
EXPOSING AND PROVIDING ACCESS TO INDIAN BIORESOURCE

INFORMATION NETWORK (IBIN) SPECIES OCCURRENCE DATASET AS WEB

SERVICE USING OGC WPS STANDARD

Kapil Oberai 1, *, Mayank Jasoria 2, Sameer Saran 1

1Indian Institute of Remote Sensing, ISRO, Dehradun, India – (kapil, sameer)@iirs.gov.in

2Birla Institute of Technology and Science, Pilani, India - f2016703@pilani.bits-pilani.ac.in

Commission V, SS: Utilization of Bio-Resource National Databases

KEY WORDS: IBIN, Species Occurrence, Web Service, Open Source, WPS, Zoo-project, Asynchronous, WMS

ABSTRACT:

Species occurrence data are collected by many researchers worldwide as record of species present at a specific

time at some defined place as part of biological field investigation serving as primary or secondary dataset.

These datasets reside in separate silos across numerous distributed systems having different formats limiting its

usage to full potential. IBIN portal provides a single window for accessing myriad spatial/non-spatial data on

bioresources of the country. To promote reuse of occurrence dataset among organizations in an interoperable

format including support for integration across various platforms & programming languages, it is been exposed as

web service using OGC Web Processing Service (WPS) standard. WPS provides standardized interface for

performing online geo-processing by exposing spatial processes, algorithms and calculations thereby enabling

machine to machine communication and wider usage in various scenarios (e.g. service chaining etc.). Open

source ZOO-project is used for developing the ‘Species Search’ WPS service. WPS takes inputs as either the

species name or bounding box or shapefile defining the area of interest and returns queryable OGC complaint

Web Map Service (WMS) as output with specie(s) occurrences represented in grid (5km x 5km) format, with each

grid possessing attributes like specie(s) name, family, state, medicinal detail etc. WPS process can be invoked

asynchronously, enabling proper feedback regarding status of the job submitted. JavaScript based web client for

consuming this service has also been developed along with custom QGIS plugin to allow potential users to

access the same in GIS software for wider reusability.

* Corresponding author

1. INTRODUCTION

Species occurrence data has been collected for a long time only

as physical specimens and stored in museums as natural history.

Such data is collected by many researchers as it finds many

applications in various fields like biogeographical studies,

conservation planning, bioprospecting (Chapman, 2005),

species distribution prediction (Elith et al., 2006), estimating

magnitudes of animal movements (Stewart et al., 2018) etc. In

recent times, however, museums and other agencies have spent

considerable amounts to support the digitization of such data

into online species occurrence databases (Ball-Damerow et al.,

2017).

These databases are managed by different bodies, meaning that

they reside in various distributed networks, and each such

database has a different format for storage and retrieval of data.

Further, the data collected is usually documented and organised

in a extremely inconsistent and fragmented approach (Dubois et

al., 2013). This creates a problem as separate procedures are

required to gather the same data from different databases,

thereby limiting the use of datasets from multiple databases to

its full potential. The Indian Bioresource Information Network

(IBIN) serves as a portal which networks the otherwise

independent databases into a unified delivery system

(http://ibin.gov.in/index.php?option=com_ibin&task= about).

IBIN portal provides a single window for accessing myriad

spatial/non-spatial data on bioresources of the country. This

setup allows the data to be made available to a range of end

users at a single end-point thereby ensuring that the data is

always available in a consistent format thereby making it simple

to consume.

To promote the reuse of IBIN species occurrence dataset among

organizations in an interoperable format including support for

integration across various platforms & programming languages,

it is been exposed as web service using OGC Web Processing

Service (WPS) standard. The OGC WPS provides a

standardized interface for performing either simple or complex

geoprocessing operation/computation online via web service

from the remote host (Borges, 2015; Schut, 2007). As a result,

reusability of the data in an interoperable manner is achieved,

which is also platform-independent and can be consumed by

multiple programming languages. This also provides the power

to chain simple processes to allow for the execution of various

complex processes in a variety of different contexts.

‘Species Occurrence Search’ WPS service takes inputs as either

the species name or bounding box or shapefile defining the area

of interest and returns queryable OGC complaint

Web Map Service (WMS) as output with specie(s) occurrences

represented in grid (5km x 5km) format, with each

grid possessing attributes like specie(s) name, family, state,

medicinal detail etc. In the following section, the reader will

find the overall setup of this WPS architecture, its important

features, the design and implementation of the ‘Species

Occurrence Search WPS’ and of the JavaScript based web client

and QGIS plugin which consume this WPS and use the WMS

output to display results.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-781-2018 | © Authors 2018. CC BY 4.0 License.

781

http://ibin.gov.in/index.php?option=com_ibin&task=about

2. WEB PROCESSING SERVICE

A Web Processing Service (WPS) is a standardized interface

defined by the Open Geospatial Consortium (OGC). It is a web

service which makes it possible to execute computing processes

and retrieve metadata which describe their purpose and

functionality. The capabilities of a WPS can be retrieved using a

GetCapabilities request, details of a specific service can be

obtained using a DescribeProcess request while the processes

can be executed using an Execute request (Borges, 2015; Schut,

2007). Since the release of version 2.0.0, job control and

monitoring operations like GetStatus, GetResult and Dismiss

have also been added which are particularly useful during an

asynchronous execution.

2.1 Overall Architecture

The WPS standard forms the heart of this project. The open

source ZOO-project was used to develop the ‘Species

Occurrence Search’ WPS service.

Figure 1. The overall architecture of the Species Search WPS

Figure 1 shows the overall architecture of the Species Search

WPS. It allows searching for species occurrence using three

ways either using species name or bounding box input or using

a shapefile denoting the area of interest. WPS service is not just

one service, this is actually a simplified representation for three

services, one of which will be chained with WPS based on the

inputs. WPS service processes the inputs using which it queries

the IBIN database. Once it receives the response form the

database, it converts the received response into a format that is

accepted by MapServer (https://mapserver.org/index.html).

ZOO-project enables to write the WPS processes in languages

like Python, PHP, Java, C# and JavaScript. Here the species

search WPS service is written in Python using various Python

geospatial libraries like GDAL, OWSLib etc. ZOO-project also

provides a capability to integrate MapServer support

(http://www.zoo-project.org/). This happens in such a way that

once a WPS using MapServer support is terminated, its outputs

are passed to MapServer. Once MapServer gives the WMS

output, that output is received by WPS species search service

which makes some necessary changes to the WMS so as to

enable handling GetFeatureInfo requests. This enables user to

get the features associated with each grid (species search result)

of the output fetched from IBIN species occurrence database.

Finally, the WMS output is returned to the client which can

then be used by the client to visualize the output.

2.2 Important Features

2.2.1 Interoperability: A WPS allows the processes and

code to be delivered to organizations irrespective of underlying

program (Wehrmann et al., 2011). This ensures that the

functionality can be used by organizations in a platform-

independent manner while also giving the managing body to

make necessary changes and updates to the code without

breaking the functionality for any of the organizations.

2.2.2 Reusability: Services exposed as a WPS can be reused

by organizations in multiple applications (Wehrmann et al.,

2011). This means that the same functionality can be

incorporated into multiple applications without having to

explicitly design that functionality for each application

separately, simply by importing the WPS into the application.

2.2.3 Service Chaining: This is a workflow of services

where for each pair of services, the second service can occur

only after the first one is terminated (Meng et al., 2009). This

allows the creation of repeatable workflows and chunking of

complex tasks into simpler blocks, each handled by a different

service. Existing geospatial services like WMS or another WPS

can also be incorporated into such a service chain (Meng et al.,

2009).

2.2.4 Asynchronous execution: Processing of geospatial

data often takes a long time. This can often exceed the

maximum connection timeout range of Hyper Text Transfer

Protocol (HTTP) servers, which is what WPS relies on

(Čepický, 2008). Therefore, it is desirable to have an

asynchronous execution of the same, as it decouples the request

from the response and consequently avoids wasting and

draining client resources till the processing goes on at the server

end. (Westerholt and Resch, 2015).

Figure 2. Asynchronous execution sequence diagram of the

WPS process

Process management operations were added in WPS 2.0

(Borges, 2015). This allows the client to make an asynchronous

Execute request, monitor the status of execution via a GetStatus

request and once the execution is complete, make a GetResult

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-781-2018 | © Authors 2018. CC BY 4.0 License.

782

https://mapserver.org/index.html

request to fetch the result of execution from the WPS server.

Figure 2 shows an asynchronous execution sequence as

applicable for the Species Search WPS. The client would make

an Execute request, passing the required input as either the

name of a species or a bounding box or a shapefile defining the

area of interest, and would be notified of a JobID for the

process which has thus been initiated. The client would then

constantly ping the server with GetStatus requests passing the

JobID and would be notified of the status of execution as well

as the percentage of completion of execution when the process

is running. Finally, once the client is notified that the execution

is completed, the client would retrieve the results by making a

GetResult request passing the JobID, for which the WPS server

would return the WMS output containing the results showing

the location of species occurrence with attributes as per the

input data provided.

2.3 Choice of WPS Framework

ZOO-project was selected as the framework for the Species

Search WPS. A major driving factor was the support of multiple

languages in Zoo, which is not provided by other frameworks

like PyWPS (http://pywps.org/) which supports Python, 52°

North (http://52north.org/communities/geoprocessing/wps/)

which supports only Java, or GeoServer WPS

(http://docs.geoserver.org/stable/en/user/services/wps/index.htm

l) which again only supports Java. This gives flexibility to the

maintaining organization to develop and publish other services

in different languages as preferred by the developers. The

performance of ZOO-Project is acceptable considering the

tested response times, failure rates and throughput with

concurrent requests. Further, among PyWPS and ZOO,

frameworks which support Python, the performance of ZOO is

reported to be better in all three metrics and is known to have a

better support community (Poorazizi and Hunter, 2015).

3. DESIGN AND IMPLEMENTATION

3.1 Adding Capabilities for Handling Different Inputs

The service has been designed to take either the name of the

species, a bounding box or a shapefile describing the area of

interest as an input. This means that the WPS should be able to

handle all these three types of inputs and process them

accordingly.

Figure 3. Species Occurrence Search WPS Service

To provide this functionality, the service is made to accept two

inputs instead. The first input parameter, called Service_Name,

asks the user for the choice of service to be executed. This

defines the type of input that the user will be providing to the

service. The second parameter, called Input_Data, is the

parameter which accepts the name of the species or the

coordinates of a bounding box or the URL of a shapefile as an

input. Figure 3 shows the complete structure of WPS chaining

occurring in the Species Search WPS. The Species Occurrence

Search WPS validates the inputs, if the inputs are invalid, an

error message is returned, otherwise one of the services –

Search by species name, search by bounding box or search by

shapefile, is chained with the existing WPS by passing to that

service the required inputs from Input_Data. Here ‘Search by

species name’, ‘Search by Bounding Box’ and ‘Search by

Shapefile’ are the three services that form WPS as described in

the overall architecture.

3.2 Querying the IBIN Database according to the Input

This part of the design uses selective chaining of processes.

Based on the type of inputs passed, a separate process is

executed which processes the inputs as required, makes the

appropriate request to IBIN database, and receives the response

from the database. This response contains data of all the

locations where some species are found if the input was the

name of a species, or all the species which were found within a

bounding box or an area of interest and their locations. Further,

available information about each species is also part of the

response, like family, medicinal value etc. This response is in

raw format which must be processed so that it can be returned

to the client is a useful format.

3.3 Generating WMS Output

For a client, it would be useful if the data was returned in a

format that represented all the data graphically instead of raw

data which would require processing by the client for finding

useful details from the output. This is where generating a WMS

output comes in. A WMS output would return to the client a

raster layer which can be overlaid onto a map. The Species

Search WPS returns the location of species as 5km x 5km grids.

The data associated with each grid can be accessed by passing

the coordinates of some point in the grid as parameters in a

GetFeatureInfo request to the WMS server. This removes all

spatial processing load from the client, except displaying the

WMS layer, and gives the data in a graphical format.

To make the WMS output, ZOO-project provides support for

integrating MapServer with the WPS. This integration makes it

possible to pass some data to MapServer for the generation of a

WMS output. This output is not directly capable of handling

GetFeatureInfo requests. To add this capability, the WPS was

configured to make the necessary changes before publishing the

output to the client. This ensures that the client can always fetch

all the associated data at any point by making the corresponding

GetFeatureInfo request to the WMS server, which the client can

identify using the URL of the WMS output received by the

client.

3.4 Developing Clients for Consuming the WPS

While the WPS provides the server-side functionalities which

could be incorporated into multiple applications to suit the

needs of organizations, it was imperative that some clients that

can consume the WPS were developed. This was necessary so

that end users who wish to gather the results could use the

available clients, instead of manually making the request to the

WPS and handling the WMS outputs. Consequently, a web

client and a custom QGIS plugin were developed.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-781-2018 | © Authors 2018. CC BY 4.0 License.

783

http://pywps.org/
http://52north.org/communities/geoprocessing/wps/
http://docs.geoserver.org/stable/en/user/services/wps/index.html
http://docs.geoserver.org/stable/en/user/services/wps/index.html

3.4.1 Web Client

Zoo-project provides boilerplate JavaScript code which is

capable of handling WPS operations, both synchronous and

asynchronous. The web client is built using this boilerplate code

as a base (figure 4). It has been developed to make all requests

asynchronously, and the user is notified of the progress via a

progress bar which is updated with the response of each

GetStatus request that is made. Leaflet (https://leafletjs.com/),

an open-source JavaScript library for interactive maps has been

used to render maps and the WMS output (showing the location

of species occurrence in grid format). Further client has

functionality to make GetFeatureInfo requests whenever

someone clicked on the WMS output layer. The results

(showing attribute of species found) are then shown as a popup

as shown in figure 5.

Figure 4. WPS Web Client- Species Occurrence Search by

Bounding Box

Figure 5. WPS Web Client- Output of Species Occurrence

Search using user defined Bounding Box

3.4.2 Custom QGIS Plugin

The QGIS plugin for QGIS 2.18 was also developed as software

like QGIS are commonly used for interpreting spatial data

(figure 6).

Figure 6. QGIS Plugin for IBIN Species Occurrence WPS

Service

The plugin uses OWSLib (https://github.com/geopython/

OWSLib) at its core, to make it capable of handling

asynchronous execution. Once a request is made, the user is

notified of a running process by a progress bar being displayed

as a message. Upon successful completion of WPS process, the

WMS layer denoting the output is added to the workspace as a

layer, whose name the user is prompted to supply before the

layer is added. The details of species associated with each grid

can be seen by using the ‘Identify Features’ tool (figure 7).

Figure 7. Executing IBIN Species Search WPS Service using

Custom QGIS Plugin

4. CONCLUSION

The WPS for species occurrence search provides a way to

access information of occurrence data of all the species of the

country through one unified place. This provides data in a

consistent manner to all users, thus eliminating issues of

different format of outputs from different databases. Further, the

data is supplied in a reusable and interoperable way. This

ensures that the service can cater to the needs of the maximum

number of users by surpassing any restrictions that may be

imposed by platform, therefore, supporting extensively in

further studies relating to species occurrence.

REFERENCES

Ball-Damerow, J., Brenskelle, L., Barve, N., Soltis, P.,

LaFrance, R., Ariño, A., Guralnick, R., 2017. Use of Online

Species Occurrence Databases in Published Research since

2010, in: Proceedings of TDWG. p. e20518.

https://doi.org/10.3897/tdwgproceedings.1.20518

Borges, a V.K., 2015. OGC WPS 2.0.2 Interface Standard:

Corrigendum 2. Open Geospatial Consortium.

https://doi.org/http://www.opengeospatial.org/

Čepický, J., 2008. Ogc Web Processing Service and It’S Usage.

GIS Ostrava 2008 27, 1–12.

https://doi.org/10.1007/springerreference_62558

Chapman, A.D. 2005., 2005. Uses of primary species-

occurrence data, version 1.0 Report for the Global Biodiversity

Information Facility

Dubois, G., Schulz, M., Skøien, J., Bastin, L., Peedell, S., 2013.

eHabitat, a multi-purpose Web Processing Service for

ecological modeling. Environmental Modelling and Software

https://doi.org/10.1016/j.envsoft.2012.11.005

Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S.,

Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J.,

Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion,

G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M.

Overton, J., Townsend Peterson, A., J. Phillips, S., Richardson,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-781-2018 | © Authors 2018. CC BY 4.0 License.

784

https://leafletjs.com/
https://github.com/geopython/%20OWSLib
https://github.com/geopython/%20OWSLib

K., Scachetti-Pereira, R., E. Schapire, R., Soberón, J., Williams,

S., S. Wisz, M., E. Zimmermann, N., 2006. Novel methods

improve prediction of species’ distributions from occurrence

data. Ecography (Cop.). https://doi.org/10.1111/j.2006.0906-

7590.04596.x

Meng, X., Bian, F., Xie, Y., 2009. Geospatial Services

Chaining with Web Processing Service, in: International

Symposium on Intelligent Information Systems and Applications

(IISA’09).

Poorazizi, M.E., Hunter, A.J.S., 2015. Evaluation of Web

Processing Service Frameworks. OSGeo J. 14, 29–42.

Schut, P., 2007. OpenGIS ® Web Processing Service. Open

Geospatial Consortium. https://doi.org/citeulike-article-

id:8653309

Stewart, F.E.C., Fisher, J.T., Burton, A.C., Volpe, J.P., 2018.

Species occurrence data reflect the magnitude of animal

movements better than the proximity of animal space use:

Ecosphere. https://doi.org/10.1002/ecs2.2112

Wehrmann, T., Gebhardt, S., Klinger, V., Künzer, C., 2011.

Data processing using Web Processing Service orchestration

within a Spatial Data Infrastructure, in: Proceedings of the 34th

International Symposium on Remote Sensing of Environment.

Westerholt, R., Resch, B., 2015. Asynchronous Geospatial

Processing: An Event-Driven Push-Based Architecture for the

OGC Web Processing Service. Transactions in GIS

https://doi.org/10.1111/tgis.12104

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-5-781-2018 | © Authors 2018. CC BY 4.0 License.

785

