedish forest—A 
case study comparing monitoring and modelling. Ecological 
modelling, 320, pp.102-113. 

 
Zhai, D.L., Cannon, C.H., Dai, Z.C., Zhang, C.P. and Xu, J.C., 
2015: Deforestation and fragmentation of natural forests in the 
upper Changhua watershed, Hainan, China: implications for 
biodiversity conservation. Environmental monitoring and 
assessment, 187(1), p.4137. 
 
Zomer, R.J., Trabucco, A., Metzger, M.J., Wang, M., Oli, K.P. 
and Xu, J., 2014: Projected climate change impacts on spatial 

distribution of bioclimatic zones and ecoregions within the 
Kailash Sacred Landscape of China, India, Nepal. Climatic 
change, 125(3-4), pp.44.      

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5/W3, 2019 
Capacity Building and Education Outreach in Advanced Geospatial Technologies and Land Management, 10–11 December 2019, Dhulikhel, Nepal

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-5-W3-121-2019 | © Authors 2019. CC BY 4.0 License.

 
128




