
MODEL FOR LAND COVER ESTIMATION USING UNSUPERVISED MACHINE

LEARNING ON GOOGLE MAPS COLOR IMAGES

Rajat Subhra Bhowmick 1, Anil Kumar 1 *, Gagan Deep Singh 1, Shashi Kumar 2

1 University of Petroleum and Energy Studies, Dehradun, India -

sendrajat3060@gmail.com, anil.kumar@ddn.upes.ac.in, gagan@ddn.upes.ac.in
2 Indian Institute of Remote Sensing, Dehradun, India - shashi@iirs.gov.in

Commission V, SS: Emerging Trends in Geoinformatics

KEY WORDS: Unsupervised learning algorithms, CORINE nomenclature, Google Static Maps API, k-means clustering

ABSTRACT:

Remote sensing data and satellite images are broadly used for land cover information. There are so many challenges to classify

pixels on the basis of features and characteristics. Generally it is pixel classification that required the count of pixels for certain

area of interest. In the proposed model, we are applying unsupervised machine learning to classify the content of the input

images on the basis of pixels intensity. The study aims to compare classification accuracy of different landscape characteristics

like water, forest, urban, agricultural areas, transport network and other classes adapted from CORINE (Coordination of

information on the environment) nomenclature. To fulfil the aim of the model, accessing data from Google map using Google

static API service which creates a map based on URL parameters sent through a standard HTTP (Hyper Text Transfer Protocol)

request and returns the map as an image which can be display on any graphical user interface platform. The Google Static

Maps API returns an image either in GIF, PNG or JPEG format in response to an HTTP request. To identify different land

cover/use classes using k-means clustering. The model is dynamic in nature that describes the clustering as well formulate the

area of the concerned class or clustered fields.

1. Introduction

Any developing nation must have enough information on

various interrelate aspects of its activities in order to make

correct decisions for not only the development of the

nation but at the same time achieve sustainable

development. Land use or land cover is one such domain,

but knowledge about these domains has become

increasingly important as the nation plans to overcome the

problems of environmental pollution, destruction of

forest, uncontrolled developments, loss of prime

agricultural lands [1].

Land cover information is required in the analysis of

environmental processes and issues that must be

comprehended if living conditions are to be enhanced

along with the technical developments. Land cover

estimation reflects to the vegetative characteristics or

manmade constructions on the land’s surface. In recent

times the available of satellite data has triggered a series

of development of many complex tool related to

geographic information system or geographical

information system (GIS). Many of these tools used

mainly supervised classification technique for estimating

land cover percentage. Satellite image classification is a

process of grouping pixels into meaningful classes [6].

The data of any region on which most of these tool works

are not easily available. At the same time much larger in

size due to the fact that data is available only in different

bands. The bands are again not easy to understand unless

we use specific tool feature for understanding the

information available for that region.

 * Corresponding Author

 In recent times Google maps are very useful in getting

important information about a region and the data is also

easily available. So we use the Google maps for colour

image data of a specific region and then use unsupervised

machine learning algorithms for estimation of land cove

of that region in the process calculating the actual area of

land in sq. Km covered in different type of land.

For any advance data analysis or machine learning task

nowadays python [13] emerges as one of the best

programming language to be used. We have used python

to support our model. It has supported python packages

like numerical mathematics extension (numpy) [14] which

is very useful in handling many of the matrix manipulation

tasks very efficiently. Matplotlib [15] is another package

which provides an object-oriented API for embedding

plots into applications. OpenCV [16] and python Image

helps to do various image operations which are very

helpful in pre-processing of Google map image. Along

with these libraries pyQt helps to create general-purpose

graphical user interface (GUI) for the user.

2. Methodology

In the present work, we have built a model which consists

of four major stages. First stage is to get data from Google

map using Google static API service returns a map as an

image which can be displayed on any graphical user

interface platform. Figure. 1 depicts the above process. So

using the Google API we can have an image of a region of

our interest by specifying different parameters given in the

request. First stage also includes some image

enhancement and cleaning task on the image downloaded

from Google map. It provides better visualisation and

increases the effectiveness of machine learning

algorithms. Second stage is the most important in the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-147-2018 | © Authors 2018. CC BY 4.0 License.

147

mailto:gagan@ddn.upes.ac.in
mailto:shashi@iirs.gov.in

model in which we used unsupervised machine learning

algorithm for clustering on RGB component of the image.

Many techniques have been proposed in the literature of

cluster analysis [9, 10].

Figure 1. Process of obtaining image from Google server

The RGB colour model is a representation of an image

pixel by the combination of three colour model in which

red, green and blue colours are added together in many

possible ways to reproduce a broad array of colours. This

is in agreement with the tristimulus theory of colour [12,

13] according to which the human visual system acquires

colour imagery by means of three band pass filters whose

spectral responses are tuned to the wavelengths of red,

green, and blue. Any image in digital system consists of a

set of pixels and each pixel has its own RGB values. The

set of these RGB values of all pixels in the image consist

the data set upon which we have applied our machine

learning algorithm. As mention earlier the machine

learning technique used is unsupervised, which is used for

drawing certain inferences from datasets consisting of

input data without labelled responses. The algorithm used

is K-means [4, 11] which is a partition-based cluster

analysis method and it is very effective algorithm for

finding clusters for a given dataset. Park et al. [12] applied

this algorithm to a pattern space representation of RGB

coordinates. The k-means is susceptible to local optima.

So we have to re-run the k-means several times and using

backtracking we have to sure about our initialisation

values.

Figure. 2 Depicting the stages in the model

Working Model

Google Map

Server

HTTP request

(using given key)

Image (GIF, PNG or JPEG format)

User Input

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-147-2018 | © Authors 2018. CC BY 4.0 License.

148

The last stages of our model consist of the calculation of

the total area given latitude and longitude value of the

centre point of the map and the visualisation of clustered

image. The calculation of the area is done in sq.

kilometres. Figure. 2 visualise all the major steps in the

model in order. Out of these four stages the second stage

consist the algorithms which cluster’s the image from

obtained from Google map. The first stage helps in getting

the image and enhancing it. The second last stage gives

the estimated area under each region type and the last stage

helps in visualizing the overall result of the model.

3. Modeling:

 3.1 Getting the image: To obtain the Google Maps image

we used the Google Static Maps API which lets us embed

a Google Maps image in our model. The Google Static

Maps API returns an image of a map in response to an

HTTP request via a URL. For each request, we can specify

the location of the map image, the size of the map, the

zoom level of map and the type [5]. The location of map

in our case is the longitude and the latitude of central point

of an interested region. The centre of the map is

equidistant from all corners of the map. This parameter

takes a location as comma-separated (latitude and

longitude) pair (e.g. "30.3239, 78.0654"). The zoom level

is another parameter which determines the magnification

level of a map. This parameter takes an integer value

corresponding to the zoom level of the region desired. In

our case the zoom level is set to 15 as this zoom level

works better for viewing the land spread and in the

meantime covers a critical range of a region which we are

keen on. A zoom level less than this is not suitable for

clustering as this gives very less information about the

ground cover vice versa if it is greater than 15 the area

spread is less and clustering is more susceptible to noise.

Size of a map is the rectangular dimensions of a map

image. The parameter can be set in the form of (horizontal

value x vertical value) where both values are integer

number for example, 640x480 defines an image of a map

which has 640 pixels in width and 480 pixels in height.

This parameter is also affected by the scale parameter; the

final output is the product of the size and scale parameter

values. For our case we have opted to get 640 x 640 image.

Scale is an optional parameter affects the number of pixels

that are returned. Scale equal to two returns twice as many

pixels as scale equal to one while retaining the same area

which means the contents of the map don't change, in our

case the scale is set to one. We have opted for PNG images

from Google Static Maps API. Map type defines the type

of map to construct from server. We are interested in

satellite image so we select our map type as satellite. The

original file retrieved from Google Map server contains

the Google logo which is not suitable for image clustering.

So we need to truncate the lower portion for our case the

image size reduced to 620 x 640. The other task which is

done in this stage is to enhance the image quality. The

enhancement is done mainly for visualisation purpose and

will not affect the machine learning process significantly.

The three features of image colour, brightness, contrast are

increased to 1.2, 1.25, and 1.5 respectively. This

completes the first stage of our model and we have the

enhanced image from Google Map to work with, for the

next stages of our model, Figure. 3 visualise the same.

Figure. 3 The original image from the Google server and the image after pre-processing

3.2 Clustering Process

The clustering process is an unsupervised machine

learning technique in which one has to generate partitions

without any a priori knowledge [17]. The algorithm has

been described above, the basic cons of k-means is it is

locally optimum so depending upon our initial points the

algorithm converges to a certain result. The whole

clustering process after obtaining the image with RGB

components is explained in Algorithm 1.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-147-2018 | © Authors 2018. CC BY 4.0 License.

149

Algorithm 1. Clustering process (image[x, y, z])

//where x * y is the size of image and z represent the values

of RGB in each pixel.

Step 1 Enhance the image by increasing the

brightness, colour and contrast by 1.25,

1.2, and 1.5 respectively taking 1 as

original value.

Step 2 Set k=4 as the number of division we need

to cluster.

Step 3 Set initial centroid in init_centroid [k, z].

// The dimension of init_centroid is k*z

matrix as “k” for number of cluster and “z”

represent the three feature which given

RGB value in each pixel.

Step 4 Set the number of iteration in n_int equal

to an integer, as the higher iteration will

result in increased complexity so n_int set

to 1.

Step 5 Get final_centroids[k, z] and

cluster_assignment[x, y, 1] by running the

K-means algorithm k-means(image,

init_centroid, n_iter).

// the dimension of cluster assignment is

x*y*1 which gives the cluster value

between 0 to k-1 for each pixel in the

image.

Step 6 Convert the final_centroids from float type

to integer type representation.

Step 7 Get the original clustered image using the

algorithm

get_image_assigned_cluster(image,

final_centroids,cluster_assignment) into

org_clust_img[x, y, z].

Step 8 Change the final_centroids to false colour

centroid color_centroids to get colour

cluster image for proper visualisation of

the vegetation.

Step 9 Get the colour clustered image using the

algorithm

get_image_assigned_cluster(image,color_

centroids, cluster_assignment) into

color_clust_img[x,y,z].

Step 10 Save the color_clust_img and the

org_clust_img.

3.3 K-means specification

Now we have the data set to apply k-means algorithm but

we need to access convergence to tell if the k-means

algorithm is converging. We can look at the cluster

assignments and see if they stabilize over time. We'll be

running the algorithm until the cluster assignments stop

changing or produce very little change. To be extra safe,

and to assess the clustering performance, we'll be looking

at an additional criterion: the sum of all squared distances

between data points and centroids which is given in

equation (1):

 J(V) = ∑ ∑ ((||xi − µj||ci

j=1
c
i=1)) (1)

Where, ‘||xi - µj||’ is the Euclidean distance

between xi and µj. ‘c’ is the number of cluster centres and

‘ci’ is the number of data points in ith cluster. The µj

cluster centroid can be calculated by equation (2).

For every cluster j, set

 𝜇j =
∑ 1{𝑐(𝑖)=𝑗}𝑥(𝑖)𝑚

𝑖=1

∑ 1{𝑐(𝑖)=𝑗}𝑚
𝑖=1

 (2)

Where, ‘𝑐(𝑖)’ represents the number of data points

in ith cluster.

Suppose that we have n data points (a1, b1, c1), (a2, b2, c2),

(a3, b3, c3), …, (an, bn, cn), then the centroid is calculated

as (Σ ai ∕ n, Σ bi ∕ n ,Σ ci ∕n).

The smaller the distances, the more homogeneous the

clusters are. In other words, we'd like to have "tight"

clusters. This is called heterogeneity. As we already know

K-means converges local optimum we need to find the

correct initial centroids for right clustering process. One

effective way to counter this tendency is to use a smart

initialization.

This method tries to spread out the initial set of centroids

so that they are not too close together. It is known to

improve the quality of local optima and lower average

runtime.

In general, we should run k-means at least a few times with

different initializations and then return the run resulting in

the lowest heterogeneity. After many runs of k-means and

accessing the heterogeneity we found the initial centroid

parameter for clustering shown below in Table 1.

 The next step is to perform K-means with obtained linear

data set and initial centroid. The K-means algorithm

executes two main steps. First is assign closest cluster

centre for every data point “i” and for every cluster j.

Sometimes this called “Map” step which is given equation

(3). For every i, set

 𝑐(𝑖) = arg min
𝑗

‖𝑥(𝑖) − 𝜇j ‖ 2 (3)

Second is to recalculate the mean of each cluster, fitfully

studied as “Reduce” step which is given in equation (2).

K-means algorithm takes another parameter which is

maximum iteration as we have re-run our K-means

algorithm

Table 1. Initial centroid for cluster to obtained after series of runs of K-means.

Cluster Number Red Green Blue

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-147-2018 | © Authors 2018. CC BY 4.0 License.

150

Cluster 1 31 64 41

Cluster 2 192 187 190

Cluster 3 133 124 131

Cluster 4 81 86 83

many times to get initial centroids so we will run the K-

means map-reduce only once so as to reduce the

complexity of clustering of data points, optimising our

unsupervised machine learning clustering process, time

complexity in comparison with supervised machine

learning classification process. The K-means returns two

parameters first is the final centroids and second, cluster

label for each data point between [1....K] where k is

number of cluster. The Algorithm 2 formulates the k-

means function step by step.

Algorithm 2: K-means (image[x, y, z], init_centroid [k, z], n_iter)

Step 1 Set centroids [k, z] equal to init_centroid [[k, z],1] equal to None and itr = 0.

Step 2 Repeat step 3 to 6 until 𝑖𝑡𝑟 ≤ 𝑛_𝑖𝑡𝑟

Step 3 Make cluster assignments using nearest centroids and set it in cluster_assignment.

Step 4 Compute a new centroid for each of the k clusters, averaging all data points assigned to that cluster and set it in

centroids.

Step 5 Check for convergence: if none of the assignments changed move to step 7.

Step 6 Increment the iteration by 1.

Step 7 Return centroids [k, z], cluster_assignment[x, y, 1].

3.4 Clustering and Visualization

So, now we have to assign colour to each data point so as

to generate better intuition about the land covering. As the

colour components are 8-bit integer each it has value

from 0-255 but according to K-means algorithm it may

produce in between float values so we need to convert all

centroids into integer values. As cluster label give the

clusters which any data point belong after clustering we

can reassign the data points RGB components value to

cluster centre.

 Then we can recast the data points back into the image so

to get the notion of how each of the pixels belongs to a

cluster. Thus by changing the centroid we can

simultaneously change the colour of each cluster. Table 2

represent the colour code for each cluster. Algorithm 3 is

showing how the normal image is converted to clustered

image. Now because as we have chosen max-iteration in

K-Means algorithm to very less and the initial centroid

after lots of iteration we are notably sure about what each

cluster centre do represent. After running many iterations

of K-means algorithm with different initialisation we

found what each cluster represents, the results are shown

in Table 2.

Algorithm 3: Get_image_assigned_cluster(image [x, y, z], centroids[k, z], cluster_assignment [x, y, 1])

//where image has dimension x, y, z and centroids having dimension k and z and cluster_assignment has same number elements

as original image dimension but only one component for each pixel which is cluster value

Step 1 Initialize image_copy[x, y, z] to None.

Step 2 for i in range of x do

Step 3 for j in range y do

Step 4 Set image_copy [i, j] = centroids [cluster_assignment [i, j, 1]].

Step 5 end for in step 3.

Step 6 end for in step 2.

Step 7 Return image _copy.

Table 2. Colour component for each cluster to superimpose RGB component.

Cluster Centroid RGB components Type it represent Color Code

centroids[0]=[50,240,100] #Vegitation/Forest

centroids[1]=[255,255,255] #Buildings/Houses

centroids[2]=[37,120,120] #Unused lands

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-147-2018 | © Authors 2018. CC BY 4.0 License.

151

centroids[3]=[0,30,30] #Unclassified_objects/

(Shadows)/Barren lands /Water bodies

Now using the above algorithms we can show the

clustered image (depicted in Fig. 4). We can also visualise

from Fig. 5 the superimposed RGB components of the

original centroids with our own stipulated cluster colours.

The two images have shown to visualise the effect of

clustering in original image.

Figure. 4. Comparison between the original image and clustered image using original centre

Figure. 5. Comparison between the original image and the clustered image after superimposing the RGB component defined

internally.

3.5 Area Estimation & Results

The next phase is to estimate the area under each cluster

so as to predict the area each type of land cover in square

kilometre. For acquiring image we have specified central

coordinate so we need to find the corners value of

longitude and latitude to estimate the area under the map

image obtained from Google Map. We have used

Mercator projection for calculating the corners of the
image. The Mercator projection was invented by Gerardus

Mercator, a Flemish mapmaker. His name is a Latinized

version of Gerhard Kramer [7, 8]. As we have also

truncated the lower image portion for removing Google

logo. We recalculated the corners, so as to calculate the

distance between sides which in turn give area. After

getting the total area we create a histogram on number of

cluster and number of corresponding pixels belongs to

each cluster in the cluster image. We normalized the

histogram to have total portion of pixels equal to unity,

then multiplied each proportion of histogram to get total

area under each cluster or corresponding type of

vegetation.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-147-2018 | © Authors 2018. CC BY 4.0 License.

152

The Algorithm 4 explains the whole process step by step.

Algorithm 4: Calculate Area and Report (image[x, y, z], map_point [2], cluster_assignment[x, y, 1], color_centroids [k, z])

//where x and y is the size of image and z represent the values of RGB.

//map_point represents the longitudinal and latitudinal value of the centre point of the downloaded map image

// cluster_assignment[x, y, 1] and color_centroids [k, z] are the cluster value of each pixel, and colour value of centroids as

defined in Algorithm 1.

Step 1 Calculate the longitudinal and latitudinal point of the corners given the central point using Mercator

projection method and given zoom level =15 and set it into map_points [4, 2].

// Four corners having two value latitude and longitude.

Step 2 Calculate area using map_points.

Step 3 Calculate normalised histogram norm_hist[k] of cluster_assignment vector.

// as it would have value between 1 to k so histogram contain k values.

Step 4 Multiply norm_hist with total area to give each type of area coverage in area_type[k].

Step 5 Relate to color_centroids [k, z] and area_type[k] to visualise the report.

After getting the areas under each cluster we have used pie

chart to reveal the area under each cluster, the Figure. 6

demonstrate the area under each type of land cover in the

region of map which is shown in Figure. 3.

Figure. 6 The area under different types of land cover.

4. Conclusions & Future Scope

The model we have created can predict the land cover

estimation by downloading maps from Google Maps

given the longitude and latitude of any specific region

center. Then performing unsupervised machine learning

(K-means) on that color image with specified initial

centroids and number of cluster set to 4, to give a clustered

image which depict the land cover in that region. The

model uses K-means algorithm whose complexity is much

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-147-2018 | © Authors 2018. CC BY 4.0 License.

153

lesser than other clustering algorithms like Gaussian

Mixture Model so it is quite fast to operate and get result.

The model is also useful as it does not need to set any

training data to predict the land cover which in case many

traditional land cover estimation classification technique

needed to specify. So, this model can provide useful

information to the groups who are not much familiar with

supervised machine learning techniques.

The future works of this model mainly consist of two

criteria. First is improving the accuracy of predicting the

area covered by using more sophisticated unsupervised

machine learning algorithms like Guassian Mixture Model

and at the same time reduce the complexity of the whole

process by predicting more appropriate initial centroids

and covariance. The second is to increase the ability to

recognize more types of land cover than these basic 4 –

types which can be done if we have more information or

bands available (other than RGB component) in image

data thus by improving significance of the model to next

level.

5. References

[1]. James A. Shine and Daniel B. Carr, "A Comparison

of Classification Methods for Large Imagery Data

Sets", JSM 2002 Statistics in an ERA of

Technological Change-Statistical computing

section, New York City, pp.3205-3207, 11-15

August 2002.

[2]. G. Wyszecki and W.S. Stiles, Color Science:

Concepts and Methods, Quantitative Data and

Formulae, Wiley, New York, NY, 1982.

[3]. R.W.G. Hunt, Measuring Colour, 2nd Ed., Ellis

Horwood Ltd. Publ., Chichester, UK, 1987.

[4]. S. Deelers and S. Auwatanamongkol, “Enhancing

K- Means Algorithm with Initial Cluster Centers

Derived from Data Partitioning along the Data Axis

with the Highest Variance,” International Journal of

Computer Science, Vol. 2, Number 4 S.T. Bow,

Pattern Recognition and Image Preprocessing,

Marcel Dekker, Inc., New York, NY, 1992.

[5]. Anders Karlsson, 2003. “Classification of high

resolution satellite images”, August 2003,

http://infoscience.epfl.ch/record/63248/files/TPD_

Karlsson.pdf.

[6]. Isreal Robert, 2003-01-20, “Mercator's Projection”,

http://www.math.ubc.ca/~israel/m103/mercator/me

rcator.html

[7]. Dana,P. H. "Map Projections. Available at

" http://www.colorado.edu/geography/gcraft/notes/

mapproj/mapproj_f.html

[8]. M.R. Anderberg, Cluster Analysis for Applications,

Academic Press, New York, NY, 1973.

[9]. S.-T. Bow, Pattern Recognition and Image

Preprocessing, Marcel Dekker, Inc., New York,

NY, 1992

[10]. J. McQueen, \Some Methods for Classification and

Analysis of Multivariate Observations," Proc. of

the 5th Berkeley Symp. On Math. Stat. and Prob.,

Vol. 1, pp. 281-296, 1967.

[11]. S.H. Park, I.D. Yun, and S.U. Lee, Color Image

Segmentation Based on 3-D Clustering:

Morphological Approach, "Pattern Recognition,

Vol. 31, No. 8, pp. 1061 1076, Aug. 1998.

[12]. Python Software Foundation. Python Language

Reference, version 2.7. Available at

http://www.python.org

[13]. Stéfan van der Walt, S. Chris Colbert and Gaël

Varoquaux. The NumPy Array: A Structure for

Efficient Numerical Computation, Computing in

Science & Engineering, 13, 22-30

(2011), DOI:10.1109/MCSE.2011.37

[14]. John D. Hunter. Matplotlib: A 2D Graphics

Environment, Computing in Science &

Engineering, 9,90-95(2007),

DOI:10.1109/MCSE.2007.55

[15]. Bradski, G., opencv_library, Dr. Dobb's Journal of

Software Tools, 2008-01-15

[16]. D. Koller and N. Friedman. Probabilistic Graphical

Models: Principles and Techniques - Adaptive

Computation and Machine Learning. The MIT

Press,2009.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-147-2018 | © Authors 2018. CC BY 4.0 License.

154

