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ABSTRACT: 

 

Remote sensing data and satellite images are broadly used for land cover information. There are so many challenges to classify 

pixels on the basis of features and characteristics. Generally it is pixel classification that required the count of pixels for certain 

area of interest. In the proposed model, we are applying unsupervised machine learning to classify the content of the input 

images on the basis of pixels intensity. The study aims to compare classification accuracy of different landscape characteristics 

like water, forest, urban, agricultural areas, transport network and other classes adapted from CORINE (Coordination of 

information on the environment) nomenclature. To fulfil the aim of the model, accessing data from Google map using Google 

static API service which creates a map based on URL parameters sent through a standard HTTP (Hyper Text Transfer Protocol) 

request and returns the map as an image which can be display on any graphical user interface platform. The Google Static 

Maps API returns an image either in GIF, PNG or JPEG format in response to an HTTP request. To identify different land 

cover/use classes using k-means clustering. The model is dynamic in nature that describes the clustering as well formulate the 

area of the concerned class or clustered fields. 

 
1. Introduction 

 

Any developing nation must have enough information on 

various interrelate aspects of its activities in order to make 

correct decisions for not only the development of the 

nation but at the same time achieve sustainable 

development.  Land use or land cover is one such domain, 

but knowledge about these domains has become 

increasingly important as the nation plans to overcome the 

problems of environmental pollution, destruction of 

forest, uncontrolled developments, loss of prime 

agricultural lands [1]. 

              

Land cover information is required in the analysis of 

environmental processes and issues that must be 

comprehended if living conditions are to be enhanced 

along with the technical developments. Land cover 

estimation reflects to the vegetative characteristics or 

manmade constructions on the land’s surface. In recent 

times the available of satellite data has triggered a series 

of development of many complex tool related to 

geographic information system or geographical 

information system (GIS). Many of these tools used 

mainly supervised classification technique for estimating 

land cover percentage. Satellite image classification is a 

process of grouping pixels into meaningful classes [6].  

            

The data of any region on which most of these tool works 

are not easily available. At the same time much larger in 

size due to the fact that data is available only in different 

bands. The bands are again not easy to understand unless 

we use specific tool feature for understanding the 

information available for that region. 

 

 

_____________________________ 

 

    *   Corresponding Author 

 In recent times Google maps are very useful in getting 

important information about a region and the data is also 

easily available.  So we use the Google maps for colour 

image data of a specific region and then use unsupervised 

machine learning algorithms for estimation of land cove 

of that region in the process calculating the actual area of 

land in sq. Km covered in different type of land.  

 

For any advance data analysis or machine learning task 

nowadays python [13] emerges as one of the best 

programming language to be used. We have used python 

to support our model.  It has supported python packages 

like numerical mathematics extension (numpy) [14] which 

is very useful in handling many of the matrix manipulation 

tasks very efficiently. Matplotlib [15] is another package 

which provides an object-oriented API for embedding 

plots into applications. OpenCV [16] and python Image 

helps to do various image operations which are very 

helpful in pre-processing of Google map image. Along 

with these libraries pyQt helps to create general-purpose 

graphical user interface (GUI) for the user. 

 

2. Methodology 

 

In the present work, we have built a model which consists 

of four major stages. First stage is to get data from Google 

map using Google static API service returns a map as an 

image which can be displayed on any graphical user 

interface platform. Figure. 1 depicts the above process. So 

using the Google API we can have an image of a region of 

our interest by specifying different parameters given in the 

request. First stage also includes some image 

enhancement and cleaning task on the image downloaded 

from Google map. It provides better visualisation and 

increases the effectiveness of machine learning 

algorithms. Second stage is the most important in the 
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model in which we used unsupervised machine learning 

algorithm for clustering on RGB component of the image. 

Many techniques have been proposed in the literature of 

cluster analysis [9, 10].

 

Figure 1. Process of obtaining image from Google server   

The RGB colour model is a representation of an image 

pixel by the combination of three colour model in which 

red, green and blue colours are added together in many 

possible ways to reproduce a broad array of colours. This 

is in agreement with the tristimulus theory of colour [12, 

13] according to which the human visual system acquires 

colour imagery by means of three band pass filters whose 

spectral responses are tuned to the wavelengths of red, 

green, and blue. Any image in digital system consists of a 

set of pixels and each pixel has its own RGB values. The 

set of these RGB values of all pixels in the image consist 

the data set upon which we have applied our machine 

learning algorithm. As mention earlier the machine 

learning technique used is unsupervised, which is used for 

drawing certain inferences from datasets consisting of 

input data without labelled responses. The algorithm used 

is K-means [4, 11] which is a partition-based cluster 

analysis method and it is very effective algorithm for 

finding clusters for a given dataset. Park et al. [12] applied 

this algorithm to a pattern space representation of RGB 

coordinates. The k-means is susceptible to local optima. 

So we have to re-run the k-means several times and using 

backtracking we have to sure about our initialisation 

values. 

   

 

Figure. 2 Depicting the stages in the model 

Working Model 

Google Map 

Server 

HTTP request 

(using given key) 

Image (GIF, PNG or JPEG format) 

User Input 
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The last stages of our model consist of the calculation of 

the total area given latitude and longitude value of the 

centre point of the map and the visualisation of clustered 

image. The calculation of the area is done in sq. 

kilometres. Figure. 2 visualise all the major steps in the 

model in order. Out of these four stages the second stage 

consist the algorithms which cluster’s the image from 

obtained from Google map. The first stage helps in getting 

the image and enhancing it. The second last stage gives 

the estimated area under each region type and the last stage 

helps in visualizing the overall result of the model. 

3.  Modeling: 

 3.1 Getting the image: To obtain the Google Maps image 

we used the Google Static Maps API which lets us embed 

a Google Maps image in our model. The Google Static 

Maps API returns an image of a map in response to an 

HTTP request via a URL. For each request, we can specify 

the location of the map image, the size of the map, the 

zoom level of map and the type [5]. The location of map 

in our case is the longitude and the latitude of central point 

of an interested region. The centre of the map is 

equidistant from all corners of the map. This parameter 

takes a location as comma-separated (latitude and 

longitude) pair (e.g. "30.3239, 78.0654"). The zoom level 

is another parameter which determines the magnification 

level of a map. This parameter takes an integer value 

corresponding to the zoom level of the region desired. In 

our case the zoom level is set to 15 as this zoom level 

works better for viewing the land spread and in the 

meantime covers a critical range of a region which we are 

keen on. A zoom level less than this is not suitable for 

clustering as this gives very less information about the 

ground cover vice versa if it is greater than 15 the area 

spread is less and clustering is more susceptible to noise. 

Size of a map is the rectangular dimensions of a map 

image. The parameter can be set in the form of (horizontal 

value x vertical value) where both values are integer 

number for example, 640x480 defines an image of a map 

which has 640 pixels in width and 480 pixels in height. 

This parameter is also affected by the scale parameter; the 

final output is the product of the size and scale parameter 

values. For our case we have opted to get 640 x 640 image. 

Scale is an optional parameter affects the number of pixels 

that are returned. Scale equal to two returns twice as many 

pixels as scale equal to one while retaining the same area 

which means the contents of the map don't change, in our 

case the scale is set to one. We have opted for PNG images 

from Google Static Maps API. Map type defines the type 

of map to construct from server. We are interested in 

satellite image so we select our map type as satellite. The 

original file retrieved from Google Map server contains 

the Google logo which is not suitable for image clustering. 

So we need to truncate the lower portion for our case the 

image size reduced to 620 x 640. The other task which is 

done in this stage is to enhance the image quality. The 

enhancement is done mainly for visualisation purpose and 

will not affect the machine learning process significantly. 

The three features of image colour, brightness, contrast are 

increased to 1.2, 1.25, and 1.5 respectively. This 

completes the first stage of our model and we have the 

enhanced image from Google Map to work with, for the 

next stages of our model, Figure. 3 visualise the same. 

Figure. 3 The original image from the Google server and the image after pre-processing 

 

3.2 Clustering Process 

The clustering process is an unsupervised machine 

learning technique in which one has to generate partitions 

without any a priori knowledge [17]. The algorithm has 

been described above, the basic cons of k-means is it is 

locally optimum so depending upon our initial points the 

algorithm converges to a certain result. The whole 

clustering process after obtaining the image with RGB 

components is explained in Algorithm 1. 
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Algorithm 1. Clustering process (image[x, y, z]) 

//where x * y is the size of image and z represent the values 

of RGB in each pixel. 

Step 1 Enhance the image by increasing the 

brightness, colour and contrast by 1.25, 

1.2, and 1.5 respectively taking 1 as 

original value. 

Step 2 Set k=4 as the number of division we need 

to cluster. 

Step 3 Set initial centroid in init_centroid [k, z]. 

// The dimension of init_centroid is k*z 

matrix as “k” for number of cluster and “z” 

represent the three feature which given 

RGB value in each pixel. 

Step 4 Set the number of iteration in n_int equal 

to an integer, as the higher iteration will 

result in increased complexity so n_int set 

to 1. 

Step 5 Get final_centroids[k, z] and 

cluster_assignment[x, y, 1]  by running the 

K-means algorithm k-means(image, 

init_centroid, n_iter). 

// the dimension of cluster assignment is 

x*y*1 which gives the cluster value 

between 0 to k-1 for each pixel in the 

image. 

Step 6 Convert the final_centroids from float type 

to integer type representation. 

Step 7 Get the original clustered image using the 

algorithm 

get_image_assigned_cluster(image, 

final_centroids,cluster_assignment) into 

org_clust_img[x, y, z]. 

Step 8 Change the final_centroids to false colour 

centroid color_centroids to get colour 

cluster image for proper visualisation of 

the vegetation. 

Step 9 Get the colour clustered image using the 

algorithm 

get_image_assigned_cluster(image,color_

centroids, cluster_assignment) into 

color_clust_img[x,y,z]. 

Step 10 Save the color_clust_img and the 

org_clust_img. 

 
3.3 K-means specification 

 

 

 

Now we have the data set to apply k-means algorithm but 

we need to access convergence to tell if the k-means 

algorithm is converging. We can look at the cluster 

assignments and see if they stabilize over time. We'll be 

running the algorithm until the cluster assignments stop 

changing or produce very little change. To be extra safe, 

and to assess the clustering performance, we'll be looking 

at an additional criterion: the sum of all squared distances 

between data points and centroids which is given in 

equation (1): 

  

       J(V) = ∑ ∑ ((||xi −  µj||ci

j=1
c
i=1 ))        (1) 

 

Where, ‘||xi - µj||’ is the Euclidean distance 

between xi and µj. ‘c’ is the number of cluster centres and 

‘ci’ is the number of data points in ith cluster. The µj 

cluster centroid can be calculated by equation (2). 

For every cluster j, set   

      𝜇j =
∑ 1{𝑐(𝑖)=𝑗}𝑥(𝑖)𝑚

𝑖=1

∑ 1{𝑐(𝑖)=𝑗}𝑚
𝑖=1

         (2) 

Where, ‘𝑐(𝑖)’ represents the number of data points 

in ith cluster.  

 

Suppose that we have n data points (a1, b1, c1), (a2, b2, c2), 

(a3, b3, c3), …, (an, bn, cn), then the centroid is calculated 

as (Σ ai  ∕ n, Σ bi ∕ n ,Σ ci  ∕n). 

 

The smaller the distances, the more homogeneous the 

clusters are. In other words, we'd like to have "tight" 

clusters. This is called heterogeneity. As we already know 

K-means converges local optimum we need to find the 

correct initial centroids   for right clustering process. One 

effective way to counter this tendency is to use a smart 

initialization.  

   

This method tries to spread out the initial set of centroids 

so that they are not too close together. It is known to 

improve the quality of local optima and lower average 

runtime.  

 

In general, we should run k-means at least a few times with 

different initializations and then return the run resulting in 

the lowest heterogeneity. After many runs of k-means and 

accessing the heterogeneity we found the initial centroid 

parameter for clustering shown below in Table 1. 

  

 The next step is to perform K-means with obtained linear 

data set and initial centroid. The K-means algorithm 

executes two main steps. First is assign closest cluster 

centre for every data point “i” and for every cluster j. 

Sometimes this called “Map” step which is given equation 

(3). For every i, set 

      𝑐(𝑖) = arg min
𝑗

‖𝑥(𝑖) − 𝜇j ‖ 2      (3) 

Second is to recalculate the mean of each cluster, fitfully 

studied as “Reduce” step which is given in equation (2). 

K-means algorithm takes another parameter which is 

maximum iteration as we have re-run our K-means 

algorithm 

 

Table 1.  Initial centroid for cluster to obtained after series of runs of K-means. 

Cluster Number Red Green Blue 
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Cluster 1 31 64 41 

Cluster 2 192 187 190 

Cluster 3 133 124 131 

Cluster 4 81 86 83 

 

many times to get initial centroids so we will run the K-

means map-reduce only once so as to reduce the 

complexity of clustering of data points, optimising our 

unsupervised machine learning clustering process, time 

complexity  in comparison with supervised machine 

learning classification process. The K-means returns two 

parameters first is the final centroids and second, cluster 

label for each data point between [1....K] where k is 

number of  cluster. The Algorithm 2 formulates the k-

means function step by step.  

Algorithm 2:  K-means (image[x, y, z], init_centroid [k, z], n_iter) 

Step 1 Set centroids [k, z] equal to init_centroid [[k, z],1] equal to None and itr = 0. 

Step 2 Repeat step 3 to 6 until 𝑖𝑡𝑟 ≤ 𝑛_𝑖𝑡𝑟 

Step 3 Make cluster assignments using nearest centroids and set it in cluster_assignment. 

Step 4 Compute a new centroid for each of the k clusters, averaging all data points assigned to that cluster and set it in 

centroids. 

Step 5 Check for convergence: if none of the assignments changed move to step 7. 

Step 6 Increment the iteration by 1. 

Step 7 Return centroids [k, z], cluster_assignment[x, y, 1]. 

3.4 Clustering and Visualization  

So, now we have to assign colour to each data point so as 

to generate better intuition about the land covering. As the 

colour components are 8-bit integer each it has value   

from 0-255 but according to K-means algorithm it may 

produce in between float values so we need to convert all 

centroids into integer values. As cluster label give the 

clusters which any data point belong after clustering we 

can reassign the data points RGB components value to 

cluster centre. 

 Then we can recast the data points back into the image so 

to get the notion of how each of the pixels belongs to a 

cluster. Thus by changing the centroid we can 

simultaneously change the colour of each cluster. Table 2 

represent the colour code for each cluster. Algorithm 3 is 

showing how the normal image is converted to clustered 

image. Now because as we have chosen max-iteration in 

K-Means algorithm to very less and the initial centroid 

after lots of iteration we are notably sure about what each 

cluster centre do represent. After running many iterations 

of K-means algorithm with different initialisation we 

found what each cluster represents, the results are shown 

in Table 2. 

  

Algorithm 3: Get_image_assigned_cluster(image [x, y, z], centroids[k, z], cluster_assignment [x, y, 1]) 

//where image has dimension x, y, z and centroids having dimension k and z and cluster_assignment has same number elements 

as original image dimension but only one component for each pixel which is cluster value 

Step 1 Initialize image_copy[x, y, z] to None. 

Step 2 for i in range of x do 

Step 3 for j in range y do 

Step 4 Set image_copy [i, j] = centroids [cluster_assignment [i, j, 1]]. 

Step 5 end for in step 3. 

Step 6 end for in step 2. 

Step 7 Return image _copy. 

Table 2.  Colour component for each cluster to superimpose RGB component. 

Cluster Centroid RGB components Type it represent Color Code 

centroids[0]=[50,240,100] #Vegitation/Forest  

centroids[1]=[255,255,255] #Buildings/Houses  

centroids[2]=[37,120,120] #Unused lands  
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centroids[3]=[0,30,30] #Unclassified_objects/ 

(Shadows)/Barren lands /Water bodies 

 

Now using the above algorithms we can show the 

clustered image (depicted in Fig. 4). We can also visualise 

from Fig. 5 the superimposed RGB components of the 

original centroids with our own stipulated cluster colours. 

The two images have shown to visualise the effect of 

clustering in original image. 

 

Figure. 4. Comparison between the original image and clustered image using original centre

Figure. 5. Comparison between the original image and the clustered image after superimposing the RGB component defined    

internally. 

 
3.5 Area Estimation & Results 

 

 

 

The next phase is to estimate the area under each cluster 

so as to predict the area each type of land cover in square 

kilometre. For acquiring image we have specified central 

coordinate so we need to find the corners value of 

longitude and latitude to estimate the area under the map 

image obtained from Google Map. We have used 

Mercator projection for calculating the corners of the 
image. The Mercator projection was invented by Gerardus 

Mercator, a Flemish mapmaker.  His name is a Latinized 

version of Gerhard Kramer [7, 8].  As we have also 

truncated the lower image portion for removing Google 

logo. We recalculated the corners, so as to calculate the 

distance between sides which in turn give area. After 

getting the total area we create a histogram on number of 

cluster and number of corresponding pixels belongs to 

each cluster in the cluster image. We normalized the 

histogram to have total portion of pixels equal to unity, 

then multiplied each proportion of histogram to get total 

area under each cluster or corresponding type of 

vegetation.  
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The Algorithm 4 explains the whole process step by step. 

 

Algorithm 4: Calculate Area and Report (image[x, y, z], map_point [2], cluster_assignment[x, y, 1], color_centroids [k, z]) 

 

//where x and y is the size of image and z represent the values of RGB. 

 

//map_point represents the longitudinal and latitudinal value of the centre point of the   downloaded map image 

 

// cluster_assignment[x, y, 1] and color_centroids [k, z] are the cluster value of each pixel, and colour value of centroids as 

defined in Algorithm 1. 

 

Step 1 Calculate the longitudinal and latitudinal point of the corners given the central point using Mercator 

projection method and given zoom level =15 and set it into map_points [4, 2]. 

// Four corners having two value latitude and longitude. 

 

Step 2 Calculate area using map_points. 

 

Step 3 Calculate normalised histogram norm_hist[k] of cluster_assignment vector. 

// as it would have value between 1 to k so histogram contain k values. 

 

Step 4 Multiply norm_hist with total area to give each type of area coverage in area_type[k]. 

 

Step 5 Relate to color_centroids [k, z] and area_type[k] to visualise the report. 

 

After getting the areas under each cluster we have used pie 

chart to reveal the area under each cluster, the Figure. 6 

demonstrate the area under each type of land cover in the 

region of map which is shown in Figure. 3. 

 

Figure. 6 The area under different types of land cover. 

 

4. Conclusions & Future Scope  

The model we have created can predict the land cover 

estimation by downloading maps from Google Maps 

given the longitude and latitude of any specific region 

center. Then performing unsupervised machine learning 

(K-means) on that color image with specified initial 

centroids and number of cluster set to 4, to give a clustered 

image which depict the land cover in that region. The 

model uses K-means algorithm whose complexity is much 
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lesser than other clustering algorithms like Gaussian 

Mixture Model so it is quite fast to operate and get result. 

The model is also useful as it does not need to set any 

training data to predict the land cover which in case many 

traditional land cover estimation classification technique 

needed to specify. So, this model can provide useful 

information to the groups who are not much familiar with 

supervised machine learning techniques. 

The future works of this model mainly consist of two 

criteria. First is improving the accuracy of predicting the 

area covered by using more sophisticated unsupervised 

machine learning algorithms like Guassian Mixture Model 

and at the same time reduce the complexity of the whole 

process by predicting more appropriate initial centroids 

and covariance. The second is to increase the ability to 

recognize more types of land cover than these basic 4 –

types which can be done if we have more information or 

bands available (other than RGB component) in image 

data thus by improving significance of the model to next 

level. 
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