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ABSTRACT: 

Traffic management applications including congestion detection and tracking rely on traffic from multiple sources to model the traffic 

conditions. The sources are either stationary sensors which include inductive loop detectors (ILD), radar stations and 

Bluetooth/WiFi/BLE sensors or Floating Car Data (FCD) from moving vehicles which transmit their locations and speeds. The 

different sources have their inherent strengths and weaknesses but when used together, they have the potential to provide traffic 

information with increased robustness. Multi-sensor data fusion has the potential to enhance the estimation of traffic state in real-time 

by reducing the uncertainty of individual sources, extending the temporal and spatial coverage and increasing the confidence of data 

inputs. In this study, we fuse data from different FCD providers to improve travel time and average segment speeds estimation. We 

use data from INRIX, HERE and TomTom FCD commercial services and fuse the speeds based on their confidence values and 

granularity on virtual sub-segments of 250m. Speeds differences between each pair of datasets are evaluated by calculating the absolute 

mean and standard deviation of differences. The evaluation of systematic differences is also performed for peak periods depending on 

the day of the week. INRIX FCD speeds are compared with ground truth spot speeds where both datasets are measured at a 1-minute 

interval which show good agreement with an error rate of between 8-20%. Some issues that affect FCD accuracy which include data 

availability and reliability problems are identified and discussed. 

1. INTRODUCTION

Road traffic monitoring relies on the accurate collection of 

information from different sources for comprehensive spatial and 

temporal traffic analysis. Speed, density and flow are three 

critical parameters in traffic analysis and should be measured or 

estimated accurately for use in traffic management systems. 

Traffic congestion is one of the major challenges facing transport 

systems. In this paper, we present the multi-sensor fusion of 

traffic data for end-of-congestion detection and tracking. Traffic 

data sources can be grouped into three categories. First, there are 

stationary radar sensors and inductive loop detectors (ILD) which 

measure multi-lane spot speeds, vehicle count, road occupancy, 

headway and in some cases the length of vehicles. In the second 

category, there is the Floating Car Data (FCD) transmitted by 

moving vehicles which provide travel times and average speeds 

on road sub-segments. The third category is data from 

Bluetooth/WiFi/BLE sensors mounted on consecutive locations 

on a road providing segment travel times and average speeds. 

While FCD and Bluetooth/WiFi/BLE sensors provide reliable 

travel times and average speeds, they are limited as they fail to 

capture multi-lane parameters and absolute volume of vehicles. 

On the other hand, radar and ILD sensors measure multi-lane 

absolute vehicle counts and spot speeds but do not provide 

accurate travel times and average speeds over road segments. 

In traffic management applications, multi-sensor data fusion 

techniques seek to use these different data sources to provide 

comprehensive and more reliable traffic state estimation. The 

different sources complement each other leading to increased 

accuracy and robustness. Data fusion also includes integrating 
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similar datasets from different sources such as different FCD 

services to enhance the spatial and temporal coverage of traffic 

state estimation. 

The work in this study is part of an ongoing project to detect and 

track end-of-congestion on a 14km section of the A8 Highway 

(Autobahn A8) near Pforzheim, Baden-Württemberg in 

southwest Germany. In this stretch, traffic heading eastwards 

towards Stuttgart regularly experiences congestion due to a 

traffic bottleneck as the road narrows from three to two lanes. 

The location and planned installation of traffic monitoring 

sensors is shown in Figure 1.   

Figure 1: The planned installation of radar stations and 

Bluetooth/WiFi/BLE sensors on the A8 section. The bottleneck 

shows the point where the road narrows from three to two lanes. 
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To enable enhanced detection and tracking of end-of-congestion, 

the road authorities plan to install radar stations and 

Bluetooth/WiFi/BLE sensors at short intervals along the highway 

section. The goal of this study is to use fusion techniques to 

integrate traffic data from the three data source categories for 

congestion modelling. In the first stage, we fuse data from three 

FCD services. The fusion techniques used in this step are also 

applicable to integrating Bluetooth/WiFi/BLE data with FCD as 

they both measure average speeds and travel times for road 

segments. The second step is fusing the reliable travel times and 

speeds from the first step with the multi-lane traffic counts 

obtained from radar stations. With the different traffic data 

sources fused, accurate estimates of speed, flow and density per 

lane for road segments essential for traffic modelling will be 

derived.  

We show the necessary steps required to fuse FCD data to a 

common road segmentation network to estimate average speeds 

and travel times at high granularity. Since the 

Bluetooth/WiFi/BLE sensors and radar stations are not yet 

installed, a concept for fusion in the second stage is presented. 

  

 

2. BACKGROUND AND RELATED WORK 

The accuracy of travel times and speeds from FCD services 

depends on the number of probe vehicles sending timestamped 

geolocations and speeds. GPS and data transmission issues are 

other factors that affect the quality of traffic data. In cases where 

the penetration rate of probe vehicles is low or none, FCD 

services use historical data to predict traffic conditions which 

may not represent the actual traffic situations.  

In highways with high penetration rates, FCD performs well in 

estimating travel times and shows better correlation with ground 

truth speeds from stationary detectors. In their study on 

expressways in Beijing, Zhao et al. (2009) observed a highly 

correlated relationship between remote traffic microwave sensors 

(RTMS) and FCD speeds on expressways with an R2 of 0.97. 

Kondyli et al. (2018) compared the performance of various FCD 

from INRIX, HERE, STEWARD and BlueTOAD in estimating 

travel times on highways. The FCD speeds from all the providers 

successfully estimated travel times but with varying performance 

depending on the traffic conditions. In congested traffic HERE 

provided better estimates while the rest underestimated travel 

times. However, in less congested conditions, the other three 

providers had better estimates than HERE. 

A critical issue to consider when using FCD for traffic state 

estimation is the latency in reporting real-time traffic conditions. 

Kim and Coifman (2014) found that INRIX FCD reported sudden 

drops in speeds 6 minutes later even though the confidence values 

included did not indicate lower quality speed data. Adu-Gyamfi 

et al. (2015) evaluated the reliability of FCD in detecting 

congestion on highways. While the FCD detected short-term 

congestion events with a 74% accuracy, it lagged by 8 minutes 

compared to ground-truth measurements. 

Multi-sensor data fusion techniques have been used in the 

scientific world by combining data from several sources to 

improve and provide reliable information. Traffic management 

applications employ these techniques for improved traffic state 

estimation using data from stationary detectors, FCD providers 

and Bluetooth/WiFi/BLE sensors. These data sources are 

combined with strengths in one source complementing the other's 

weaknesses to increase the robustness of the data. Fusing also 

enhances spatial and temporal coverage of traffic data. FCD and 

Bluetooth/WiFi/BLE sensors, for example, provide extensive 

coverage compared to stationary detectors which only provide 

information at point locations due to cost implications. 

There are two major approaches to traffic data fusion. The first 

one is the data-model consistency approach which relies on 

measured data to calibrate models and in turn use the models to 

correct data so that it fits into models. Techniques like Kalman 

filters are used in this approach (Faouzi and Klein 2016; 

Wolfermann et al. 2011). Models combine data from stationary 

detectors and trajectories from moving sensors to determine 

density and speeds at specific locations. The major drawback of 

the modelling approach is that it requires making of several 

assumptions and there is a risk of running into overfitting 

problems during model calibration.  

The second approach uses data-to-data consistency (Ou 2011) 

based on basic physical laws: speed ∗ time = distance, density ∗ 

speed = flow and the vehicle conservation law, Equation (1). In 

this approach traffic data from two sources is related based on the 

physical laws. One typical application is smoothing of noise of 

stationary detectors with noiseless FCD based travel time data. 

 

 

𝝆(𝒊, 𝒋) = 𝝆(𝒊 − 𝟏, 𝒋) +  
∆𝒕

𝑳𝒋
(𝒒(𝒊, 𝒋 − 𝟏) − 𝒒(𝒊, 𝒋)) 

(1) 

 

 

Where: 𝝆 = density, 𝒒 = flow, 𝒊 = 1, 2, 3... represents discrete-

time, 𝒋 indicates the location, 𝑳𝒋 is the length of the road segment 

𝒋 and ∆𝒕 is the span of one discrete-time.  

 

Similar categories of sensors are also fused to improve the 

accuracy of traffic state estimation. Use cases include fusion for 

better estimation of travel times from different FCD providers. 

This is achieved by calculating the weighted mean of several 

travel-times estimators where the weights are a function of 

variance or covariance of estimators, or a function of the data 

source reliability (Faouzi and Klein 2016). There are many fusion 

techniques available but the choice of fusion strategy to use 

depends on data sources availability, ease of computation, traffic 

management application and the desired results which may vary 

depending on the traffic management application. In this study, 

the time of computation is essential as the end-of-congestion 

detection is required at a high temporal resolution of one minute.  

 

 

3. DATA AND METHODOLOGY 

3.1 Data 

On the A8 highway section, three FCD services are available 

which are INRIX, TomTom and HERE each reporting traffic data 

at a one-minute interval. The data, retrieved from each of their 

respective traffic flow APIs, includes average segment speeds, 

travel times, free-flow speeds and confidence values as a measure 

of confidence for real-time data. Additionally, INRIX has a score 

indicating whether the traffic data is real-time, historical or a 

blend of both and also reports average speeds based on historical 

data at a particular time-of-day and day-of-week.  

INRIX data is based on the standard Traffic Messaging Channel 

(TMC) segments and INRIX eXtreme Definition segments 

(XDS) which have higher granularity levels. HERE traffic data 

is based on TMC segments while TomTom data can be accessed 

using TMC, Open Location Referencing (OpenLr) or manually 

defined points on desired road segments. In each case the road 

segmenting scheme with the highest resolution was chosen as 

follows, INRIX XDS segments ranging from 140m - 1600m, 

HERE TMC segments ranging from 200m – 12000m and 

TomTom segments ranging from 280m - 2700m defined by 

manually placing points on the road section. The segments from 

each FCD service are stored in the database as spatial tables and 
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are shown in Figure 2. Due to the project's limited access to 

HERE and TomTom services, contemporaneous speeds from the 

three services are retrieved at seven-minute intervals. A two-

week dataset running from 18th February to 3rd March 2020 is 

used in the study.   

 

 
Figure 2: HERE, INRIX and TomTom road segments on the A8 

highway. The line geometries have been offset for easier 

visualization and comparison of their varying lengths. 

There are stationary traffic cross-sectional measurement stations 

operated by the state road department, Landesstelle für 

Straßentechnik, Baden-Württemberg. The stations provide spot 

speeds and vehicle flow at one-minute intervals for three 

categories of vehicles; cars, lorries and others. There are 7 

stations on the study location, 3 on the highway and 4 on the on-

ramps and off-ramps as shown in Figure 3. They provide speed 

and flow measurements at a one-minute interval. This dataset is 

used as ground truth to evaluate another set of INRIX speeds 

retrieved simultaneously at a one-minute interval on April 2020.  

 

 
Figure 3: Stationary cross-sectional measurement stations. 

A second dataset from Ajaccio, the capital city of Corsica, is used 

in the study. This consists of data from radar sensors, Bluetooth 

sensors and TomTom. HERE FCD does not cover this location 

and we do not have access to INRIX. Bluetooth sensors placed at 

upstream and downstream boundaries of road sub-segments 

provide average speeds, travel times and the number of probe 

vehicles used to measure these parameters. This is comparable to 

the FCD dataset and is used as ground truth to evaluate the 

accuracy of TomTom traffic flow data Figure 4. This urban 

dataset is retrieved at two-minute intervals and the comparative 

studies are performed for data collected in March 2020. 

 

 
Figure 4: Radar stations and Bluetooth sensors placed in 

Ajaccio’s road network. The segment highlighted in red will be 

used to compare TomTom FCD speeds against the Bluetooth 

sensors speeds in both directions. 

3.2 Methodology 

3.2.1 Data Retrieval and Storage 

All the datasets used in the project are managed using a 

PostgreSQL database management system (DBMS) extended 

with PostGIS for spatial data support. The datasets consist of the 

static road segments and dynamic traffic tables for each of the 

FCD service updated periodically.  Datasets from the three FCD 

providers, the stationary detectors and the Bluetooth sensors are 

retrieved from their respective APIs in JSON and DATEX 

formats. Python and NodeJS scripts are used to fetch, pre-process 

and store the data. 

 

3.2.2 Geometry Preparation 

Each of the road segments from the FCD services on the A8 

section vary in length, start and end nodes.  To fuse these datasets, 

the road section is segmented to 250m virtual sub-segments using 

the bottleneck location as a point of reference and 

OpenStreetMap road geometry. The segment length and the 

boundaries are determined by the project requirements to monitor 

congestion build-up upstream from the bottleneck location with 

high granularity. In total 53 segments are created, with segments 

S1-S38 from the start of the highway section to the bottleneck 

and segments S39-S53 after the bottleneck to the end. Some of 

the subsegments are shown in Figure 5. 

 

 
Figure 5: Subdividing the A8 highway section into virtual 250m 

sub-segments. 

3.2.3 FCD Data Fusion 

In this step, the dynamic traffic datasets from each of the services 

are related to their respective segment geometry through a SQL 

join using a segment id. This enables spatial operations necessary 

for the next step which assigns traffic parameters from each 

service to the 250m sub-segments for each timestep. In this 

spatial-temporal fusion, a calculation of the weighted average 

speeds per 250m sub-segment is carried out using the confidence 
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values and length of the source segment as weights. The weight 

parameters are a function of data source reliability as reported by 

FCD service providers and the granularity of their corresponding 

segments. This is calculated as shown in Equation (2): 

 

�̅� =  
∑ (𝒗𝒊𝒄𝒊

𝟏

𝑳𝒊
)𝒏

𝒊=𝟏

∑ (𝒄𝒊
𝟏

𝑳𝒊
)𝒏

𝒊=𝟏

   
(2) 

 

 

where: �̅� = weighted average speed, 𝒗 = speed, 𝒄 = confidence, 

𝑳 = Length of segment 

 

3.2.4 Concept for FCD, Bluetooth/WiFi/BLE and Radar 

Sensors Fusion 

The planned installation of Radar and Bluetooth/WiFi/BLE 

sensors on the A8 section will enhance the spatial coverage of 

traffic monitoring. Placement of the sensors at short segments as 

shown in Figure 1 is expected to increase the accuracy of traffic 

state estimation. Radar stations will provide spot speeds and 

vehicle counts per lane while Bluetooth/WiFi/BLE will provide 

average speeds and travel times on segments. The end goal is to 

fuse data from these sensors and FCD to obtain reliable multi-

lane speeds, densities and flows for congestion modelling. 

For stationary detectors placed consecutively along a road section 

at short segments of between 1-1.5km, the segment speeds and 

flows can be estimated by calculating the average of speeds and 

flows from detectors placed at the start and end of a segment. 

Since the segments between consecutive detectors on the A8 

section are short, with lengths measuring approximately 1km, the 

average speeds (km/h), flows (vehicles/h) and densities 

(vehicles/km) for each lane can be estimated using Equations (3), 

(4) and (5) respectively as proposed by Qiu et al. (2009):  

 

 

𝑣(𝑥𝑖,𝑥𝑖+1,𝑘) =
1

2
(𝑣(𝑥𝑖 , 𝑘) +  𝑣(𝑥𝑖+1, 𝑘)) 

(3) 

 

 

𝑞(𝑥𝑖,𝑥𝑖+1,𝑘) =
1

2
(𝑞(𝑥𝑖 , 𝑘) +  𝑞(𝑥𝑖+1, 𝑘)) 

(4) 

 

 

𝜌(𝑥𝑖,𝑥𝑖+1,𝑘) =  
𝑞(𝑥𝑖,𝑥𝑖+1,𝑘)

𝑣(𝑥𝑖,𝑥𝑖+1,𝑘)
 

(5) 

 

where: 

𝑖 is detector station index 

𝑣(𝑥, 𝑘) is spot-based speed at location 𝑥 during time 

interval 𝑘  

𝑞(𝑥, 𝑘) is spot-based flow at location 𝑥 during time interval 𝑘  

𝑣(𝑥𝑖,𝑥𝑖+1,𝑘) is segment-based speed at the section 

between 𝑥𝑖 and 𝑥𝑖+1,during time interval 𝑘  

𝑞(𝑥𝑖,𝑥𝑖+1,𝑘) is segment-based flow at the section between 𝑥𝑖 

and 𝑥𝑖+1,during time interval 𝑘 

𝜌(𝑥𝑖,𝑥𝑖+1,𝑘) is segment-based density at the section 

between 𝑥𝑖 and 𝑥𝑖+1,during time interval 𝑘 

 

The assumption while using this technique is that there exists no 

on and off-ramps in between the detector stations. As some of the 

segments on the section of the highway have ramps, the vehicle 

count changes will have to be factored in for accurate density 

calculation.  

The second step will be to fuse travel times from FCD and 

Bluetooth/WiFi/BLE sensors with speeds measured by radar 

stations for improving flow and density estimations in the first 

step for each road segment. Data to data consistency models such 

as those proposed by Ou (2011) will be evaluated based on their 

results and computational time. 

 

3.2.5 Evaluation Methodology 

As discussed in Section 2, FCD quality depends on the number 

of vehicles transmitting their locations and speeds. Historical 

data is used to predict traffic conditions where real-time 

information is not present or to supplement real-time data. For 

HERE FCD, the confidence values are 0.7-1.0 for real-time 

speeds, 0.5-0.7 for historical speeds, less than 0.5 indicates the 

speed limit and a value of -1.0 indicates a closed road segment. 

INRIX FCD uses score values 30,20 and 10 to indicate whether 

the speeds are real-time, a blend of real-time and historical or 

historical respectively. We use the FCD speeds and the weighted 

speed averages for the 250m virtual sub-segments to identify 

peak and off-peak periods at points of interest for both weekdays 

and weekends. Due to the high volume of traffic during peak 

periods, it is expected that the penetration rate of probe vehicles 

is high for each service and that the reported speeds have high 

confidence values. Identification of the peak periods is also 

required to evaluate the performance of FCD in detecting and 

tracking traffic congestion. The identification is done through a 

visual analysis of plotted time-of-day average speeds over time 

for segments of interest. The evaluations are thus performed for 

the entire study periods and peak periods for both study locations. 

Speed differences from the three FCD services and the weighted 

average speeds on all segments along the road section are plotted 

for visual comparison for both peak and off-peak periods. This is 

used to identify hours of the day when the FCD services detect 

speed drops and congestion build-up.  

 

To evaluate systematic differences between speeds from the three 

FCD services, absolute mean and standard deviation of speed 

differences are calculated for each pair of FCD datasets. The 

absolute mean difference is calculated as the sum of absolute 

speed differences over time divided by the number of 

observations as used by Chase et al. (2012) and Anuar et al. 

(2015) to compare FCD speeds from different sources. The 

equations for calculating the absolute mean and standard 

deviation of speeds differences are shown in Equations (6) and 

(7) respectively. 

 

�̅� =
1

𝑛
∑|𝑑𝑖|

𝑛

𝑖=1

 

 

(6) 

 

 

𝜎 =  √
∑ (|𝑑𝑖| −  �̅�)2𝑛

𝑖=1

𝑛 − 1
 

(7) 

 

 

Where:  𝑛 is the number of samples, |𝑑𝑖| =  |𝑥𝑖 −  𝑦
𝑖
| , 𝑥𝑖 and 

𝑦
𝑖
 are different FCD speeds 

 

TomTom FCD is evaluated against ground truth segment speeds 

from Bluetooth sensors in Ajaccio while on the A8, INRIX FCD 

is evaluated against speeds measured by stationary detectors on 

the A8. We calculate mean absolute percentage error (MAPE) 

and root mean square error (RMSE) as used by Hu et al. (2016) 

and Anuar et al. (2015) to evaluate FCD speed deviations from 

ground truth measurements. MAPE and RMSE calculations are 

shown in Equations (8) and (9) respectively. 
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𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑉𝐺𝑇 − 𝑉𝐹𝐶𝐷 

𝑉𝐹𝐶𝐷
|

𝑛

𝑖=1

× 100 
(8) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑉𝐺𝑇 −  𝑉𝐹𝐶𝐷)2

𝑛

𝑖=1

 

(9) 

 

 

Where: 𝑛 is the number of samples, 𝑉𝐺𝑇 the ground truth speeds 

and 𝑉𝐹𝐶𝐷 the FCD speeds. 

 

 

4. RESULTS ANALYSIS 

On our main study location, the A8 highway section, the 250m 

sub-segment before the bottleneck, sub-segment “S38”, is of 

interest due to regular traffic congestion. We calculate time-of-

day average speeds for each service to identify peak and off-peak 

periods. From Figure 6, the major peak period on weekdays is 

identified to start from 06:00hrs to 13:00hrs which is the period 

that most cars drive towards Stuttgart city. During the weekends, 

the major peak starts from 07:00hrs to 11:00hrs as shown in 

Figure 7. On this section, speeds of less than 40km/h indicate 

congestion. Peak periods are characterized by higher penetration 

rates of probe vehicles and thus higher quality data is expected. 

We only consider the major peak periods.  

 

 
Figure 6: Time-of-day average speeds on weekdays for the 

virtual sub-segment before the bottleneck location (S38). 

 
Figure 7: Time-of-day average speeds on weekends for the 

virtual sub-segment before the bottleneck location (S38). 

We compare the reported confidence values over the study period 

for this segment. In Figure 8 HERE consistently reports very high 

values throughout while INRIX shows the highest variance of 

confidence which is consistent with time-of-day average speeds. 

TomTom values vary but by a small margin during the daytime.  

This trend is similar for the entire road section. From INRIX 

scores, 99% of the speeds reported on both weekdays and 

weekends for all segments were real-time. 

 

 
Figure 8: Time-of-day hourly average confidence values 

reported by the FCD services on Segment S38 during 

weekdays. 

Speed variations between pairs of FCD services are compared by 

calculating the absolute mean and standard deviations of speed 

differences. The calculations are done separately for weekends 

and weekdays and their respective peak periods, as shown in 

Table 1. As expected, the high volume of vehicles during the 

peak periods improve the probe rate for all the FCD services 

which results in reduced variations in speed differences.  The 

influence of spatial resolution FCD is also seen when the speeds 

are fused to a common segment. At sub-segment S38, HERE 

FCD has the lowest spatial resolution with longer segments 

among the three services and hence the higher variations in 

speeds when compared to the rest. On this sub-segment, the 

lengths of corresponding HERE, TomTom and INRIX segments 

are 3900m, 2720m and 750m respectively and are compared in 

Figure 9. 

 

Table 1: Absolute mean and standard deviations of FCD speeds 

over different periods for sub-segment S38 

 Absolute Mean 

Speed Differences 

(km/h) 

Absolute Std of 

Speed Differences 

(km/h) 

Whole 

Period 

Peak 

Period 

Whole 

Period 

Peak 

Period 

W
ee

k
d
a

y
s 

INRIX vs 

TomTom 

12.08 9.00 11.47 13.02 

INRIX vs 
HERE 

16.85 13.29 13.96 13.70 

TomTom vs 

HERE 

18.56 8.54 10.02 7.93 

W
ee

k
e
n

d
s 

INRIX vs 
TomTom 

12.62 6.45 14.40 8.55 

INRIX vs 

HERE 

25.17 16.90 15.63 12.93 

TomTom vs 
HERE 

18.33 12.52 10.12 9.26 

 

 
Figure 9: A length comparison of INRIX, TomTom and HERE 

segments with the virtual sub-segment S38.  
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The results for absolute mean and standard deviations 

calculations for the entire A8 highway section are shown in Table 

2. Generally, the speeds show less variation from each other 

during peak hours apart from INRIX and HERE pairs where the 

differences increase. From the time-of-day average speeds plots 

in Figure 10 and Figure 11, INRIX and HERE speeds show better 

agreement during off-peak periods while TomTom reports higher 

speeds. However, as speeds decrease during peak hours, HERE 

reports lower speeds than the rest. This could be as a result of the 

longer TMC segments generalizing HERE speeds more than 

INRIX and TomTom which have higher granularities. The 

weighted average speeds are highly correlated with INRIX 

speeds as it has the highest granularity among the three FCD 

services. The correlation is slightly lower at night which 

corresponds to the lower confidence levels reported by INRIX.  

 

Table 2:Absolute mean and standard deviations of FCD speeds 

over different periods for the entire road section 

 Absolute Mean 

Speed Differences 

(km/h) 

Absolute Std of 

Speed Differences 

(km/h) 

Whole 

Period 

Peak 

Period 

Whole 

Period 

Peak 

Period 

W
ee

k
d
a

y
s 

INRIX vs 

TomTom 

14.33 10.63 13.07 12.52 

INRIX vs 
HERE 

12.29 13.43 12.45 14.96 

TomTom vs 

HERE 

13.82 12.98 13.43 15.51 

W
ee

k
e
n

d
s 

INRIX vs 
TomTom 

9.80 8.26 9.49 8.71 

INRIX vs 

HERE 

10.71 10.82 10.58 12.23 

TomTom vs 
HERE 

8.35 9.83 11.23 14.67 

 

 

 
Figure 10: Time-of-day average speeds on weekdays for the 

entire road section. 

 
Figure 11: Time-of-day average speeds on weekends for the 

entire road section 

The performance of FCD is further evaluated by comparing the 

space-mean speeds with ground truth time-mean speeds. On the 

A8 we compare INRIX FCD which is available at both high 

spatial and temporal resolutions with ground measurements from 

the stationary detectors. In this ground truth dataset, speeds from 

the three categories of vehicles are averaged for comparison.  In 

the MAPE and RMSE results shown in   

 

Table 3, there is no significant variance between the whole period 

and peak period. The last segment, which is the only one not on 

an intersection shows the best agreement where FCD speeds are 

only 8.4% different than ground truth speeds during the peak 

period. The length of the segment does not have an impact on the 

performance of the FCD speeds but flow interruptions on 

intersections yield higher errors.  

 

Table 3: A comparison of INRIX FCD performance compared 

to ground truth speeds on different segments. The segments 

apart from the last one in the table lie between the OFF and ON 

ramps on intersections. 

 
Weekdays 

(Whole Period) 

Weekdays Peak  

INRIX 

Segments 

Ramp Length 
(m) 

MAPE 
(%) 

RMSE 
(km/h) 

MAPE 
(%) 

RMSE 
(km/h) 

365617811 OFF 289 20.64 14.20 20.68 14.62 

365656325  168 13.26 17.13 12.46 16.61 

365646606 ON 166 18.77 16.96 18.08 15.86 

365737448 OFF 459 15.37 13.01 14.16 12.19 

365633054  810 11.00 15.03 10.98 15.21 

365736388 ON 483 13.25 12.61 12.43 11.61 

365757859  775 8.68 10.50 8.4 9.62 

 

In all segments, INRIX reports higher speeds than the ground 

truth speeds averaged for the three categories of vehicles. When 

compared with individual vehicle categories in Figure 12, INRIX 

speeds are closest to speeds reported for the car category 

indicating that a large proportion of probe vehicles in this section 

are passenger cars.  

 

 
Figure 12: Comparison of time-of-day average speeds from 

INRIX FCD stationary detectors on INRIX segment XDS 

365757859 (775m). The individual vehicle category speeds 

from the detectors are shown in dashed lines. 

In Ajaccio, we compare speed TomTom deviations from the 

segment speeds measured by Bluetooth sensors. The comparison 

is on a 477m segment near the city centre for both driving 

directions. From the calculated time-of-day speed averages, 

TomTom on both weekdays and weekends underestimates the 

speeds especially during the morning and evening peak periods 

on weekdays as shown in Figure 13 and Figure 14.  This trend is 

observed on both driving directions consistently which could 
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indicate TomTom’s lower penetration rate. The confidence 

values for both sets of speeds have a similar trend rising in the 

morning and dipping after evening hour traffic but the ground 

truth speeds from the Bluetooth sensors report lower values. 

Based on these confidence values and the error rate which is 

between 28-30% in Table 4, the quality of both datasets to 

estimate real-time conditions would be difficult to ascertain 

unless further quality tests are conducted.  

 

Table 4: A comparison of error rates on space-mean speeds 

from TomTom FCD compared to Bluetooth speeds on both 

driving Casone - Madame Mère towards the city and Madame 

Mère – Casone out of the city. 

 Weekdays Weekends 

Direction MAPE 
(%) 

RMSE 
(km/h) 

MAPE 
(%) 

RMSE 
(km/h) 

Casone - Madame Mère 35.11 10.36 28.29 16.02 

Madame Mère - Casone 28.58 11.45 29.67 12.94 

 

 

 

 
Figure 13: A comparison of TomTom and Bluetooth time-of-

day average speeds and the confidence values for traffic driving 

towards the city centre. 

  

 
Figure 14: A comparison of TomTom and Bluetooth time-of-

day average speeds and confidence values for traffic driving 

away from the city centre.  

 

5. CONCLUSIONS  

FCD is an important source of space-mean speeds and travel 

times, at higher spatial coverage and lesser cost than physically 

installed detectors such as radar. However, they are sometimes 

affected by reliability issues. The confidence values reported by 

the commercial services are hard to validate unless the speeds are 

compared with ground truth speeds. For example, on date 24th 

February 2020, when a section of the A8 highway was closed for 

construction, HERE was still reporting speeds with a confidence 

value of 0.71.  The MAPE and RMSE scores of INRIX speeds 

on the main section of the highway against the ground truth 

speeds, suggest that FCD has the potential to estimate speeds 

reliably and could be used for real-time congestion-detection and 

tracking. However, the performance decreases for road segments 

on intersections and FCD should not be used as the only source 

of speeds. 

Long term evaluations of speeds from FCD services against high-

quality ground truth data is needed to determine their accuracy 

and completeness before using the data in traffic management 

applications. Acceptable error rates for each traffic use case 

should also be defined and used as a threshold to filter out low-

quality data. The FCD performance also depends on the location 

and time of the day and day of the week and consequently there 

is a need to perform evaluations at the highest possible spatial 

resolution.  

Multi-sensor fusion techniques have the potential of increasing 

the robustness of travel times and mean segment speeds 

estimation where one source complements lower quality data 

from another. The temporal coverage is also enhanced as data 

from more probe vehicles is used. The choice of fusion 

algorithms for combining data from different sources should be 

guided by the traffic management application. Processing time 

and the computational resources needed should be considered 

especially where real-time traffic estimation is required. 

Extensive validation and quality control of the data sources is 

essential as this has a significant impact on the accuracy of the 

fused data.   
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