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ABSTRACT: 

 

Mapping of the crop using satellite images is a challenging task due to complexities within field, and having the similar spectral 

properties with other crops in the region. Recently launched Sentinel-2 satellite has thirteen spectral bands, fast revisit time and 

resolution at three different level (10m, 20m, 60m), as well as the free availability of data, makes it a good choice for vegetation 

mapping. This study aims to classify crop using single date Sentinel-2 imagery in the Roorkee, district Haridwar, Uttarakhand, India. 

Classification is performed by using two most popular and efficient machine learning algorithms: Random Forest (RF) and Support 

Vector Machine (SVM). In this study, four spectral bands, i.e., Near Infrared, Red, Green, and Blue of Sentinel-2 satellite are stacked 

for the classification. Results show that overall accuracy of the classification achieved by RF and SVM using Sentinel-2 imagery are 

84.22% and 81.85% respectively. This study demonstrates that both classifiers performed well by setting an optimal value of tuning 

parameters, but RF achieved 2.37% higher overall accuracy over SVM.  Analysis of the results states that the class specific accuracies 

of High-Density Forest attain the highest accuracy whereas Fodder class reports the lowest accuracy.  Fodder achieve lowest accuracy 

because there is an intermixing of pixels among Wheat and Fodder crops. In this study, it is found that RF shows better potential in 

classifying crops more accurately in comparison to SVM and Sentinel-2 has great potential in vegetation mapping domain in remote 

sensing. 

  

 

 

1. INTRODUCTION 

Crop mapping plays an important role in sustainable agricultural 

practice and to deal with the environmental challenges due to 

climate change and other driving forces. Classification of crops 

provides essential information that is useful in a various decision 

making process for managing agricultural resources. Satellite 

image processing can provide timely and accurate information 

on crop type and reliable estimation of crop production using 

advance classification techniques. Selection of satellite imagery 

for crop classification depends on the factors like image 

availability, associated cost, diversity level in crop types, and 

extensiveness of the study area (Zheng, 2015). Freely available 

remote sensing datasets  such as MODIS and Landsat  have been 

utilized in many studies for vegetation mapping (Zheng, 2015; 

Waldner, 2015). Mix-pixel is a well-known problem that 

frequently occurs for MODIS because of low spatial resolution 

(250–500 m). However, it can be expected to achieve more 

accurate results by using 30m Landsat data as compared to 

MODIS specifically for the region characterized by small 

agricultural fields. The European Satellite Sentinel-2A provides 

multispectral data at medium spatial resolution and fair revisit 

time (5-day) provides an opportunity to address the problem 

arised due to coarse spatial resolution (Drusch, 2012). The 

Sentinel-2 satellite Multi-Spectral Instrument (MSI) has thirteen 

spectral bands with three different spatial resolutions (Table 1). 

Recently launched Sentinel-2 data have been used for various 

remote sensing applications (Whyte, 2018; Sonobe, 2017;  

Korhonen, 2017; Belgiu, 2018; Wang, 2018; Wang, 2016; 

Hawryło, 2018). 

                                                                                                 

The potential of features from Sentinel-1, and 2 have been 

accessed by Sonobe (2017), and this work highlighted that band 

4 (Red) of Sentinel-2 and VV polarization data of Sentinel-1 

have highest importance for crop classification. A comparison is 

performed between Landsat-8 and Sentinel-2 by Korhonen 

(2017) and showed that Sentinel-2 gives marginally better results 

to estimate boreal forest canopy cover and leaf area index (LAI).  

Zheng (2015) utilize the SVM model effectively for crop type 

identification using time-series Landsat Normalized Difference 

Vegetation Index (NDVI) data. Results of this study 

demonstrated that the intelligent selection achieved higher 

classification accuracy as compared to the stratified random 

approach. Shao (2012) compared neural networks (NN), 

classification and regression trees (CART) and SVM for crop 

type mapping using MODIS NDVI data. The results of this 

comparison showed that SVM achieved higher accuracy of 

classification over NN and CART.  The red edge bands of 

sentinel-2 provide additional information content that may be 

useful for monitoring canopy properties (Korhonen, 2017). Man 

(2018) formed an ensemble of five supervised methods and 

compared with Extreme gradient boosting (Xgboost), SVM, 

logistic regression and multilayer perceptron for land cover 

classification by using Landsat-8 (time-series data), and results 

showed that ensemble gives the highest accuracy followed by 

Xgboost. Son (2017) used multi-temporal Sentinel-1A satellite 

data to classify crops using RF and SVM model and results 

demonstrated the superiority of RF over SVM classifier.  Whyte 

(2018) used Sentinel-1, and 2 data for wetland mapping in Object 

Based Image Analysis (OBIA) framework and found that RF 

outperforms SVM marginally but consistently throughout. 

Rodriguez-Galiano (2012) evaluated the effectiveness of RF 

classifiers using Landsat-5 data for complex land cover and land 

use categories and results showed that RF achieved high 
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classification accuracy and it work well for small training data as 

well as robust to the noise.  Li (2016) performed a comparison of 

different classification techniques in the object based framework 

and concluded that RF and SVM both methods are highly 

suitable in Geographic Object Based Image Analysis (GOBIA) 

for agricultural environment also (Quintano, 2018).  

 

Given the above background, this study aims to explore the 

potential of Sentinel-2 satellite imagery for crop classification by 

implementing two powerful machine leaning algorithms (RF and 

SVM). This study evaluates the effectiveness of RF and SVM 

Machine learning algorithms in discriminating various crop in 

Roorkee, Uttarakhand, India. This paper is organised as follows: 

Section 2 presents the description of the study areas and the 

satellite data used; Section 3 presents methodology and 

classifiers description; Section 4 presents the results and 

discussion; Section 5 presents the conclusion.     

 

 

2. STUDY AREA AND DATA 

In this study, Sentinel-2 image acquired on 19 February 2018 in 

the growing season has been used. The study area is situated at 

the foothill of Himalaya and agriculture play a major role in the 

economy of the area. Four bands (NIR, Red, Green, Blue) of 

Sentinel-2 at 10m resolutions have been utilized for the 

classification purpose. The total area covered is 1049.31 km2. 

The minimum bounding box coordinates are 77°43'37.826"E, 

30°14'51.009"N at the upper left corner and 78°1'15.653"E, 

29°39'45.859"N at lower right. Sentenel-2 satellite has 13 

spectral bands, details of these bands such as names, spatial 

resolution, along with their corresponding wavelength is shown 

in Table 1.  

 

Band 

number 

Band Name Spatial 

Resolution 

Central 

wavelength 

(nm) 

B1 Coastal/aerosols 60 443 

B2 Visible Blue 10 490 

B3 Visible Green 10 560 

B4 Visible Red 10 665 

B5 Red edge 1 20 705 

B6 Red edge 2 20 740 

B7 Red edge 3 20 783 

B8 NIR 10 842 

B8a Narrow NIR 20 865 

B9 Water vapour 60 945 

B10 SWIR Cirrus 60 1375 

B11 SWIR 1 20 1610 

B12 SWIR 2 20 2190 

Table 1. Details of Sentinel-2 multispectral bands 

 

The selected area is divided into the eleven Land Use Land Cover 

(LULC) classes: High-density Forest, Low-Density Forest, 

Sandy area, Water, Fallow land, Built-up, Orchard, Wheat, 

Sugarcane, Fodder and Other crops. Here, Orchard signifies the 

class of planted trees in forms of the garden of fruits like mangos, 

guavas, and trees planted as field parcel as well as on the edges 

of the fields. The class named as ‘Other crops’ consists of the 

double crop like Trees and Wheat, Mustard and Wheat, vegetable 

(Radish, Cabbage, Cauliflower). The major crop in the selected 

region is Wheat and Sugarcane. Fodder are also important crops 

that are cultivated primarily for animal feed. False colour 

composite (FCC) of the study area using sentinel imagery is 

shown in Figure 1, Where NIR (band 8), Red (band 4), Green 

(band 3) is projected in red green and blue colour respectively. 

 

 

Figure 1. False colour composite (FCC) of the study area using 

Sentinel-2 image. 

 

 

3. METHODOLGY 

The proposed methodology for crop classification is shown in 

Figure 2. A single date Sentinel-2 imagery has been taken and 

individual bands of 10m spatial resolution NIR, R, G and B are 

stacked together to create a multispectral image cube. Once the 

stacked image is generated a single pixel contains 4-dimensional 

vector containing spectral values corresponding the considered 

bands. Reference dataset has been created by fields survey where 

ground truth values has been taken using Global Positioning 

system (GPS) instrument, apart from this some of the sample are 

also taken with the help of high resolution Google earth images. 

Now, created reference dataset has been splitted into training and 

testing subset where 70% of data is taken for training and rest 

30% is taken for testing. Two models namely RF and SVM have 

been trained using training dataset.  

 

 

Figure 2. Flow chart of adopted methodology 
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RF and SVM both are popular, supervised machine learning 

methods. There is some user defined parameters that have to 

optimized to attain maximum accuracy. Once the models are 

trained, various classes of input image are predicted using 

optimal parameters achieved after fine-tuning, hence classified 

maps of study areas are generated. The accuracy of the models is 

tested on testing dataset. In this work, for the assessment of class 

specific accuracy, F1-score has been used. The F1-score has been 

utilized for class specific accuracy assessment, it is the harmonic 

mean between precision (p) and recall (r) for each class i. F1-

score is computed by following equation, 

 

 (𝐹1)𝑖 =
2𝑝𝑖𝑟𝑖

(𝑝𝑖+𝑟𝑖)
                                       (1)         

   

3.1 Random Forest Classifier 

The Random Forest (RF) (Breiman, 2001) is a successful 

ensemble classifiers developed based on the concept of learning 

strategy. RF is a non-parametric machine learning algorithm, 

produces high classification accuracy as well as capable of 

determining the variable importance. RF is an ensemble method 

shown excellent results for a number of remote sensing 

applications (Sonobe, 2017; Yin, 2018; Chan 2012; Chan, 2008; 

Hawryło, 2018). Ensemble method consists a number of 

classifiers whose response are combined to get final prediction.  

Random forest uses randomly with replacement policy to 

generate new training dataset. This policy reduces the variance 

and improves the accuracy of classification. RF algorithm select 

random subset of variables or predictors at each split (Liaw, 

2002). Majority voting scheme is used to determine the output of 

the classification process. RF algorithm has two tuning 

parameters: the number of trees used to form ensemble (ntree) 

and   another parameter is mtry that signifies the number of 

variables/predictors used to split the nodes. However, the best 

split for a node plays an important role to increase the accuracy 

of the classification (Ishwaran, 2007; Ishwaran, 2008; Sonobe, 

2017). RF algorithm has fallowing benefits in context to remote 

sensing applications (Rodriguez-Galiano, 2012): 

 RF is capable to run on large data sets. 

 This algorithm can to handle large (thousand) numbers 

of input variables. 

 RF can estimate the variable’s importance in the 

classification procedure. 

 RF is robust to the noise as well as outliers. 

 The computational complexity of RF is low as 

compared to other ensemble method (e.g., boosting). 

 

3.2 Support Vector Machine (SVM) 

SVM is a supervised, non-parametric statistical learning 

technique shown its usefulness to solve a huge number of 

classification problems in remote sensing (Foody, 2004; Pal, 

2005; Sonobe, 2017; Hawryło, 2018; Waldner, 2015). In the last 

decade, SVM gained more popularity for various remote sensing 

applications (Mountrakiset, 2011). SVM algorithm maps the 

training data into higher dimensional space and seeks the optimal 

hyperplane to distinguish different classes or category. This 

algorithm partitions the data using maximum separation margins 

(Vapnik 1995). This machine learning algorithm uses training 

data samples that lie on the boundaries of class distribution 

known as support vectors while the middle of the margin is 

optimal hyperplane. SVM may achieve high accuracy of 

classification by utilizing a small set of training samples (Zheng, 

2015; Foody, 2004; Shao, 2012). However, this algorithm can 

also project low dimensional features into higher dimensional 

feature space. The projection to the higher dimensional space is 

termed as the kernel trick (Maxwell, 2018). Various kernels 

(Kavzoglu, 2009) may be used for the implementation of the 

SVM model, and different kernel has a different set of user 

defined parameters (Maxwell, 2018).  For the implementation of 

SVM model for multi-class classification, Radial Basis Function 

(RBF) kernel has been used. It has two parameters: the 

regularization parameter and the kernel bandwidth denoted by C 

γ respectively.  High value of C lead to high penalties for the 

inseparable points that may result in overfitting, on the other 

hand low value of C may lead to under-fitting (Sonobe, 2017) 

and γ controls the shape of the hyperplane (Ghosh, 2015). A 

mesh grid search strategy has been utilized to find out optimal 

values of C and γ parameters. 

 

 

4. RESULTS AND DISCUSSION 

In this work, Sentinel-2 image acquired in the growing season, 

four bands at 10m resolutions are stacked and the resultant 

image, has been used for the crop classification. Stratified 

random Sampling with 10-fold cross validation scheme has been 

adopted. Partitioned training and testing pixels are mutually 

exclusive.  Both classifiers (RF and SVM) are implemented in R 

open source language. In remote sensing, the accuracy of LULC 

map is one of the most valuable indicators to determine the 

quality of the produced map, fitness for a specific application as 

well as an understanding of error and its implications (Foody, 

2002). In Literature, overall accuracy derived from the confusion 

matrix and kappa coefficient have been widely used for 

evaluation purpose. In this work, for the performance evaluation 

overall accuracy, F1-score, and kappa coefficient have been 

computed by setting the optimal value of tuning parameters for 

both the classifiers. Tuning parameters of SVM classifiers are 

penalty parameter (C) and Gamma (γ); highest classification 

accuracy may be achieved by setting the optimal value of these 

tuning parameters. Values for regularization parameter is tested 

in the range of 20 to 28 and Gamma ranges from 0 to 2 at an 

interval of 0.1. The optimized value of penalty parameter (C) is 

estimated as 64 and Gamma (γ), was set to 1. 

 

Dataset RF SVM 

Overall accuracy (%) 84.22 81.85 

Kappa (%) 83.05 79.13 

Table 2. overall accuracy and kappa coefficient by RF and SVM 

 

Accuracy assessment shows that SVM achieved an overall 

accuracy and kappa coefficient of 81.85%, and 79.13% 

respectively (Table 2) and classified image is shown in Figure 4. 

To achieve the maximum classification accuracy for RF model, 

parameters of the algorithm must have optimal values. There are 

two parameters, first parameter is ntree that represents the 

number of trees and second one is mtry represents the number of 

predictors or variables. High value of ntree parameters leads to 

high computational cost. For RF model the optimal value of ntree 

was estimated as 350, and another parameter mtry was set to 1. 

 

Feature importance plays an important role to understand the 

contribution of an individual feature in the classification task. 

Feature importance is computed for both the classifiers and result 

is shown in Figure 3.  For RF classifier NIR band contributes 

highest importance followed by blue band while Green band 

show no importance at all and blue band shows very low 

importance. On the other hand, SVM shows similar trend for NIR 

band (highest importance) while in contrast RF, Red band is 

second important feature here. Blue and green band has almost 

no importance in SVM model.  
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Figure 3 shows feature importance for RF and SVM 

 

This work resulted in an 84.22% overall accuracy, and 83.05% 

kappa coefficient (Table 2) for the RF model and classified 

image is shown in Figure 5.  RF and SVM model both performed 

well for the crop classification but RF achieved better results as 

a rise of (+2.37%) over SVM model. For the class specific 

accuracy, High Density Forest achieved the highest accuracy of 

92.93% and 90.66 by RF and SVM respectively (Table 3). 

 

Class Name RF (%) SVM (%) 

High Density Forest 92.93 90.66 

Low Density Forest 85.05 82.6 

Orchard 75.37 74.46 

Sandy area 84.47 81.76 

Water 89.76 89.32 

Built-up 86.47 83.53 

Fallow land 90.48 87.99 

Wheat 82.11 78.55 

Sugarcane 84.76 81.77 

Fodder 61.22 59.21 

Other crops 83.24 80.99 

Table 3. shows class specific accuracy (F1- score) by RF and 

SVM 

 

 

Figure 4 classified image by SVM. 

 

It has been observed that High-Density Forest class achieved 

more accuracy over Low-Density Forest, this is because Low-

Density Forest is misclassified as orchard and vice versa. This 

intermixing of pixels lower down the accuracy of both the 

classes, i.e., Orchard and Low Density Forest. But the more 

negative effect is observed in Orchard class. Although both 

classifiers result almost similar (the difference is less than <1%) 

accuracy for the Orchard while RF reports more accurate Low 

Density Forest.  

 

 

Figure 5 Classified image by RF 

 

Fodder is crop type that achieved the lowest accuracy by both the 

classifiers, 61.22% by RF and 59.21% for SVM model (Table 3). 

Wheat pixels are misclassified as Fodder as well as Fodder is 

misclassified as Wheat due to the spectral similarity of both the 

crops. While the RF classifier achieved an accuracy of 82.11% 

for Wheat crop which is 3.56% higher than SVM. Similar trend 

has been observed for the Sugarcane crop. RF classifier gives 

84.76% accuracy for Sugarcane which is 2.99% higher as 

compared to accuracy 81.76% produced by SVM classifier. It 

has also noticed that there is intermixing of pixels among 

Sugarcane Orchard and Low-Density Forest. This leads to 

decrease in accuracy for all these classes, but the most adverse 

effect is observed on the orchard, the resultant accuracy of 

orchard is less than 80% by both the classifiers. Similarly, for the 

Other crop class RF (83.24%) produces better results over SVM 

(80.99%). However, for some classes like Water and Orchard, 

both classifier shows almost same accuracy. 

 

 

5. CONCLUSIONS 

This study aims to classify crop type using single date Sentinel-

2 imagery using RF and SVM classifiers.  In order to achieve 

more accurate results tuning parameters of the classifiers are set 

to optimal values. In this study only four bands are considered 

and feature importance is computed for both the classifiers. 

Feature importance computation identifies that NIR band has 

highest importance for RF as well for SVM model. Results of the 

implementation demonstrate that RF classifier outperforms the 

SVM classifier. As the class specific accuracies are concerned 

some classes like orchard and water shown the similar accuracy 
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by both classifiers or minor improvement by using RF classifier 

while rest of the classes showed an improvement by using RF 

over SVM.  Results of this work shown that Sentinel-2 has great 

potential for crop classification and more accurate results 

produced by RF classifier. 
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