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ABSTRACT:

Inspired by the application of state-of-the-art Fully Convolutional Networks (FCNs) for the semantic segmentation of high-
resolution optical imagery, recent works transfer this methodology successfully to pixel-wise land use and land cover (LULC)
classification of PolSAR data. So far, mainly single PolSAR images are included in the FCN-based classification processes. To
further increase classification accuracy, this paper presents an approach for integrating interferometric coherence derived from co-
registered image pairs into a FCN-based classification framework. A network based on an encoder-decoder structure with two
separated encoder branches is presented for this task. It extracts features from polarimetric backscattering intensities on the one
hand and interferometric coherence on the other hand. Based on a joint representation of the complementary features pixel-wise
classification is performed. To overcome the scarcity of labelled SAR data for training and testing, annotations are generated auto-
matically by fusing available LULC products. Experimental evaluation is performed on high-resolution airborne SAR data, captured
over the German Wadden Sea. The results demonstrate that the proposed model produces smooth and accurate classification maps.
A comparison with a single-branch FCN model indicates that the appropriate integration of interferometric coherence enables the
improvement of classification performance.

1. INTRODUCTION

The automatic analysis of Synthetic Aperture Radar (SAR) im-
ages, which can be acquired independently of cloud cover,
weather conditions and daylight, allows the generation of up-
to-date land use and land cover (LULC) maps. These maps
provide an essential prerequisite for the efficient planning and
management of urban and agricultural land use as well as for
environmental monitoring. The task that underlies the genera-
tion of LULC maps is to semantically segment captured SAR
images. In the course of strongly increasing data availability,
particularly methods from the field of machine learning have
proven to be suitable for this purpose. For example, the use of a
Random Forest (RF) (van Beijma et al., 2014) or Support Vec-
tor Machines (SVMs) (Huang et al., 2002) achieve good results
for pixel-based classification tasks.

However, the success of machine learning approaches strongly
depend on the design and composition of suitable features. Typ-
ically, handcrafted low-level features are used, which often have
the disadvantage of being location- and data-specific. Further-
more, such features are usually engineered for a particular task,
which limits the ability to generalise to other requirements.
These challenges are countered by methods from the field of
Deep Learning (DL). DL methods have the ability to learn ab-
stract, hierarchical features from raw data, thus eliminating the
need for heuristic feature engineering and increasing general-
isation performance. In addition, end-to-end training schemes
allow task-specific outputs to be provided without expensive
pre- and post-processing of data. For the task of semantic seg-
mentation, particularly Fully Convolutional Networks (FCNs)
have become established.

While FCNs have been used very successfully for LULC clas-

sification of optical imagery (Kampffmeyer et al., 2016; Fu et
al., 2017; Mboga et al., 2019), the potential of this method
for application to SAR data has not yet been fully exploited.
Due to the intrinsic differences between the imaging mechan-
isms of SAR and optical images, FCNs that have been pre-
trained on optical data do not achieve satisfactory results (Yao
et al., 2017). In contrast, a complete training of FCNs from
scratch with annotated SAR data is promising, because domain-
specific low-level and high-level features can be learned. There-
fore, this method can be successfully used for LULC classi-
fication of polarimetric SAR (PolSAR) images. For instance,
Cao et al. (2019) introduced a complex-valued FCN designed
for PolSAR image classification that outperforms conventional
machine learning tools (e.g. RF and SVM). To distinguish
several LULC classes, Li et al. (2018) proposed a sliding win-
dow FCN and reduced time and memory consumption by using
sparse coding. Despite these encouraging results, further in-
vestigations are necessary to exploit the full potential of FCNs
for pixel-wise LULC classification. Most previous work only
employs information contained in single PolSAR images. In
contrast, this work includes interferometric SAR measurements
to further enhance classification performance. SAR interfer-
ometry has proven to be a valuable technique that allows the
measurement of geophysical parameters such as surface topo-
graphy or ground deformation. The central idea of InSAR
is to gain information by comparing the phase of two radar
images, which capture the same scene from slightly different
positions at the same time (single-pass) or with a time off-
set (repeat-pass). An important measure relevant to LULC
classification is the interferometric coherence, which quanti-
fies the local phase correlation between the two complex im-
ages. As discussed in (Wegmüller, Werner, 1995), interfero-
metric coherence provides complementary information to that
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contained in backscattered intensities. For example, consider-
ing water surfaces, the backscattering coefficient can vary due
to water movements caused by wind, while the interferomet-
ric coherence (in case of repeat-pass measurement) is consist-
ently low because of temporal change of water surfaces. It is
shown in various studies (Wegmüller, Werner, 1997; Abdelfat-
tah, Nicolas, 2006; Mohammadimanesh et al., 2018) that com-
bining backscattered intensities with interferometric coherence
has the potential to significantly improve LULC classification.
Hence, this paper addresses the questions of how to incorpor-
ate the complementary information contained by coherence im-
ages into FCN segmentation and to what extent the additional
information improves the classification performance.

An existing challenge that still prevents the successful and
widespread use of FCNs for SAR data analysis is the lim-
ited availability of densely labeled data. In most cases, data
is manually labelled by experts in time-consuming processes
as described for instance in (Mohammadimanesh et al., 2019).
In contrast, this work investigates how automatically generated
sparse and potentially noisy annotations based on the fusion of
different available LULC products can be used for training. Par-
ticular attention is paid to a method which mitigates the negative
influence of incorrectly labelled data.

This paper is organised as follows: in Section 2, an FCN archi-
tecture is introduced that combines backscattering coefficients
and interferometric coherence to classify PolSAR images. Sub-
sequently, details concerning the training of this network are
described. In Section 3, experiments to evaluate the perform-
ance of the proposed FCN are outlined and the outcomes are
presented in Section 4. Finally, in Section 5, results are sum-
marised, conclusions are drawn and suggestions for future work
are given.

2. METHODOLOGY

In the following, the FCN-based method for LULC classific-
ation using polarimetric SAR images is explained. First the
generation of the input data is described followed by the archi-
tecture of the network and its training.

2.1 Input Image Generation

2.1.1 Pauli decomposition: To encode measurements of a
polarimetric SAR system, the complex polarimetric scattering
matrix

S =

[
shh shv
svh svv

]
(1)

is used that describes the transformation between transmitted
and received wave vectors caused by a scatterer (Lee, Pottier,
2017). The matrix S provides information about scattering pro-
cesses of an observed object and thus about the object itself.
However, it turns out to be difficult to derive physical proper-
ties of a scatterer directly from the matrix S. In contrast, the
Pauli decomposition of the scattering matrix allows the repres-
entation of polarimetric information that corresponds directly to
physical scattering mechanisms of coherent targets. Assuming
a monostatic system configuration that results in shv = svh, the

decomposition of the scattering matrix based on the Pauli-basis

Sa =
1√
2

[
1 0
0 1

]
(2)

Sb =
1√
2

[
1 0
0 −1

]
(3)

Sc =
1√
2

[
0 1
1 0

]
(4)

is given by:

S = aSa + bSb + cSc, (5)

with

a =
shh + svv√

2
(6)

b =
shh − svv√

2
(7)

c =
√

2 shv. (8)

This decomposition subdivides the scattering matrix S into
three components that refer to specific scattering mechanisms.
The matrix Sa corresponds to single- or odd-bounce scattering,
Sb represents double- or even-bounce scattering and Sc indic-
ates a scattering mechanism characterised by volume scattering.
The related complex coefficients a, b and c indicate the contri-
bution of the corresponding matrices to the scattering matrix S,
whereas |a|2, |b|2 and |c|2 express the scattered power by the
associated types of target. To represent this information in a
single three-channel image, denoted as Pauli-RGB image, the
following codification is used:

|a|2 −→ Red |b|2 −→ Green |c|2 −→ Blue

In this work, the Pauli-RGB image is used as one input image
of an FCN. Its rich texture and color features match the visual
perception of the captured scene. Thus, spatial features can be
extracted by the network that give a good indication of reques-
ted LULC classes.

2.1.2 Interferometric Coherence: Based on two co-
registered complex SAR image values s1 and s2 the interfer-
ometric coherence is calculated by:

γ =
〈s1s∗2〉√
〈s1s∗1〉〈s2s∗2〉

(9)

where ∗ indicates complex conjugation and 〈x〉 denotes the ex-
pected value, which is commonly approximated by averaging
adjacent pixels. The resulting correlation coefficient |γ| has a
value range from 0 indicating total decorrelation to 1 denoting
complete conformity and depends on system and acquisition
parameters as well as on structural parameters of the scatterer
and temporal scene coherence. In this work, a coherence im-
age is formed using two SAR images that are captured within
repeat-pass acquisition, thus it is predominantly related to ran-
dom changes of scatterers. The coherence image is used as
second input of an FCN to include complementary information
to that contained in the Pauli-RGB image.

2.2 Network Architecture

In order to realise pixel-wise LULC classification, we propose
an FCN, denoted as Fused U-Net, shown in Figure 1, that relies
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2D Transposed Convolution (2 x 2)
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⨁ ⨁⨁ ⨁⨁Coherence
image

Figure 1. Architecture of the proposed Fused U-Net with Pauli-RGB image and coherence image as inputs.

on the generic encoder-decoder paradigm. Within the encoder
stage, high-level features are extracted from the input layer,
while the decoder stage is designed to consecutively up-sample
the feature maps to the original input resolution.

To effectively combine the information contained in the Pauli-
RGB image on the one hand and in the interferometric coher-
ence image on the other hand, a network architecture inspired
by the FuseNet structure (Hazirbas et al., 2016) is used. The
fusion-based Convolutional Neural Network (CNN) architec-
ture was originally developed to incorporate depth informa-
tion into the semantic segmentation of RGB images. Follow-
ing the same fusion approach, the proposed network comprises
two encoder branches that are trained to extract and combine
features from Pauli-RGB and coherence images. The three-
channel Pauli-RGB image is taken as input for the main branch,
while the single-channel coherence image is the input of the
additional branch. Within both encoder branches, hierarchical
feature maps are computed by a stack of convolution, batch nor-
malisation and activation layers. Aggregation of feature maps
is performed by max-pooling on five levels. The convolution
operators act as image filters with trainable kernel weights and
the Rectified Linear activation Unit (ReLU) function enables
the learning of non-linear mappings. During batch normalisa-
tion, which is applied before each activation, feature maps are
first normalised over a mini batch to have zero mean and unit
variance. In order to maintain the expressivity of the model,
the normalised values are scaled and shifted by two additional
parameters that are learned along the training of the network.
Batch normalisation enables a faster and more stable training
process due to reduced internal covariate shift (Ioffe, Szegedy,
2015) and a smoother optimisation landscape (Santurkar et al.,
2018). Furthermore, it provides regularisation effects and thus
strengthens the model to better generalise to unseen examples.
The trainable parameters of batch normalisation allow the net-
work to learn internal representations of the Pauli-RGB and co-
herence images, which complement each other optimally in the
following fusion steps.

The step-wise fusion is accomplished by adding feature maps
extracted from the coherence image to feature maps derived
from the Pauli-RGB image using element-wise summation be-
fore each max-pooling layer. In this way, feature maps in the
main branch are enriched by features from the additional branch
and a joined complementary representation is learned. The use
of this fusion design, instead of simply stacking Pauli-RGB and
coherence images within one input layer, is based on the as-

sumption that the two distinct modalities require different sets
of filters for the extraction of significant features. The separated
encoder branches of Fused U-Net enable independent learning
of features, specialised in the discriminant representation of in-
formation from the different data sources.

Within the common decoder part of the network, resulting fused
feature maps of low spatial resolution are consecutively up-
sampled by transposed convolution operations. In order to re-
duce the loss of information due to down-sampling in the en-
coder, five skip connections are used, which incorporate high-
resolution feature maps from the encoder to the decoder stage.
This concept was introduced in (Ronneberger et al., 2015) and
is widely applied in many FCN approaches for semantic seg-
mentation. By concatenating deep coarse features with shal-
low fine features, accurate detail information can be preserved.
Five up-sampling blocks are followed by a 1 × 1 convolution
layer that reduces the depth dimension of feature vectors to the
desired number of output classes. To transform feature vec-
tors, that each describe one pixel, into probabilities, the softmax
function is applied. Final class labels that build up the intended
segmented map are determined based on the highest probability
values.

2.3 Network Training

The described network can be modelled by a chain of functions:

f(x;W) = f (L)(f (L−1)(...f (2)(f (1)(x; w(1)); w(2)...

w(L−1)); w(L)).
(10)

Here f(x;W) denotes a feature vector of length K (number
of classes) for a sample pixel x. The functions f (1), ..., f (L) de-
scribe the filtering and processing operations of L layers used in
the network, which are parameterised by W = [w(1), ...,w(L)].
Given a K-class training set D = {(X1i,X2i,Yi)}Ni=1, an
optimal set of parameters W∗ is determined during net-
work training. Here X1 and X2, with X1 ∈ RW×H×3 and
X2 ∈ RW×H , denote two input images (i.e. the Pauli-RGB
and the corresponding coherence image); Yi ∈ KW×H , with
K = {1, ...,K}, denotes the associated ground-truth labeling.
To find a parameter set W∗, a suitable loss function is minim-
ised that compares predicted class distributions resulting from
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softmax mapping

p(k|x) =
exp(fk(x;W))∑K
i=1 exp(fi(x;W))

(11)

to corresponding one-hot encoded ground-truth distributions
q(k|x). A loss function that is commonly used in conjunction
with neural networks, which apply softmax activations in the
output layer, is the categorical cross entropy defined by:

Lcce = −
K∑

k=1

q(k|x)logp(k|x). (12)

However, in this work, the categorical cross entropy in its ori-
ginal form is not suitable, due to characteristics of employed
training data that are described in the following.

To derive required ground-truth LULC class images Yi and
form a diverse and sufficiently large training data set D without
the necessity of time-consuming manual labeling, PolSAR im-
ages are annotated automatically using the approach described
in (Schmitz et al., 2020): Information from publicly available
LULC products, namely OpenStreetMap, CORINE Land Cover
2018, and Global Water Surface, is extracted and fused with in-
formation that can be derived from the PolSAR image itself
based on interferometric coherence and polarimetric features.
As part of the automatic annotation process, class assignments
are excluded that are not sufficiently reliable due to conflict-
ing information of the various sources of input data. Thus, the
resulting training data is not densely but only sparsely labeled.
Despite filtering uncertain labels, the training data may con-
tain incorrectly assigned class labels that have a negative impact
on the network training. As empirically evaluated in (Wang et
al., 2019), the cross entropy loss (Equation (12)) reveals weak-
nesses in the context of learning on erroneous training data. It
is stated that, within the learning process, the network tends
to overfit to noisy labels on ”easy” classes, while the effect of
under-learning occurs for ”hard” classes. To overcome these
limitations, a suitable loss function proposed in (Wang et al.,
2019), based on symmetric learning, is implemented and used
for the training of the Fused U-Net. The chosen symmetric en-
tropy loss Lsce, inspired by the symmetric KL-divergence, is
defined as the weighted sum of cross entropy and reverse cross
entropy loss:

Lsce = αLce + βLrce (13)

with Lrce = −
K∑

k=1

p(k|x)logq(k|x). (14)

While the cross entropy term leads to good convergence, the ad-
ditional reverse cross entropy term is noise tolerant. The hyper-
parameters α and β can be tuned to find a balance between the
reduction of overfitting and speed of convergence.

During the training of the Fused U-Net, symmetric entropy loss
values are calculated on each training pixel x ∈ Ω. Here, Ω de-
notes the set of pixels of the training image tuples (X1,i, X2,i)
that have a valid label in Yi. Based on the loss values, the net-
work parameters W are updated iteratively using the gradient-
based Adam optimisation algorithm (Kingma, Ba, 2014). To
stabilise the training, the update frequency is reduced by us-
ing mini batch gradient descent. Weight updates are performed
based on averaged sample losses over a subset (called mini
batch) of Ω.

3. EXPERIMENTS

3.1 Study Area

Within the framework of the GeoWAM project, which aims to
generate high-resolution geodata for coastal monitoring, fully
polarimetric SAR data are captured over the tide-influenced
German Wadden Sea. The geographic location of the study
area considered in this paper, namely Otzumer Balje, is illus-
trated in Figure 2. With the objective of creating an accurate
model of the watercourse for the study area, the main focus of
the classification is on the distinction between water and dry
fallen mudflats. The foreshore and land area, which is less
focused in this work, is merely divided into two classes, soil
and non-soil. The soil class includes areas with low vegetation,
crop land, meadows and roads, while the non-soil class includes
human-made objects, built-up areas and forestation areas. For
data acquisition, the F-SAR system developed at the German
Aerospace Center (Deutsches Zentrum für Luft- und Raum-
fahrt; DLR) (Horn et al., 2009) was used. F-SAR is an airborne
SAR system, equipped with multiple antennas that enable cap-
turing fully polarimetric SAR data at different wavelengths. In
this work, image data are employed that were recorded by the
S-band antenna during a measurement campaign in July 2019.
Interferometric measurements, needed for the calculation of co-
herence images, were performed with repeat-pass baselines in
the order of 40 metres. At the time of acquisition, the tidal range
was low, thus large areas of dry fallen mudflats are depicted in
the SAR images.

3.2 Experimental Setup

Three co-registered complex PolSAR image pairs were selected
for the training and testing of the Fused U-Net model. The re-
spective Pauli-RGB images were calculated according to Equa-
tions (6) to (8) and subsequently projected from slant-range to
ground-range geometry. To minimise the influence of varying
incidence angles, a gamma-naught calibration were performed.
The coherence images were derived from VV-polarised com-
plex image pairs by applying Equation (9) using a Gaussian
filter of size 11×11 with standard deviation σ = 5.0 to approx-
imate the expected values. The resulting image was geocoded
as well. Before the input images were fed into the network, the
values within an image were normalised to [0, 1]. Since we
expected the network to learn basic SAR-specific image filters,
no additional filtering of the input images was carried out. As

Figure 2. Geolocation of the study area Otzumer Balje, a tidal
basin in the German Wadden Sea.
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described in Section 2.3, reference images that contain the class
labels including water, mudlflats, soil and non-soil on pixel
level were generated automatically. A quantitative evaluation
of the accuracy of the labels that were generated in this way for
the study area is given in (Schmitz et al., 2020). The data were
divided into training and test data in a ratio of 70% to 30%,
taking care to use geographically separate areas. While the ref-
erence images used for testing were manually post-processed
to reduce faulty labels, there was no correction of the refer-
ence images used for training. In this way, it can be examined
whether the model is robust against faulty training labels. Fig-
ure 3 illustrates exemplary sections of the resulting training and
testing image triplets (Pauli-RGB, coherence and reference im-
age).

Pauli-RGB image Coherence image Reference image

Te
st
sa
m
pl
es

T
ra
in
in
g
sa
m
pl
es

Non-Soil Soil Mudflats Water

Figure 3. Exemplary image sections of training and testing data,
including the Pauli-RGB image, the coherence image and the

corresponding reference image containing class labels.

For the training of the Fused U-Net, images were divided into
patches of size 512 × 512 pixels with an overlap of 25 %.
Image patches that contained less than 5 % annotated pixels
were excluded from training. In order to counteract the imbal-
anced class distribution within the training data, random under-
sampling was performed to reduce the number of samples from
dominant classes. Based on selected training image patches, an
optimal set of model parameters was determined by minimising
the loss (Equation (14)) using the keras implementation of the
Adam optimiser. The optimisation started with a learning rate
of 0.01 that was reduced by a factor of 0.5 every 10 epochs. The
model parameters were updated iteratively after the evaluation
of a mini batch of 8 patches.

To examine the extent to which the proposed way of inclu-
sion of coherence images affects classification performance, we
compared the proposed Fused U-Net model to a single-branch
FCN with U-Net architecture. It follows the same basic struc-
ture as the presented Fused U-Net, but the additional encoder
branch is omitted. This model was trained with two different
configurations of the input layer. In the first approach, the in-
put layer contained only the Pauli-RGB image, for the second
approach, Pauli-RGB and coherence images were stacked to a
4-channel image. In the following, the two methods are referred
to as Pauli U-Net and Pauli-Coh U-Net. The training was per-

formed using the same strategy and data as that used for the
Fused U-Net.

After training each network for 100 epochs, the resulting mod-
els were applied to the classification of the remaining unseen
test data. Therefore, the corresponding image data was divided
into overlapping patches of size 1024 × 1024 pixels that were
fed into the neural networks. For each network, the predicted
output maps were combined to form one classification image,
whereby the overlap was used to eliminate artefacts occurring
at the borders of single output patches. The resulting classific-
ation images provide the basis for the following performance
evaluation.

4. RESULTS

For the evaluation and comparison of the classification perform-
ance of the different models, several metrics are considered. On
pixel-level, the precision and recall rate as well as the F1-Score
that indicates the harmonic mean between precision and recall
rate are determined for each class. These metrics are defined as
follows:

F1 = 2
rprecision · rrecall
rprecision + rrecall

(15)

with

rprecision =
TP

TP + FP
(16)

rrecall =
TP

TP + FN
, (17)

where TP denotes the number of true positives; FP the num-
ber of false positives and FN the number of false negatives.
The macro-average F1-Score is determined for each model by
equally weighting all class-specific scores. To assess the per-
formance on region-level, the IoU is used, a similarity measure,
which determines the degree of overlap between predicted clas-
sification and ground-truth masks defined as:

IoU =
TP

TP + FP + FN
. (18)

The mean IoU for each model is calculated by averaging the
IoU over all classes. The achieved performance scores, based
on the classification results for the test area, are summarised in
Tables 1 and 2 for each model. The highest average F1-Score
as well as the best average IoU is provided by the Fused U-Net
model with 0.9 and 0.82, respectively. The average perform-
ance of the Pauli-Coh U-Net is only slightly below, with an
average F1-Score of 0.88 and a mean IoU of 0.81. Comparing
the class-specific performance, it can be seen that the achieved
results for classification of water and mudflat are similarly good
for both models. The poorer average performance of the Pauli-
Coh U-Net is mainly due to a lower ability to recognize non-soil
areas accurately, which is reflected in lower IoU, precision and
recall rates. Apparently, the Pauli-Coh U-Net model performs
worse compared to the Fused U-Net model in areas where the
Pauli-RGB image provides better distinguishing features com-
pared to the coherence image. This suggests that the simple
stacking of features causes the learned filters to be mainly suit-
able for feature extraction from the coherence image. The pre-
diction of the Pauli U-Net model that, in contrast to the Fused
and Pauli-Coh U-Net, does not include interferometric coher-
ence, shows the lowest F1-Scores and average IoU. While the
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Model
Precision Recall

non-soil soil mudflat water non-soil soil mudflat water

Pauli U-Net 0.46 0.94 0.82 0.61 0.81 0.93 0.62 0.82

Pauli-Coh U-Net 0.58 0.92 0.95 0.98 0.85 0.91 0.96 0.95

Fused U-Net 0.72 0.88 0.92 0.99 0.91 0.94 0.96 0.90

Table 1. Class-wise recall and precision rates for classification of test data achieved by the Pauli U-Net, Pauli-Coh U-Net and Fused
U-Net. The best results are marked in bold.

Model
F1-Score Intersection over Union

non-soil soil mudflat water ∅ non-soil soil mudflat water ∅

Pauli U-Net 0.59 0.94 0.71 0.70 0.73 0.42 0.88 0.55 0.54 0.60

Pauli-Coh U-Net 0.69 0.91 0.96 0.97 0.88 0.53 0.84 0.92 0.93 0.81

Fused U-Net 0.80 0.91 0.94 0.95 0.90 0.67 0.84 0.89 0.90 0.82

Table 2. Class-wise and average F1-Scores and Intersection over Union (IoU) for classification of test data achieved by the Pauli
U-Net, Pauli-Coh U-Net and Fused U-Net. The best results are marked in bold.

classification of soil regions succeeds, the Pauli U-Net model
fails to reliably recognize water and mudflat areas. As ex-
pected, this suggests that the inclusion of the coherence image
has a clear benefit for classification performance, especially in
the investigation of tidal-influenced areas, where the distinction
between mudflats and water plays a crucial role.

In order to better interpret the quantitative results, achieved
classification results are presented in Figure 4 for a few ex-
ample regions of the test area. The visual comparison of the
predictions leads to the following observations: As already in-
dicated by the performance scores, the Pauli U-Net model, that
uses only the Pauli-RGB image for classification, fails to ac-
curately distinguish between water and mudflats. In the tidal
basin, a large part of the mudflats are falsely classified as wa-
ter. Consequently, the watercourse, which is mainly character-
ised by the course of tidal creeks, seaweeds and narrow wa-
ter channels, cannot be accurately captured by the Pauli U-Net
model. In contrast, the water and mudflat separation which is
obtained by the Fused U-Net model and the Pauli-Coh U-Net
model, matches the reference image very precisely. This can be
explained by the fact that the watercourse is clearly visible in
the coherence image. Coherence is low in water-covered areas,
while the Wadden areas lead to high coherence values resulting
in a high contrast that can be easily detected by convolution fil-
ters and is apparently learned by both models. Considering the
classification results of the mainland area, the different smooth-
nesses of the three result images are clearly visible. Large
continuous areas such as meadows and salt marshes are well
captured by all models without contamination of speckle noise
that is present in input images. Greater differences between
the predictions are evident for urban areas, isolated farmyards
and coastal structures. In the reference image used for train-
ing and testing, not every single building and object is labelled.
Instead, urban regions are combined into one labelled region,
which encloses buildings, streets, trees, etc.; farmyards include
surrounding meadows and tiny coastal buildings are not labeled
at all. The Fused U-Net and Pauli-Coh U-Net model are able
to learn this kind of annotation as illustrated in the middle ex-
ample of Figure 4. Thus, smooth and homogeneous predictions

are generated that resemble the reference image. However, the
effect of over-smoothing occurs. Individual buildings and small
artificial objects are filtered out and the boundaries of urban
areas and farmyards are not accurately segmented. On the con-
trary, the Pauli-Net generates less smoothed results, which on
the one hand leads to misclassification of single pixels in actu-
ally connected areas, but on the other hand allows the segment-
ation of fine structures.

5. CONCLUSION

In this paper, Fused U-Net, a two-branch encoder-decoder net-
work, was presented that combines polarimetric backscattering
intensity and interferometric coherence and is trained to per-
form LULC classification based on SAR data. The model was
developed and applied to classify water, mudflats, soil and non-
soil areas in airborne S-band SAR data acquired over the Ger-
man Wadden Sea. Instead of manually labelled accurate train-
ing data, training labels were automatically generated. In order
to deal with few faulty labels that accompany the automatic la-
bel generation, the error-robust symmetrical cross entropy loss
function was used for the training of the Fused U-Net. The
experimental results demonstrate that the model trained in this
manner achieves a fine-grained segmentation of the watercourse
in the tidal area and smooth predictions in the mainland area.
By comparison with similar network architectures, it is shown
that the integration of interferometric coherence significantly
increases the classification performance, especially for the sep-
aration of water and mudflats. This work serves as first proof of
concept for the presented Fused U-Net model and its training
on partly incorrect training data.

Future work will focus on the application of this approach for
the classification of additional, more resembling classes. We as-
sume that, for this case, the superiority of the presented method
for the fusion of features extracted from different types of input
data, as opposed to a stacking of different input data, will be
even more evident. Furthermore, the results of this work sug-
gest that a fine-tuning of the trained Fused U-Net model with a
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Figure 4. Predictions of the Pauli U-Net, Pauli-Coh U-Net and Fused U-Net model for exemplary sections of the test region.

few additional fine-grained manually labeled training data may
allow the segmentation of single objects and fine-structured re-
gions.
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