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ABSTRACT: 

 

Information on the quantitative and qualitative distribution of forest biomass is helpful for effective forest management. Besides its 

quantitative use, Biomass plays a twin role by acting as a carbon source and sinks but its long-term carbon-storing ability is of 

considerable importance which is helpful in lessening global warming and climate change impacts. The present study was done for 

mapping aboveground woody biomass (Bole) (AGWB) of Shorea robusta (Gaertn.f) forests in Doon valley by establishing 

relationships between field measured data, satellite data derived variables and geostatistical techniques. Landsat 8 Operational Land 

Imager (OLI) data was used in preparing the forest homogeneity map (forest type and density). 55 sampling plots of 0.1 ha were laid 

across the Doon Valley using stratified random sampling. Correlations were established between Landsat 8 OLI derived variables 

and field measured data and were evaluated. Field measured biomass has got the maximum correlation with NDVI (0.7553) and it 

was further used for carrying out multivariate kriging (Cok) for biomass prediction map. Prediction errors for the AGWB were 

lowest for exponential model with RMSE= 66.445 Mg/ha, Average Standard Error = 71.07694 Mg/ha and RMSS= 0.95097. Carbon 

is calculated as 47% of the biomass value.AGWB was ranged from 163.381 to 750.025 Mg/ha and Carbon from 76.789 to 352.512 

Mg/ha.  Cokriging was found as a better alternative as compared to direct radiometric relationships for the spatial distribution of the 

AGWB of Shorea robusta (Gaertn.f) forests and this study would be helpful in better forest management planning and research 

purposes. 

 

 

1. INTRODUCTION 

Terrestrial ecosystems are one of the major pools for long-term 

carbon storage with forests in the forefront of it. (Zhao and 

Zhou 2005; Tan, et al. 2007). Besides their tangible benefits of 

timber, fruits, fuelwood etc., forests gave a plethora of 

ecosystem services like purifying air, preventing soil erosion, 

carbon storage etc. In recent years the intangible benefits 

provided by the forests gained more prominence in the wake of 

issues of global warming and climate change getting global 

attention. Forest Aboveground Biomass is an important 

biophysical parameter which directly reflects the health and 

productivity of the forest ecosystem as a whole. (Swatantran et 

al., 2011; Ediriweera et al., 2014). Nowadays the estimation of 

Forest aboveground Biomass is gaining importance for carbon 

stock estimation which is generally used for ecological and 

climate modeling. (Naesset et al., 2013).The quantity of 

biomass in a forest can determine the potential amount of 

carbon (Brown et al., 1999). Global coverage of forests is 30% 

of the total terrestrial area which comes down to approximately 

4.03 billion hectares (FAO 2010). Forests account for nearly 

two-third of gross primary productivity (GPP) of the terrestrial 

ecosystem. (Beer et al. 2010). Total biomass of all the 

ecosystems is approximately 550 Gt C with greatest 

shareholders are plants, especially embryophytes. In plants, 

woody structure (bole or stem) accounts for maximum biomass 

which is more or less stable. Total aboveground biomass is 

approximately sixty percent of the total global biomass. (Bar-on 

et al. 2018). India is one of the biodiversity-rich regions of the 

world with different forest types ranging from rainforests to 

temperate forests. India’s total forest cover is 70.827 million 

 

 

 

 

hectares as per the Indian state of forest report. (ISFR, 2017).A 

lot of national as well as regional studies were done to estimate  

phytomass and carbon pool of Indian forests.( Richards and 

Flint, 1994; Dadhwal et al. 1998; Chhabra et al. 2002a, b; 

Haripriya, 2003; Kiswan et al. 2009; Manhas et al 2006; Kaul et 

al. 2011; Sheikh et al. 2011). According to Kiswan et al., 

(2009), total forest biomass carbon in India is  2865.739 million 

tonnes. Aboveground Biomass can be estimated by 

conventional field-based methods such as forest inventories and 

destructive sampling. These are considered as the most reliable 

and accurate (Huang et al, 2013) as they are direct 

measurements. The major drawback of these methods is their 

unfeasibility for large study areas. In addition, they are quite 

costly and labor-intensive and time-consuming. (Ahmed et al., 

2013; Ene et al., 2012). Remote sensing technology has 

provided a new dimension for aboveground biomass estimation 

with its spatial and temporal characteristics. (Lu 2006, Sun et 

al., 2011). Its long-term cost is also low as compared to the field 

data collection of the area of the same magnitude. Forest 

aboveground biomass is indirectly estimated through remote 

sensing data by establishing empirical relationships between 

satellite data derived variables and the field measured data.  

Many studies have shown that satellite data derived spectral 

information has a good statistical correlation with the 

aboveground forest biomass collected in the field (Viana et al. 

2012; Lu et al. 2012; Manna et al. 2014; Kushwaha et al. 

2014).Use of parametric and semi-parametric techniques like 

Cokriging is still limited in forestry (Corona et al.,2014) as 

compared to the nonparametric techniques like k-NN, ANN etc. 

which are more popular in estimating the AGB (Corona et al., 
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2011, Yadav and Nandy, 2015). Non-parametric techniques do 

not consider the intrinsic spatial autocorrelation nature of the 

forest (Blodgett et al.,2000). Co-Kriging (CoK) considers this 

spatial autocorrelation which can be helpful in improving the 

accuracy of the aboveground biomass estimation. Shorea 

robusta forests are dominated by Shorea robusta which is 

commonly known as Sal tree species. These are spread across 

10 million hectares (m ha) in India with major distribution on 

the plains and  Sal is the dominant tree species of the forest 

which is the member of Dipterocarpaceae with superior wood 

quality and value (Tewari, 1995). Their major distribution lies 

in the plains to the Himalayan foothills and valleys 

(Gautam,1990). These are the most dominant forest type in 

Doon valley spread on all the sides of the valley. Due to vested 

interests of Britishers, these were developed as monocultures 

over the course of time using various silvicultural operations. 

Nowadays with an increase in the population, these forests are 

under severe pressure. Several studies on biomass estimation of 

Doon valley has been conducted before (Yadav and Nandy, 

2015; Shahid and Joshi, 2015, Nandy et al., 2017 ) but they 

were restricted to small area of the valley. Present study was 

done taking all the expansion of the Sal forest into account in 

the valley. 

 

2. MATERIALS AND METHODS 

2.1 Study Area 

Doon valley is nestled in the Lesser Himalayan foothills in 

Dehradun district of Uttarakhand, India. It runs parallelly to 

Shiwaliks which separates it from outer Himalaya. The valley 

has a total area of 1924 km2. It has got subtropical conditions 

with mean annual rainfall fo 2051 mm. Temperature ranges 

from 20C to 420C in summer. The principal forest types are: (i) 

Moist Bhabar-Dun Sal Forest (3C/C2bi), (ii) Northern Dry 

Mixed Deciduous Forest (5B/C2)  (iii) Himalayan Subtropical 

Pine Forest (9/C1) and (iv) Lower Himalayan Moist Temperate 

Forest (12C1) (Champion and Seth, 1968). Shorea robusta, 

Mallotus philippensis, Terminalia tomentosa,  Anogeissus 

latifolia, ,, Dalbergia sissoo, and Acacia catechu are some of 

the important tree species in the Valley. Doon Valley is 

characterized by deep alluvial soil intersected by several 

streams and marshy places. Sal forests occupy approximately 

600 km2 area and have got great influence on the microclimate 

of the area. 

 
Figure 1. Location map of study area along with sampling 

points 

       

2.2 Methodology 

Landsat 8 Operational Land Imager (OLI) data of April 2016 

was used for the study. Digital number (DN) were converted to 

reflectance values as per the standard procedure. Further 

processing was done on the reflectance data. Total 15 satellite-

derived variables viz., red (0.636-0.673 μm), near infra-red 

(0.851-0.879 μm), shortwave infrared (SWIR)-1 (1.566-1.651 

μm) and SWIR-2 (2.107-2.294μm), Tasselled cap 

Transformation (Brightness, Greenness, Wetness) and eight 

Vegetation Indices as shown in table 1. Unsupervised 

classification was used for preparing the land use land cover 

map and NDVI was used for forest density classification based 

on the NDVI classes. Based on Chacko’s formula (Chacko, 

1965) , a total of 55 sampling plots of 0.1 ha (31.62m x 31.62m 

) were laid using stratified random sampling in different forest 

strata out of which 70% (38) were used for training data and 

30% (17) plots were used as testing data. Within the sampling 

plot, 5×5 m subplot is nested to gather information on shrubs 

and a 1×1 m subplot for herbaceous species At each sample 

plot, species composition, diameter at breast height (DBH) of 

all trees (≥10 cm), height and crown cover were noted down 

along with the general characteristics of the plot like location, 

slope, aspect and evidence of disturbances. Volume for each 

tree was estimated using volumetric equations developed by the 

Forest Survey of India (FSI 1996). Aboveground biomass for 

each tree was calculated using volume multiplied by specific 

gravity (FRI 2002). As recommended by IPCC (2006), factor of 

0.47 was multiplied with aboveground biomass for carbon 

estimation. Portion of shrub and litter samples were collected 

from the field and were oven-dried in the lab for estimating the 

dry weight.  The Above Ground Biomass (AGB) was calculated 

for different components e.g. trees, shrubs and herbs for each 

plot-wise. Here we are considering only the aboveground 

woody biomass (bole biomass) as it is the major contributor. 

The plot biomass values, thus obtained were brought to the 

geospatial domain for further use. All the geostatistical 

interpolation were performed using ArcGIS (ver. 10.3). The 

present study utilizes the ability of co-kriging for generating 

biomass and carbon layer. Co-kriging (CoK) is similar to 

kriging but uses multiple datasets and is very flexible, allowing 

to investigate graphs of cross-correlation and autocorrelation. 

Three models viz., exponential, Gaussian and stable were 

evaluated and model with RMSS closest to 1 is used as the final 

model (Exponential Model). This model was utilized for 

modeling biomass in the study area and to create biomass and 

carbon maps.  

 

 
 

Figure 2. Field sampling plot design for aboveground biomass 

 and carbon stock estimation. 
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Figure 3. Field photographs. 

 

Table 4. Equations for Satellite Derived Variables 

 

 
 

 

 

3. RESULTS AND DISCUSSION 

3.1 Field Data 

Field measured biomass ranged from 158.01Mg/ha to 751.41 

Mg/Ha. 

 

3.2 Correlation Analysis between Satellite-derived 

variables and Field Data  

Results of correlation analysis between aboveground woody 

biomass (AGWB) and satellite-derived variables are presented 

in the table below. The linear model function was used to obtain 

best fit correlation coefficients. The best fit correlation was seen 

in NDVI with a coefficient of determination (R2) value of 

0.7553. The NDVI showed the best correlation with 

aboveground woody biomass (AGWB), hence it was 

subsequently used as a predictor in geostatistical prediction 

method. 

 

Table 5. Correlation coefficient between AGWB and Satellite 

derived variables. 

 

 
 

 
 

Figure 6. Relationship between NDVI and aboveground woody 

biomass based on correlation coefficient (R2). 

 

3.3 Predictive Modeling 

For predictive modelling, Geo-statistical analyst extension of 

ESRI Arc-GIS 10.3 software has been utilized for executing 

Ordinary Co-Kriging method. In Co-Kriging two datasets are 

used. First dataset is the Aboveground Woody Biomass Layer 

and second was the NDVI layer. To find the best fit for the 

semivariogram, different models were observed. The 

exponential model was found to be the best fit model for the 
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semivariogram. After the best fit semivariogram, the model was 

optimized for finding the appropriate value of nugget, partial 

sill and major range. Then cross-validation was conducted. Root 

mean square standardized prediction error (RMSS) and Root 

Mean Square Error (RMSE) were found to be 0.95 and 66.44 

Mg/ha, respectively. The root-mean-square standardized 

prediction error is 0.95 which is close to 1 indicating good 

accuracy. Lastly, the biomass map was generated using CoK. 

Forty-seven percent of biomass has been taken as carbon. 

AGWB was ranged from 163.381 to 750.025 Mg/ha and 

Carbon from 76.789 to 352.512 Mg/ha. Malhan, Asarodi forest 

ranges and Part of Rajaji Tiger Reserve has high biomass 

density. Some parts of Barkot, Lacchiwala and Thano ranges are 

have more biomass and hence good carbon sequestration 

potential.  

 
 

Figure 7. Semivariogram for Aboveground Woody Biomass 

 

 

 
 

Figure 8. Graph for predicted aboveground woody biomass. 

 

 
 

Figure 9. Aboveground Woody Biomass (AGWB) Prediction 

Map 

 

 
 

Figure 10. Carbon Prediction Map 

 

4. CONCLUSION 

Present work is an attempt to use the approach of geostatistical 

prediction and mapping by combining satellite-derived 

variables and field data for aboveground woody biomass 

distribution of Sal Forests in Doon Valley. The presented work 

demonstrates a systematic approach of geostatistical prediction 

and mapping by integrating Landsat data, ground inventory, and 

GPS data for generating estimates of spatial biomass 

distribution. The result of aboveground woody biomass was 

validated using statistical error methods. The result shows that 

exponential model within cokriging has got lowest RMSE.  This 

study can serve as baseline information for future studies 

regarding aboveground woody biomass in Doon valley. It will 

augment the decision making and planning for effective forest 

management.  
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