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ABSTRACT:

Quartz (Si0,) abundance in rock is an important indicator of mineralization in many metal deposits and quartz detection has a great
role in mineral exploration. The present study identified the quartz contained rocks in Amarkantak region, India applying thermal
infrared bands (bands 10-14) of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image. After
atmospheric correction, principal component analysis technique was applied on the TIR bands and the resulting principal component
images were analyzed. The three optimal principal components were selected based on the spectral interaction strength and the
eigenvalues of each band of the ASTER data. The result presented that extrusive igneous rock and carbonate sedimentary rocks are
quartz-poor while sedimentary rocks made up of organic particles and sandstone is quartz-rich.

1. INTRODUCTION

Hyperspectral and multispectral satellite images were frequently
applied for extracting lithological and mineralogical
information (vanderMeer et al. 2012; Pour and Hashim 2012).
Visible-near-infrared (VNIR) and short wave infrared (SWIR)
regions of electromagnetic spectrum is not so useful for
detecting quartz and feldspar minerals (Lyon, 1972; Salisbury
and Walter, 1989) whereas thermal infrared (TIR) region is
extremely useful for the delineation of the aforesaid minerals
because of the vibration of Si—O bonds (Farmer, 1974; Kahle,
1976; Lyon, 1972). Lithological mapping is an important task
of geological exploration. Remote sensing techniques plays a
significant role in lithological and minerological mapping. TIR
region are less studied than VNIR or SWIR regions for mineral
exploration due to the less availability of satellite sensors in TIR
domain. Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) data is considered as one of
the most effective data for lithological and mineralogical
mapping due to its high sensitivity to rock mineral elements
(alunite, kaolinite, calcite, dolomite, chlorite, talc, muscovite,
etc.) and low-cost (Tornabeen et al. 2005; Gad and Kusky
2007). ASTER data has three VNIR bands, six SWIR bands,
and five TIR bands. Based on the analysis of ASTER TIR band
based emissivity spectra of rocks, Ninomiya et al. (2005) have
proposed few popular spectral indices for the mapping of
quartz, carbonate, and mafic rocks using ASTER data. Many
important geological units were also mapped using TIR bands
of ASTER data using emissivity as a parameter (Bertoldi et al.,
2011; Ding et al., 2014; Matar and Bamousa, 2013; Ninomiya
et al., 2005; Rowan et al., 2005). However, mineralogically
sensitive indices often derived significant results in terms of
delineating mineralogical contrast by highlighting variations in
thermal emissivity of terrain elements recorded in selected
numbers of bands. The term granitoids include family of felsic
igneous rocks viz. alkali granites, granites, granodiorites,
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tonalities; which are essentially constituted with quartz, varied
proportions of alkali feldspar and plagioclase feldspar (Bose,
1997). Alkali feldspar rich granite is characterised with high
ratio of alkali feldspar to plagioclase feldspar content whereas
the ratio is progressively lower in granodiorite and tonalite
(Bose, 1997). Mafic mineral content (biotite, hornblende etc.) is
low in granitoids in general. However, mafic mineral
abundances are also progressively higher as we go from granite
to tonalite in granite—granodiorite—tonalite sequence.

In this study, ASTER TIR bands (bands 10-14) were applied to
quartz-rich and quartz-poor rocks mapping in Amarkantak using
principal component analysis (PCA) technique.

2. MATERIALS AND METHODS

ASTER image of 23 February 2003 was used in this study (Fig.
1). Only the ASTER thermal infrared (TIR) bands were used in
this study because within 8—14um, quartz minerals exhibit
strong vibrational absorption feature spectrally (Pour and
Hashim 2012a, 2012b). Specification of ASTER thermal bands
was provided in Table 1. We analyzed resampled (i.ce.,
resampled to the bandwidth of ASTER thermal bands)
laboratory derived emissivity spectra of quartz, orthoclase, and
plagioclase minerals; three key minerals of granitoids The
lithologic and mineral map prepared from satellite data were
widely used to for the visual validation of the rock element
identification. To differentiate between vegetation area and
outcrop areas, normalized difference vegetation index (NDVI)
was used (Fig. 2). The vegetation and cloud affected areas were
masked from the TIR bands and only the outcrop area was
subjected to PCA.
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Figure 2. NDVI image

It was observed that quartz was characterized with emissivity
minima at band 12 (for quartz) with the relative high in
emissivity in band 10 and band 13 of ASTER bands. Feldspar is
characterized with lower emissivity (for both plagioclase and
orthoclase feldspar but the emissivity minima were more intense
for orthoclase feldspar or K-feldspar) in band 11 than band 10
of ASTER thermal bands (Fig. 3). It is also known that mafic
minerals and rocks are known for their emissivity minima in

band 13 of ASTER sensor than band 12 and band 14 (Son et al.,
2014). It was observed that emissivity spectra of quartz and
feldspar had a reverse trend in band 11 and band 12 (Son et al.,
2014). Therefore, emissivity minima of feldspar would be
nullified by the high emissivity of quartz in band 11 with
respect to band 12 if quartz and feldspar are present in the same
rock. Based on the above observations on emissivity spectra of
constituent minerals of granitoids and their respective image
spectra, the following indices were derived to delineate quartz,
feldspar and mafic mineral variation in granitoids based on the
processing of ASTER bands.

ASTER Sen | Band | Spectra | Spatia | Radio
granule sor | numb |1 1 metric
D typ | er wavele | resolu | resoluti
e ngth tion on
(um) | (m)
ASTBO03 | TIR | 10 8.125- | 90 12 bits
0223051 8.475
412 TIR | 11 8.475- | 90 12 bits
8.825
Date:23 TIR | 12 8.925- | 90 12 bits
Feb 2003 9.275
TIR | 13 10.25- 90 12 bits
10.95
TIR | 14 10.95- | 90 12 bits
11.65

Table 1. Specification of ASTER TIR bands
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Figure 3. Spectral ASTER TIR bands in the wavelength of the
electromagnetic spectrum (Source: NASA Jet Propulsion
Laboratory)

Quartz has no such spectral absorption features in the visible
and near infrared or shortwave infrared spectrum but have a
very powerful molecular absorption features in TIR (8—10um)
bands. We used PCA transformation of the five ASTER TIR
bands (bands 10-14) to generate five different principal
components (PC1, PC2, PC3, PC4, and PC5). The eigenvalues
were analyzed to select the most significant three PCs
components for identifying quartz richness (Pour and Hashim
2011a). The three selected PCs (PC1, PC3, and PC4) were used
to generate RGB false colour composite (FCC) of the study area
(Fig. 4). After visual examination of the FCC relative to the
existing map, the PCs composite image was classified into four
different rock types [quartz concentration (quartz-rich and
quartz-poor), quartz-rich sedimentary rock, quartz-poor igneous
rock, and quartz-poor limestone)] based on quartz richness
using and maximum likelihood supervised classification
method. Finally, the accuracy of the classified image was
assessed through error matrix.
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Figure 5. QRI image

ASTER TIR bands are quite effective to detect silicate and
carbonate rocks, while bands 10 and 12 are particularly
effective for detecting quartz absorption features and band 14
records high emissivity (Pour and Hashim 2012b; Surip et al.
2015). The positive eigenvalues reflect that the band plays a

major role in the variation of a particular component while
negative eigenvalues reflect a minor role to the variation of the
derived component. The quartz content is reflected by thermal
bands 10 and 12 of ASTER data due to high absorption
property and by thermal band 14 due to high emissivity. It
means that the eigenvalues of bands 10 and 12 have positive
signs while band 14 is negative (Pour and Hashim 2011b).
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Figure 6. FRI image

Quartz rock index (QRI), felsdar rock index (FRI), and Mafic
rock index (MRI), propounded by Guha and Kumar (2016)
were applied in this study. It was observed that silica variation
in alkali-granite and granite was enhanced in the QRI image.
Quartz rich alkali granite appeared brighter in QRI image (Fig.
5). This quartz rock also appeared as bright green colour in
PCA image. This is due to the fact quartz and feldspar are
characterized with contrasting emissivity features in these
bands. Therefore, it was difficult to indicate quartz enrichment
in rocks which were rich in feldspar and quartz using band 11
and band 12. In FRI image, feldspar enriched alkali granite was
brighter than darker granitic patch as alkali granite was
relatively rich in alkali feldspar (Fig. 6). MRI images
highlighted the mafic rocks in the study area (Fig. 7).
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Figure 7. MRI image

Here, PC1, PC3, and PC4 satisfied the enabling conditions to
identify quartz-rich and quartz-poor rocks. Results present that,
ASTER TIR bands have the high capability to differentiate
between different categories of rock and their quartz content
using PCA spectral transformation. The results may have spatial
and seasonal variations due to the presence or absence of the
controlling factors of mechanical or chemical weathering.

Eigenvector PCl1 PC2 PC3 PC4 | PC5
Band10 0.39 -0.31 | -0.78 | 0.38 | -0.01
Bandl1 0.43 -0.31 | -0.06 | -0.82 | 0.21
Band12 0.48 -0.54 | 0.61 0.37 | -0.07
Band13 0.49 045 10.02 |-0.16 | -0.73
Band14 0.48 056 | 0.10 | 0.19 | 0.64
% of variance 99.49 | 0.34 0.08 0.04 0.03

Table 2. PCA for five ASTER TIR bands

4. CONCLUSION

ASTER TIR bands may be used successfully to detect different
rocks and their quartz content richness. Guha's QRI image was
very effective in identifying the quartz content in rocks
alongwith the PCA image. FRI and MRI images were also
supported a lot to detect the feldspar and mafic rocks,
respectively which can be regarded as useful tool in signifying
the quartz content of rocks. These lithological indices are
important as it could delineate variation in the content of quartz,
feldspar and mafic minerals in granitoids. Generally, it may be
stated that quartz mineral was not uniformly presented among
the different rocks. The results were significantly comparable to
the published geological map.
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