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ABSTRACT: 

 

Soil moisture influences numerous environmental processes occurring over large spatial and temporal scales. It profoundly 

influences the hydrological and meteorological activity together with climate predictions and hazard analysis. Space-borne sensors 

are capable of retrieving the surface soil moisture over a region on a regular basis. Latent heat measurements of soil, reflectance 

based methods, microwave measurements and synergistic approaches are some of the techniques used since long for providing soil 

moisture estimates over regional and global scales. Due to the dynamic interaction of soil with crops, retrieval of surface soil 

moisture is always challenging. This paper gives a brief overview of advance in soil moisture retrieval techniques, and an attempt to 

generate surface soil moisture from fine-resolution satellite remote sensing data. The optical remote sensing explores the linear 

relationship between land surface reflectance and soil moisture content, and through development of empirical spectral vegetation 

indices. Another way to estimate soil moisture emerged by measuring amplitude of diurnal temperature, which is closely related to 

thermal conductivity and heat capacity of soil. Emergence of radiometric satellite measurements at fine resolution has reached at a 

higher level of technology these days. Microwave remote sensing techniques have a long legacy of providing surface soil moisture 

estimates with reasonable accuracy. The SMOS (Soil Moisture and Ocean Salinity) and SMAP (Soil Moisture Passive and Active) 

missions launched in 2009 and 2015 respectively, are completely dedicated for providing soil moisture at global scale with a spatial 

resolution of 35km & 3-40km. These soil moisture products, however, provides data at highly coarser spatial resolution. The launch 

of Sentinels gave insight by providing active radar and optical data at higher resolution (~10m). Sentinel-1 is the first SAR 

(Synthetic Aperture Radar) constellation having 6-day revisit time providing data in C-band with dual polarisations. However, no 

algorithm or methodology is available to generate surface soil moisture product at a finer resolution from dual polarisations. 

Sentinel-1 data has been used to generate regional surface soil moisture image through modelling. The same has been also used for 

generating surface soil moisture map of IARI farm at New Delhi. Dubois, a bare surface model, was tested for its suitability for 

surface soil moisture retrieval of the farm. In addition, radar- based Soil moisture (SM) proxy method was used over Sentinel-1 data 

for the month of July 2018, and validated through actual surface soil moisture (gravimetric) measurements. Results were satisfactory 

for a range of 4-16 m3m-3 of soil moisture, with coefficient of determination (R2) as 0.45, RMSE of 2.35 and a p-value of 0.005. 

However, over a higher range of soil moisture (21-33 m3m-3), which occurred after the rainfall, the R2 value reduced to 0.22 with 

larger RMSE. Results suggested that SM-proxy approach might work well for a limited range (drier part) of soil moisture content, 

and not for the wet soil.   

 

1. INRODUCTION 

Soil moisture plays a major role in climate-change projections 

and controls numerous processes such as water, energy and 

biogeochemical cycles. The alterations in soil moisture (SM) 

availability are a cumulative result of change in climatic 

conditions, which is a key issue for agriculture. It is defined as 

“the amount of water stored in the spaces (pores) between soil 

particles in the unsaturated soil zone, also termed the vadose 

zone” (Liang, Li, & Wang, 2012). Surface SM refers to the 

water content within the upper 5 cm of soil. Also it is termed as 

the fraction of water by volume held in the soil against gravity. 

Global SM is approximately 0.05% of Earth’s total volume of 

water, yet it plays a major role in controlling the exchanges of 

energy and matter (Schneider, Root, & Mastrandrea, 1996). 

Distribution of SM in terms of spatial and temporal scale plays 

a crucial role in Earth’s climate regimes. Soil moisture controls 

the separation of precipitation into infiltration and runoff, where 

infiltration regulates the availability of water for vegetation 

growth and runoff strongly impacts the rate of surface erosion 

and other river processes. It also monitors the partition of 

incoming solar radiation into latent and sensible heat exchange 

in the atmosphere (Entekhabi, Rodriguez-Iturbe, & Castelli, 

1996). The SM information is very essential for various 

commercial and government organisations concerned with flood 

control, climate and weather change, drought monitoring, 

irrigation scheduling, runoff potential, soil erosion and crop 

yield forecasting. Hence, a reliable and accurate estimate of soil 

moisture is essential for numerous applications and makes it an 

indispensable variable for terrestrial research (Hawley, Jackson, 

& Mccuen, 1983). 

In 1960s, SM studies originated based on experiments and 

empirical relationships and in 1970s it was being considered as 

an important surface parameter in addition to other variables.  

Primarily in 1978, it was found that due to unique thermal 

properties and large heat capacity of water, it was possible to 

remotely sense the moisture content in the top layer of the soil. 

High dielectric constant of water as compared to dry soil at 

microwave frequency made emissivity of soils as strong 

function of moisture. In addition to remote sensing techniques 

in-situ measurements and soil water models were also used to 

determine surface SM (Schmugge, Jackson, & McKim, 1980). 

In-situ measurements being labour intensive and time 

consuming could not be performed on larger study areas. 

Hence, with the advent of sensor functionality and improved 

spatial and temporal image resolution, remote sensing facilitated 

data collection over large area at repeated and short time 

intervals. The sensors measure electromagnetic energy reflected 
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or emitted from the earth surface in different wavelengths and 

the measured signal should then be related to soil moisture 

through mathematical modelling (Troch, Troch, SU, & Lin, 

1990). Various researchers showed that surface SM can be 

estimated using optical, thermal infrared as well as passive and 

active microwave remote sensing. The fundamental difference 

among these is different source of electromagnetic energy, 

properties observed by the sensor and physical relationship 

between sensed property and SM content (Jeffrey Phillip 

Walker, 1999). Remote sensing sensors can be mounted over 

airborne as well as satellite based platforms. Earlier many 

airborne acquisitions were performed for collecting data over a 

specific region using active and passive microwave sensors for 

example PALS (Passive and Active L and S- Band Radiometer) 

used in 2002 (Hasan, Montzka, Bogena, Rudiger, & Vereecken, 

2012). However, there is a need for temporal continuity and 

global coverage in SM measurements hence satellite remote 

sensing is advantageous.  

 

2. SOIL MOISTURE MEASUREMENT TECHNIQUES: 

REMOTE SENSING BASED 

SM as a process occurring at an interface between land surface 

and the Earth’s atmosphere frequently changes in space and 

time. It is a variable parameter and many factors governs its 

spatial variability such as soil type, topography, vegetation 

cover, climate, soil texture and land use. In temporal domain, 

variation can be found in order of few hours in the uppermost 

centimetres of a soil profile. Precipitation is found to be the 

main driving force for the changes in the spatio-temporal SM 

patterns. There are two techniques for measuring soil moisture 

content a) point based measurements and b) remote sensing 

methods. The approaches to measure SM are broadly classified 

as; Gravimetric method, electromagnetic based method, nuclear 

based, tensiometric method, hygrometric and others 

(Petropoulos, Griffiths, Dorigo, Xaver, & Gruber, 2013). This 

study focuses on various satellite remote sensing methods to 

estimate soil moisture.  

 

2.1 Optical remote sensing method 

The solar domain having wavelengths between 04-2.5µm, 

measures the reflected radiation of sun after interaction from the 

Earth’s surface. Many experiments were performed since long 

to explore the relationship between SM and reflectance. In 

1925, Angstrom’s found that reflectance reduced after the 

wetness of soil increases. He explained this phenomenon“ by 

the total internal reflection on the water film covering the soil 

particles” (Angstrom, 1925). Thereafter many researchers 

reported similar observations and proposed various empirical 

relationships between soil surface reflectance and its moisture 

(Bowers & Hanks, 1965; Bowers & Smith, 1972; Dalal & 

Henry, 1986). The methods to derive SM using visible infrared 

band can be divided into two categories a) Single spectral 

analysis method and b) vegetation index method. The first 

method is based on the fact that reflectance of water absorption 

bands is entirely different from non-absorption bands. 

Absorption amplitude was found to be linearly related to 

moisture content at water absorption bands. Experiments 

showed that at low moisture levels, reflectance decreases with 

increasing moisture content while at higher moisture levels 

reflectance increases. Jackson et al. experimentally found that 

albedo of dry soils was two times greater than that of wet soils 

(Jackson, Idso, & Reginato, 1976). Also, empirical approaches 

could not produce good results for regions outside the 

calibration conditions due to variation in organic matter, 

mineral composition, soil roughness and its texture. These 

disadvantages led to development of physical models to analyse 

the correlation of soil reflectance at different moisture 

conditions. These models were based on physical laws such as 

Beer’s law and were capable to capture both scattering and 

absorption effects of SM. Further with the advent of monitoring 

instruments, few models took into account surface roughness, 

viewing angle and other soil spectral characteristics. Soil 

reflectance models were evaluated with different methods such 

as: relative reflectivity method, derivative/difference method 

and discrete band difference method (Weidong et al., 2003). 

This method was capable to obtain reasonable results but for 

specific soil types only because soil attributes changes 

significantly from site to site.  

 

The second method is based on the fact that soil reflectance is 

affected by vegetation conditions under water stress. Hence 

various indices have been proposed to detect drought conditions 

such as NDVI (Normalised Difference Vegetation Index). The 

comparison of vegetation index at different times gives an 

estimate of drought. Some classical drought indices such as 

Vegetation Condition Index (VCI) and Anomaly Vegetation 

Index (AVI) were formulated taking NDVI as main criteria 

(Chen Weiying, Xiao Qianguang, & Sheng Yongwei, 1994; 

Kogan, 1995). VCI described spatio-temporal variations, 

vegetation cover and impacts of weather on vegetation while 

AVI was used widely to study vegetation dynamics annually. To 

derive SM the relationship with various water absorption bands 

was explored. Gao, developed Normalised Difference Water 

Index (NDWI) utilizing the reflectance at 1.24µm as it is more 

sensitive to SM (Gao, 1996). The pattern observed in the 

spectral signatures due to variations in soil moisture was 

formulated using Perpendicular Drought Index (PDI). It 

produced much credible results as compared to previous 

approaches. However these methods are time-consuming as a 

long period is required to record the real time SM status. Also 

index method does not take in account the effect of temperature 

and rainfall. Therefore, direct measure of soil moisture using 

soil reflectance, for a large area is highly constrained but it has 

proven its potential in combination with Radiative temperature 

measurements. 

 

2.2 Thermal remote sensing method 

Thermal band operates in the wavelength region of 3 to 14µm. 

Soil moisture estimation using thermal infrared band of the 

electromagnetic spectrum is based on the principle that objects 

having temperature above 0K emits electromagnetic energy at 

all wavelengths. This thermal emission capability of all 

landscape features such as vegetation, soil, water etc. lays the 

foundation of SM measurements (Jensen, 2007). There are 

different thermal properties of soil and water that differentiates 

them, example thermal conductivity, thermal inertia and heat 

capacity. Thus detection of these properties helps to measure 

minor changes in SM using established methods and models. 

Areas having higher soil moisture are warmer at night and 

cooler during the day time (Griend & Engman, 1985). The 

radiation emitted from the earth’s surface also depends upon the 

soil surface emissivity which can be assumed or empirically 

determined when models are used (Ottlé & Vidal-Madjar, 

1994). External factors such as low penetration capability of 

thermal band, presence of vegetation on ground, high 

perturbation of signals by clouds, attenuation of signals by 

atmosphere are to be taken care of. In 1979, Pratt and Ellyett 

claimed that if there is a presence of dense canopy of vegetation 

cover which obscures about 10-20% of soil surface then thermal 
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emission cannot record the radiation temperature from earth’s 

surface (Pratt & Ellyett, 1979). Data is ideally collected around 

midday to accentuate changes in thermal properties between dry 

and moist soils. 

Literatures defined two main methods named as Thermal Inertia 

and Temperature Index used for SM estimation. Thermal inertia 

(TI) is a physical property which characterizes the surface 

resistance to temperature change. Many studies claim that 

increase in soil water content is directly proportional to increase 

in TI and hence reducing the diurnal temperature (Minacapilli, 

Iovino, & Blanda, 2009; Verhoef, 2004). Mathematically this 

relation is defined as: TI= √λρC 

where  λ= soil thermal conductivity (W m-1 K-1) 

 ρ= soil bulk density (kg m-3) 

 C= soil heat capacity (J kg-1 K-1) 

C can be expressed in the form of soil bulk density in dry and 

solid phase and volumetric soil water content.  

Direct measurements of TI is not accessible using remote 

sensing techniques but it offers a way to estimate the same by 

detecting land surface temperature differences at day-night or 

sunset-sunrise. Idso et al. in 1976 proposed a simple model to 

derive soil thermal inertia using surface daily temperatures and 

soil heat flux (Idso, Jackson, & Reginato, 1976). Studies show 

that TI method was applicable for bare and dry ground, to avoid 

complexity but in later years research revealed that moisture 

estimates can be done over partially vegetated soil (Maltese, 

Capodici, Ciraolo, & La Loggia, 2013; Price, 1985). The 

multispectral imagery is used to derive apparent thermal inertia 

(ATI) by making measurements of surface albedo and 

temperature difference. Further remote sensing methods were 

combined with physical parameters of soil for estimation of SM. 

Overall TI methods have physical base and require clear day 

and night images that are difficult to obtain. Also vegetation 

obscures soil information thus this method is only applicable for 

sparsely vegetated or bare fields.  

The second method Temperature Index method has a basic 

principle that land surface temperature for bare soil is 

temperature recorded from the soil surface and that from 

vegetated field is canopy temperature. If there is an increase in 

the latter then it indicates vegetation is subject to water stress 

thus indicating that LST can be used to monitor SM. McVicar 

et al. developed Normalised Difference Temperature Index 

(NDTI) that was very similar to SM and reflects the spatial-

temporal variations of moisture content (McVicar, Jupp, Yang, 

& Tian, 1992). Many studies claim that Temperature/Vegetation 

Index (VI) method can provide soil moisture information using 

LST and VI feature space.  

 

2.3 Microwave remote sensing methods 

For about four decades microwave remote sensing has evolved 

as an important tool that expedites soil moisture estimation on 

regional and global scales. It is considered as a primary 

technique to retrieve SM and measures the electromagnetic 

radiation in the wavelength range of 0.5- 100cm. The theory 

behind this method is based on the fact that a large contrast 

exists between dielectric properties of water (~80) and dry soil 

(~4). Hence wet soil has an increases dielectric constant (~35) 

that increases with increase in moisture content and is 

detectable through microwave sensors. These dielectric 

properties affect both emissivity and backscattering properties 

in microwave region thus making it possible to retrieve SM 

using satellite measurements. It involves two techniques: Active 

and Passive. The former measures the backscattered or reflected 

power from the surface and passive microwave observe the 

natural microwave emissions. Generally L, C and X bands are 

considered to be sensitive for SM estimation with L band 

having a higher penetrating capability than X band.  

2.3.1 Passive microwave remote sensing method 

 

Since 1970’s passive microwave sensors were recognised as the 

greatest utility to measure soil moisture and hence wide range of 

sensors were used. These include Scanning Multichannel 

Microwave Radiometer (SMMR) (1978-1987), Special Sensor 

Microwave Imager (SSM/I) (1987-2007), WindSAT mission 

(2003-2012), Advanced Microwave Scanning Radiometer –

Earth Observing System (AMSR-E) (2002-2011) with two SM 

dedicated missions as Soil Moisture Ocean Salinity (SMOS) 

and Soil Moisture Active Passive (SMAP). Passive sensors 

measure the self-emitted or reflected radiations from the Earth’s 

surface that are characterised by brightness temperature that are 

characterised by brightness temperature (Tb).  

 

2.3.2 Active microwave remote sensing method 

 

Active microwave sensors emit radar pulses towards the ground 

by the use of radar antenna (real or synthetic) and receive 

signals that carry information of target. They are capable to 

provide SM at higher spatial resolution as compared to passive 

sensors. However surface roughness plays a major role which is 

not a serious limitation for passive sensors. Various sensor 

configurations and different surface parameters gave rise to the 

development of numerous backscattering models over past three 

decades. These are categorised as Theoretical, Empirical and 

Semi-empirical models with an additional techniques called 

change detection approach. An overview of these models is 

provided in the following sub-sections.   

 

Physical model/Theoretical based model: Physical based 

model simulates the backscattering coefficient derived from 

application of the theory of electromagnetic wave scattering 

from a randomly rough conducting surface and express the 

simulated backscatter coefficient as a function of soil dielectric 

constant, surface roughness and sensor characteristics. It is 

based on analytical solutions of the integral equations for 

tangential surface fields and accounts for both single and 

multiple surface diffusion phenomena (Fung, Li, & Chen, 

1992). These models can be applied to wide range of roughness 

scale (N. Baghdadi et al., 2004) and have different ranges of 

validity, depending on the wavelength and surface roughness. 

The different physical models are: Kirchhoff Approximation 

(KA) consisting of Geometric Optics Model and physical Optics 

model, small perturbation model (SPM), Small Slope 

Approximation (SSA), Michigan Microwave Canopy Scattering 

(MIMICS) and Integral Equation model (IEM) (Karthikeyan, 

Pan, Wanders, Kumar, & Wood, 2017). Among them, IEM is 

the most widely used due to its wide range of roughness 

conditions (k.rms ≤3, k is wave number & rms is root mean 

square surface height) and formulated by Fung in 1992. The 

IEM is shown to unite the Small Perturbation model at low 

frequency and the Kirchhoff model at high frequency and 

therefore it is applicable to a wide range of roughness 

conditions or frequencies (Su, Troch, & De Troch, 1997). This 

model can predict the  generic trend of backscattering 

coefficient in response to changes in soil moisture content in a 

more appropriate manner , however these includes a  complex 

mathematical equations for the parameterization of soil and 

vegetation surface. Due to its complexity the approximate 

solutions of IEM model are usually used in applications. 

Advanced IEM model is used widely in various studies with 

divergent SM retrieval accuracy (N. Baghdadi, Holah, & Zribi, 
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2006; Nicolas Baghdadi, Zribi, Loumagne, Ansart, & Anguela, 

2008). 

 

Empirical Models: These models require little physics 

equations and provide a description about effect of surface 

roughness and soil moisture on the backscattering coefficient by 

mean of regression analysis. These are generally derived from 

great number of experimental or in situ measurements to 

establish statistical and empirical relationships for inversion of 

soil moisture from backscattering observations (Jeffrey P. 

Walker, Houser, & Willgoose, 2004). Traditionally, some 

known in-situ soil moisture measurements and corresponding 

radar backscattering coefficients were used to calibrate a simple 

form of the equation to predict unknown soil moisture. These 

models are site specific, may not applied to datasets other than 

those used for development and are mostly only valid in certain 

regions of roughness, frequency, incidence angle and soil 

moisture content (Dubois & Engman, 1995).The main 

advantage of empirical backscattering models over theoretical 

backscattering models is that many natural surfaces do not fall 

into the validity regions of the theoretical backscattering 

models, and even when they do, the available backscattering 

models fail to provide results in good agreement with 

experimental observations (Oh, Sarabandi, & Ulaby, 1992). 

These models were developed based on L, C and X band 

scatterometer data and cover the ranges for surface roughness 

and moisture content as: 0.1<ks<0.6 and 0.09<mv<0.31. These 

models yield often accurate soil moisture results but sometimes 

are not applicable for datasets that lie outside the given 

calibration conditions.  Another disadvantage of this method is 

that large in-situ data is required which is a challenging and 

costly issue.  

 

Semi-empirical models: Semi-empirical backscattering models 

are an improvement to empirical backscattering models and are 

the intermediate between the theoretical and the empirical 

models. These models use simulated data from a theoretical 

backscattering model for deriving empirical backscattering 

models that describes the backscattering response for a wide 

range of surface conditions. These models have the conceptual 

background of physical models overlaid with simulations or 

experimental studies that help in simplification of the models 

(Karthekeyan et al., 2017). The advantages of such kind of 

models is that they are not site dependent (as in the case of 

empirical models), and can also be applied when little or no 

information about the surface roughness is available (Baghdadi 

et al., 2008). Two most commonly used semi empirical models 

are Oh model and Dubois model.  

Oh model relates the ratios of backscattering coefficients in 

separate polarizations to volumetric SMC and surface 

roughness. Dubois model developed using ground 

measurements with scatterometter data taking multiple 

frequencies in L, C, X band in HH and VV polarization with 

incidence angle ranging from 30° to 60°. It developed a 

relationship between two co-polarized backscattering 

coefficient of bare soil surface as a function of rms height, 

dielectric constant, incidence angle and frequency. Some studies 

report coupling of the both the methods naming it as Semi-

Empirical Coupled model (SEC) (Capodici, Maltese, Ciraolo, 

La Loggia, & D’Urso, 2013).  

 

Change Detection Approach: In this method it is assumed that 

surface roughness and vegetation condition remains invariant or 

varies on a much longer scale as compared to the soil moisture. 

Thus tracking the changes in the radar backscatter in repeat 

passes is accounted to soil moisture. It is an attractive technique 

as it is simple and provides an indirect way to account surface 

roughness effects and heterogeneity of land cover. Several 

change detection approaches have been developed so far for the 

soil moisture retrieval.  The temporal image differencing 

method involve the estimation of Normalized backscattering 

Moisture index (NBMI) which calculates the relative soil 

moisture values ranging from 0 to 1 using the backscatter 

coefficients response at two different times (Shoshany et al., 

2000). Researchers have categorized these techniques into three 

groups: differencing, principal component analysis (PCA) and 

interferometric coherence. A through description if these can be 

found in Barrett et al., 2009 (Barrett, Dwyer, & Whelan, 2009). 

It was found that full polarimetric data provides structural 

information about the target and proves that coherence 

information is very beneficial for SM retrieval (Bourgeau-

Chavez, Leblon, Charbonneau, & Buckley, 2013). 

 

3. STUDY AREA AND SATELLITE DATA 

3.1 Study area 

The experiment to estimate soil moisture using microwave 

remote sensing data was carried over Indian Agricultural 

Research Institute (IARI) farm located at New Delhi as shown 

in the figure. IARI campus covers an area of about 500 hectares 

with agricultural farms where different crops such as rice, 

wheat, maize, mustard, barley etc. are sown and experimented 

for different varieties. The temperature in summer season varies 

from 34-40ᵒC and in winters from 8-11ᵒC.  

 

3.2 Satellite data and field data sampling 

Sentinel-1A is used here which provides data freely with 

temporal resolution of 12 days all over India. The specifications 

are given in the table. 

 

S.No Parameters Specifications 

1. Launch date April 3, 2014 

2.  Orbital Altitude 693Km 

3. Sensor band C-Band 

4. Central frequency 5.405GHz 

5. Polarisations HH+HV, HH, 

VV+VH, VV 

6. Incidence Angle 20ᵒ- 46ᵒ 

7. Interferometric 

Wide Swath mode 

5mx20m 

Table 1 Satellite specifications 

In this study Sentinel-1A, Ground Range Detected (GRD) 

product in Interferometric Wide swath (IW) mode, was used for 

the month of July with VV and VH polarizations. The satellite 

data was available in the month of July on following dates: 

2/07/2018, 14/07/2018, 18/07/2018 and 26/07/2018.  

Field data was acquired contemporaneously with the satellite 

pass and soil samples were collected from the IARI farms over 

bare fields. Random sampling was performed and data from 

about 15-20 locations was collected. For soil moisture 

estimation, gravimetric method was used for calculation of 

moisture content. A hand held GPS receiver, Trimble 

GeoExplorer 2008, was used to record the accurate location in 

the field.  
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4. METHODOLOGY 

The satellite data collected on 4 different dates was processed 

using open source SNAP software (version 6.0) as provided by 

ESA. Dubois model was tested on the data and SM proxy 

method was also used. The details of methods used are 

described in this section. 

 

4.1 Satellite data processing 

The workflow is divided into many steps. Level-1 GRD product 

is represented in the form of amplitude values for two 

polarisations VV and VH. The pre-processing was carried out 

for both the polarisations. First precise orbit files were applied 

to raw amplitude images. These orbit files provide correction to 

satellite position and velocity information is updated. The next 

step was to convert digital values in each polarisation into 

backscattering coefficients using radiometric calibration. Due to 

the presence of lots of speckle in the image multilooking as well 

as speckle filtering was performed using Refined Lee filter. The 

final step was to apply Range Doppler Terrain Correction for 

geocoding and to correct geometric distortions in the image. 

This terrain correction is done using SRTM Digital Elevation 

Model (DEM) to make geometric representation of the image 

close to the real world scenario. The processed data is 

orthorectified image with 10mx10m spatial resolution in UTM 

projection.  

 

4.2 Dubois Model 

Dubois model is one of the semi-empirical models used for SM 

estimation with an advantage over Oh and IEM models that the 

dielectric constant can be expressed as a function sensor 

parameters and co-polarised backscattering coefficients, hence 

reducing the dependency of SM on roughness parameters 

(Panciera, Tanase, Lowell, & Walker, 2014). In 1995 Dubois et 

al. proposed this model for multiple frequency, polarisations 

(HH and VV), and incidence angles. It establishes a relationship 

between bare soil co-polarised backscattering coefficients (σ°), 

dielectric constant (ε), frequency and root mean square (RMS) 

height (s) as shown in the equation (Dubois & Engman, 1995): 

 

                        
            

Figure 1. Methodology for processing Satellite data 
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where k represents the wavenumber and λ is the wavelength. 

Here ks assumed to be 2.5 considering the bare soil surface with 

nominal roughness (Bai & He, 2015). Using this equation 

dielectric constant can be calculated and further using Tops 

model (Topp, Davis, & Annan, 1980) volumetric soil moisture 

is estimated.  

4.3 SM Proxy method 

The backscatter coefficient derived from SAR data and 

volumetric SM is needed to be connected for SM estimation. 

For bare soil surfaces, SAR backscatter in VV and VH 

polarisations depends on various factors such as incidence 

angle, surface roughness, moisture and frequency. Another 

method experimented for SM retrieval is SM proxy (SMP) 

method which considers an approximation that a linear 

relationship can be defined between SM and SMP. The given 

equation defines this relationship as (Dobson & Ulaby, 1986; 

Holah, Baghdadi, Zribi, Bruand, & King, 2005): 
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Here SMP is the function of σ° (backscatter), p can be vertical 

or horizontal polarizations, SMmin and SMmax are maximum and 

minimum SM values which can be defined as: 

 

min max0.15xf  , 0.489 0.126xfclay sandSM SM    

 

These minimum and maximum values are dependent on soil 

porosity where SMmin is the residual SM and SMmax is SM at 

saturation (Brisson & Perrier, 1991; Cosby, Hornberger, Clapp, 

& Ginn, 1984; Wagner, Lemoine, & Rott, 1999).  

 

4.4 Gravimetric method 

It is one of the direct measures of SM and hence used widely. It 

determines the weight of water contained in the sample of soil 

relative to the weight of the dry soil in terms of percentage. This 

can also be expressed in terms of volume as ratio of volume to 

water present to the total volume of the soil sample (Reynolds, 

1970). The weight of empty aluminium tin and its weight with 

about 10gm of soil sample (wet) in it are recorded. Thereafter 

the samples are placed in oven 105⁰C for 24-48 hours to dry, 

until there is no difference between any two consecutive 

measurements of dry soil weight (Shukla et al., 2014).  

   

 

w d

d

d

W W

W



  

(3) 

 

where,  Ww = Weight of wet soil, Wd = Weight of dry soil and 

θd is moisture content in dry weight basis. To convert this to 

volumetric soil moisture it is multiplied by ratio of bulk density 

of soil and water. The only disadvantage of this method is that it 

is very labour intensive and requires lot of time. The repeated 

sampling also destroys the experimental area (Verstraeten, 

Veroustraete, & Feyen, 2008).  

 

5. RESULTS AND DISCUSSION 

The Sentinel-1 data for 4 different days were downloaded was 

processed and converted from GRD amplitude images to 

speckle filtered and geocoded backscattering coefficient for 
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analysis. The sigma naught images for co-polarised data for 2 

July and 14July are shown in figure 2.  

 

  
Figure 2.  Sigma Naught (a) 2nd July 2018 (b) 14th July 2018 

The automatic weather station installed in the fields recorded 

rainfall of about 122.4mm thus soil moisture increased and 

hence backscattered reduced giving a darker appearance in the 

image. Similarly on 17July and 26July rainfall of about 28.6mm 

and 5.6mm was recorded and the satellite showed similar dark 

patches in the farm area. Further using band math in SNAP, 

Dubois model was implemented for calculation of dielectric 

constant. It was found that the calculated values were negative 

hence indicating that use of this bare soil model with single co-

polarised data is not suitable for our study area. It can produce 

better results if both HH and VV polarisations are available. 

 

 

 
 

Figure 3. Dielectric constant using Dubois model 

 

The attainment of negative dielectric constant proves that 

Dubois model was not suitable for SM estimation in our study 

area which can be due to single co polarised channel available 

in Sentinel -1 data. Secondly SM proxy method was 

experimented for our area. Using this method SMP and SM 

were calculated. The fraction of clay and fraction of sand was 

assumed as 0.27 and 0.37 respectively as extracted from other 

studies carried out at IARI. After deriving the backscatter 

coefficient the images were converted to dB scale and maximum 

and minimum values for each image, using only the farm area, 

was noted. These derived values were compared to the field 

observed values and the graphs are shown below. The variation 

in soil moisture for different dates as observed by satellite and 

that collected from field is given in table.  

 

Date of 

Observation 

Field collected SM 

(m3 m-3) 

Satellite derived 

SM (m3 m-3) 

2 July 2018 4.6-16.3 5.5-15.8 

14 July 2018 32.9-21.5 9.6-17.6 

18 July 2018 11.4-22.3 5.3-12.9 

26 July 2018 20-29.5 11.6-23.1 

Table 2 SM Range 

The analysis was carried out the obtained results and root mean 

square error was calculated for each image. RMSE value for 2nd 

July was 0.45 and p-value was found as 0.005. It can be 

deduced from these that for SM ranging from 5-16 (m3 m-3), 

satellite derived values show similar range and p- value 

indicates that results are significant. 

 

 
 

Figure 4.  SM proxy method results for 2nd of July and 14th July 

2018 

 

But as heavy rainfall occurs on 14th of July the moisture content 

increases and the corresponding satellite derived values show 

less correlation. Error also increases showing that this method 

was unable to track changes in the moisture content when the 

values of SM are high. Similar trend was observed for 18th July 

and 26th July as rainfall occurred near to these dates also.  

 

6.  CONCLUSIONS 

This paper outlines the satellite based remote sensing 

techniques for the retrieval of soil moisture and reviews briefly 

the techniques in use. The soil moisture content present at the 

top surface can be obtained using optical, thermal and 

microwave remote sensing methods. However the operational 

products in use are made available which are derived using 

passive microwave methods. It is a well-established fact that 

numerous modelling approaches have been used in past and 

there modifications to form a hybrid approach is still in 

progress. But it is still a challenging task to retrieve moisture 

content with good accuracy at a regional level. The satellite data 

available for a specific study area and the ease to collect field 

observations plays a major role in selection of the technique to 

be used. Also deriving moisture content for bare soil is easier 

than that of vegetated fields as presence of crop makes it 

difficult to compensate for its effect and remove it to get ground 

moisture measures. Microwave remote sensing showed better 

results and is a widely adopted method over optical and thermal 

methods because of its all-weather penetrability and connection 

of soil dielectric properties to moisture. Two approaches were 

tested and results were analysed for bare soil fields in the month 

of July 2018. Dubois model gave unsatisfactory results by 

providing negative dielectric constant values that are not 

acceptable. The other method, SM proxy, proves that 
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satisfactory results might be obtained for dry soil but is case of 

wet soil this method fails. The most promising development in 

SM retrieval can be made using synergistic approaches. Such 

approaches can address the problem encountered in 

discriminating the various influences on backscatter from soil 

moisture and other roughness or vegetation effects. The SM 

dedicated mission such as SMAP and SMOS provide data on a 

coarser level hence to develop an approach at a regional level 

from current available satellite data is still a challenge and yet to 

be explored.  

 

REFERENCES 

Angstrom, A. (1925). The albedo of various sufaces of ground. 

Geografiska Annaler, 7(1925), 323–342. 

https://doi.org/10.1080/20014422.1925.11881121 

Baghdadi, N., Gherboudj, I., Zribi, M., Sahebi, M., King, C., & 

Bonn, F. (2004). Semi-empirical calibration of the IEM 

backscattering model using radar images and moisture and 

roughness field measurements. International Journal of Remote 

Sensing, 25(18), 3593–3623. 

https://doi.org/10.1080/01431160310001654392 

Baghdadi, N., Holah, N., & Zribi, M. (2006). Calibration of the 

Integral Equation Model for SAR data in C-band and HH and 

VV polarizations. International Journal of Remote Sensing, 

27(4), 805–816. https://doi.org/10.1080/01431160500212278 

Baghdadi, N., Zribi, M., Loumagne, C., Ansart, P., & Anguela, 

T. P. (2008). Analysis of TerraSAR-X data and their sensitivity 

to soil surface parameters over bare agricultural fields. Remote 

Sensing of Environment, 112(12), 4370–4379. 

https://doi.org/10.1016/j.rse.2008.08.004 

Bai, X., & He, B. (2015). Potential of Dubois model for soil 

moisture retrieval in prairie areas using SAR and optical data. 

International Journal of Remote Sensing, 36(22), 5737–5753. 

https://doi.org/10.1080/01431161.2015.1103920 

Barrett, B. W., Dwyer, E., & Whelan, P. (2009). Soil moisture 

retrieval from active spaceborne microwave observations: An 

evaluation of current techniques. Remote Sensing, 1(3), 210–

242. https://doi.org/10.3390/rs1030210 

Bourgeau-Chavez, L. L., Leblon, B., Charbonneau, F., & 

Buckley, J. R. (2013). Evaluation of polarimetric Radarsat-2 

SAR data for development of soil moisture retrieval algorithms 

over a chronosequence of black spruce boreal forests. Remote 

Sensing of Environment, 132, 71–85. 

https://doi.org/10.1016/j.rse.2013.01.006 

Bowers, S. A., & Hanks, R. J. (1965). Reflection of radiant 

energy from soils. Soil Science, 100(2), 130–138. 

https://doi.org/10.1097/00010694-196508000-00009 

Bowers, S. A., & Smith, S. J. (1972). Spectrophotometric 

Determination of Soil Water Content. Soil Science Society of 

America Journal, 36(6), 978–980. Retrieved from 

https://dl.sciencesocieties.org/publications/sssaj/abstracts/36/6/9

78 

Brisson, N., & Perrier, A. (1991). A Semiempirical Model of 

Bare Soil Evaporation for Crop Simulation Models. Water 

Resources Research, 27(5), 719–727. 

Capodici, F., Maltese, A., Ciraolo, G., La Loggia, G., & 

D’Urso, G. (2013). Coupling two radar backscattering models 

to assess soil roughness and surface water content at farm scale. 

Hydrological Sciences Journal, 58(8), 1677–1689. 

https://doi.org/10.1080/02626667.2013.797578 

Chen Weiying, Xiao Qianguang, & Sheng Yongwei. (1994). 

Application of the Anomaly Vegetation Index to Monitoring 

Heavy Drought in 1992. Remote Sensing of Envrionment, 9(2), 

106–112. Retrieved from 

http://en.cnki.com.cn/Article_en/CJFDTOTAL-

YGXB402.003.htm 

Cosby, B. J., Hornberger, G. M., Clapp, R. B., & Ginn, T. R. 

(1984). A Statistical Exploration of the Relationships of Soil 

Moisture Characteristics to the Physical Properties of Soils. 

Water Resources Research, 20(6), 682–690. 

https://doi.org/10.1029/WR020i006p00682 

Dalal, R. C., & Henry, R. J. (1986). Simultaneous 

Determination of Moisture, Organic Carbon, and Total Nitrogen 

by Near Infrared Reflectance Spectrophotometry1. Soil Science 

Society of America Journal, 50(1), 120. 

https://doi.org/10.2136/sssaj1986.03615995005000010023x 

Dobson, M. C., & Ulaby, F. T. (1986). Active Microwave Soil 

Moisture Research. IEEE Transactions on Geoscience and 

Remote Sensing, GE-24(1), 23–36. 

Dubois, P. C., & Engman, T. (1995). Measuring Soil Moisture 

with Imaging Radars. IEEE Transactions on Geoscience and 

Remote Sensing, 33(4), 915–926. 

https://doi.org/10.1109/36.406677 

Entekhabi, D., Rodriguez-Iturbe, I., & Castelli, F. (1996). 

Mutual interaction of soil moisture state and atmospheric 

processes. Journal of Hydrology, 184(1–2), 3–17. 

https://doi.org/10.1016/0022-1694(95)02965-6 

Fung, A. K., Li, Z., & Chen, K. S. (1992). Backscattering from 

a Randomly Rough Dielectric Surface. IEEE Transactions on 

Geoscience and Remote Sensing, 30(2), 356–369. 

https://doi.org/10.1109/36.134085 

Gao, B. C. (1996). NDWI - A normalized difference water 

index for remote sensing of vegetation liquid water from space. 

Remote Sensing of Environment, 58(3), 257–266. 

https://doi.org/10.1016/S0034-4257(96)00067-3 

Griend, A. A. Van De, & Engman, E. T. (1985). Partial Area 

Hydrology and Remote Sensing. Journal of Hydrology, 81, 

211–251. 

Hasan, S., Montzka, C., Bogena, H. R., Rudiger, C., & 

Vereecken, H. (2012). Airborne passive microwave response to 

soil moisture : A case study for the Rur catchment. In EGU 

Genral Assembly Conference Abstracts (Vol. 14, p. 9509). 

Hawley, M. E., Jackson, T. J., & Mccuen, R. H. (1983). 

SURFACE SOIL MOISTURE VARIATION ON SMALL 

AGRICULTURAL WATERSHEDS. Journal of Hydrology, 62, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018 
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-5-861-2018 | © Authors 2018. CC BY 4.0 License.

 
867



 

179–200. https://doi.org/10.1016/0022-1694(83)90102-6 

Holah, N., Baghdadi, N., Zribi, M., Bruand, A., & King, C. 

(2005). Potential of ASAR/ENVISAT for the characterization 

of soil surface parameters over bare agricultural fields. Remote 

Sensing of Environment, 96(1), 78–86. 

https://doi.org/10.1016/j.rse.2005.01.008 

Idso, S. B., Jackson, R. D., & Reginato, R. J. (1976). 

Compensating for Environmental Variability in the Thermal 

Inertia Approach to Remote Sensing of Soil Moisture. Journal 

of Applied Meteorology, 15(8), 811–817. 

https://doi.org/10.1175/1520-

0450(1976)015<0811:CFEVIT>2.0.CO;2 

Jackson, R. D., Idso, S. B., & Reginato, R. J. (1976). 

Calculation of evaporation rates during the transition from 

energy‐limiting to soil‐limiting phases using albedo data. Water 

Resources Research, 12(1), 23–26. 

https://doi.org/10.1029/WR012i001p00023 

Jensen, J. R. (2007). Remote Sensing of the Environment: An 

Earth Resource perspective. Pearson Prentice Hall. 

Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., & Wood, 

E. F. (2017). Four decades of microwave satellite soil moisture 

observations: Part 1. A review of retrieval algorithms. Advances 

in Water Resources, 109, 106–120. 

https://doi.org/10.1016/j.advwatres.2017.09.006 

Kogan, F. N. (1995). Application of vegetation index and 

brightness temperature for drought detection. Advances in 

Space Research, 15(11), 91–100. https://doi.org/10.1016/0273-

1177(95)00079-T 

Liang, S., Li, X., & Wang, J. (2012). Soil Moisture Content. In 

Advanced Remote Sensing (pp. 589–614). 

https://doi.org/10.1016/B978-0-12-385954-9.00019-8 

Maltese, A., Capodici, F., Ciraolo, G., & La Loggia, G. (2013). 

Mapping soil water content under sparse vegetation and 

changeable sky conditions: comparison of two thermal inertia 

approaches. Journal of Applied Remote Sensing, 7(1), 073548–

073548. https://doi.org/10.1117/1.JRS.7.073548 

McVicar, T. R. ., Jupp, D. L. B. ., Yang, X., & Tian, G. (1992). 

Linking Regional Water Balance Models with Remote Sensing. 

In In Proceedings of the 13th Asian Conference on Remote 

Sensing (p. B6). Ulaanbaatar, Mongolia. 

Minacapilli, M., Iovino, M., & Blanda, F. (2009). High 

resolution remote estimation of soil surface water content by a 

thermal inertia approach. Journal of Hydrology, 379(3–4), 229–

238. https://doi.org/10.1016/j.jhydrol.2009.09.055 

Oh, Y., Sarabandi, K., & Ulaby, F. T. (1992). An empirical 

model and an inversion technique for radar scattering from bare 

soil surfaces. Geoscience and Remote Sensing, IEEE 

Transactions On, 30(2), 370–381. 

https://doi.org/10.1109/36.134086 

Ottlé, C., & Vidal-Madjar, D. (1994). Assimilation of soil 

moisture inferred from infrared remote sensing in a hydrological 

model over the HAPEX-MOBILHY region. Journal of 

Hydrology, 158(3–4), 241–264. https://doi.org/10.1016/0022-

1694(94)90056-6 

Panciera, R., Tanase, M. A., Lowell, K., & Walker, J. P. (2014). 

Evaluation of IEM, dubois, and oh radar backscatter models 

using airborne L-Band SAR. IEEE Transactions on Geoscience 

and Remote Sensing, 52(8), 4966–4979. 

https://doi.org/10.1109/TGRS.2013.2286203 

Petropoulos, G. P., Griffiths, H. M., Dorigo, W., Xaver, A., & 

Gruber, A. (2013). Surface Soil Moisture Estimation: 

Significance, Controls, and Conventional Measurement 

Techniques. In G. P. Petropoulos (Ed.), Remote Sensing of 

Energy Fluxes and Soil Moisture Content (pp. 29–48). Boca 

Raton: CRC Press. 

Pratt, D. A., & Ellyett, C. D. (1979). The thermal inertia 

approach to mapping of soil moisture and geology. Remote 

Sensing of Environment, 8(2), 151–168. 

https://doi.org/10.1016/0034-4257(79)90014-2 

Price, J. C. (1985). On the analysis of thermal infrared imagery: 

The limited utility of apparent thermal inertia. Remote Sensing 

of Environment, 18(1), 59–73. https://doi.org/10.1016/0034-

4257(85)90038-0 

Reynolds, S. G. (1970). The gravimetric method of soil 

moisture determination. Journal of Hydrology, 11, 258–273. 

Schmugge, T. J., Jackson, T. J., & McKim, H. L. (1980). 

Survey of methods for soil moisture determination. Water 

Resour. Res., 16(6), 961–979. 

https://doi.org/10.1029/WR016i006p00961 

Schneider, S. H., Root, T. L., & Mastrandrea, M. D. (1996). 

Water Resources. In Encyclopedia of Climate and Weather (pp. 

817–823). Oxford University Press. 

Shoshany, M., Svoray, T., Svoray, T., Curran, P. J., Foody, G. 

M., & Perevolotsky, A. (2000). The relationship between ERS-

2 SAR backscatter and soil moisture: Generalization from a 

humid to semi-arid transect. International Journal of Remote 

Sensing, 21(11), 2337–2343. 

https://doi.org/10.1080/01431160050029620 

Shukla, A., Panchal, H., Mishra, M., Srivastava, H. S., Patel, P., 

& Shukla, A. K. (2014). Soil moisture estimation using 

gravimetric technique and FDR probe technique: a comparative 

analysis. American International Journal of Research in 

Formal, Applied and Natural Sciences, 8, 89–92. 

https://doi.org/10.1007/s11804-010-1017-2 

Su, Z., Troch, P. A., & De Troch, F. P. (1997). Remote sensing 

of bare surface soil moisture using EMAC/ESAR data. 

International Journal of Remote Sensing, 18(10), 2105–2124. 

https://doi.org/10.1080/014311697217783 

Topp, G. C., Davis, J. L., & Annan, A. P. (1980). 

Electromagnetic Determination of Soil Water Content: 

Measruements in Coaxial Transmission Lines. Water Resources 

Research, 16(3), 574–582. 

https://doi.org/10.1029/WR016i003p00574 

Troch, F. P. DE, Troch, P. A., SU, Z., & Lin, D. S. (1990). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018 
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-5-861-2018 | © Authors 2018. CC BY 4.0 License.

 
868



 

Application of Remote Sensing for Hydrological Modelling. 

Abbott M. B. Reffsgard J.C. (Eds) Distributed Hydrological 

Modelling, Water Science and Technology Library, 22, 165–

191. Retrieved from Springer Dordrecht 

Verhoef, A. (2004). Remote estimation of thermal inertia and 

soil heat flux for bare soil. Agricultural and Forest 

Meteorology, 123(3–4), 221–236. 

https://doi.org/10.1016/j.agrformet.2003.11.005 

Verstraeten, W. W., Veroustraete, F., & Feyen, J. (2008). 

Assessment of evapotranspiration and soil moisture content 

across different scales of observation. Sensors, 8(1), 70–117. 

https://doi.org/10.3390/s8010070 

Wagner, W., Lemoine, G., & Rott, H. (1999). A Method for 

Estimating Soil Moisture from ERS Scatterometer and Soil 

Data. Remote Sensing of Environment, 70(2), 191–207. 

https://doi.org/10.1016/S0034-4257(99)00036-X 

Walker, J. P. (1999). Estimating Soil Moisture Profile 

Dynamics from Near-Surface Soil Moisture Measurements and 

Standard Meterorological. Dissertation, University of 

Newcastle, Australia. Retrieved from 

http://users.monash.edu.au/~jpwalker/thesis_pdf/preface.pdf 

Walker, J. P., Houser, P. R., & Willgoose, G. R. (2004). Active 

microwave remote sensing for soil moisture measurement: A 

field evaluation using ERS-2. Hydrological Processes, 18(11), 

1975–1997. https://doi.org/10.1002/hyp.1343 

Weidong, L., Baret, F., Xingfa, G., Bing, Z., Qingxi, T., & 

Lanfen, Z. (2003). Evaluation of methods for soil surface 

moisture estimation from reflectance data. International Journal 

of Remote Sensing, 24(10), 2069–2083. 

https://doi.org/10.1016/S0034-4257(01)00347-9 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018 
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-5-861-2018 | © Authors 2018. CC BY 4.0 License.

 
869




