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ABSTRACT:

Roadside ditches serve an important role for draining storm water. Over time vegetation growth, natural sediment deposits, and other
debris can change grade of ditches. Effectively monitoring and identifying these changes to prioritize ditch maintenance is important
from both a pavement preservation perspective and prevention of localized flooding. This study evaluates the performance of two
mobile LiDAR systems for mapping the cross-section of roadside ditches in the presence of vegetation. The geometric quality of data
collected by two different wheel-based LiDAR systems were investigated. The mapped ditches were reported and visualized in 2D
images as well as 3D point clouds. The cross-sections of man-made drainage ditches were extracted and the quality of mapped ditches
was assessed against Real-Time Kinematic Global Navigation Satellite Systems (RTK-GNSS) survey. The overall point cloud accuracy
was 4 cm for the medium-grade system, and 1 cm for the high-grade system. The mapping accuracy is 2 cm (medium-grade system)
and 1 cm (high-grade system) for solid surface. For rough mowed areas and areas with significant vegetation, the vertical accuracy was

found to be 7 cm and 11 cm, respectively, for both wheel-based systems.

1. INTRODUCTION

Roadside ditches are important for conveying road runoff away
from transportation throughways. When properly maintained,
ditches help improve the functionality of road network by pro-
longing the lifespan of the pavement and preventing local flood-
ing. Proper detection and mapping of roadside ditches is not
only crucial to road maintenance, but also lays the foundation
for assessing their impact on the natural hydrologic and nutrient
transport network (Buchanan et al., 2013). Studies in New York
State (NYS) and Ohio have pointed out the lack of maintenance
of roadside ditches due to limited time, labor, equipment, and
funding (Schneider et al., 2019; Matos, 2016). Schneider et al.
(2019) conducted a survey that involved town and county high-
way professionals across NYS to determine their ditch manage-
ment practices. It was estimated that one-third to one-half of the
roadside ditches across upstate NYS are in fair to poor condition.

Ditch detection and mapping that makes use of high resolution
LiDAR point cloud can be a cost effective alternative to field
surveys for prioritizing and planning ditch maintenance. It also
eliminates exposure of survey crews to the hazards of working
adjacent to a roadway. This paper evaluates the feasibility of us-
ing LiDAR data acquired by Mobile Mapping Systems (MMS)
for high resolution mapping of roadside ditches in the presence
of vegetation. The geometric quality of the data collected by
two different MMS is also investigated. Ditch cross-sections are
extracted from MMS LiDAR data and their quality is assessed
against Real-Time Kinematic Global Navigation Satellite Sys-
tems (RTK-GNSS) survey. A reporting mechanism that visual-
izes the cross-sections in 2D images as well as 3D point clouds
is presented. The rest of the paper is structured as follows: a
brief summary of the literature, followed by a description of the
two mobile mapping systems, study area, quality assessment of
the data, characterization of expected spatial accuracy of various
drainage surfaces, and discussion of future applications.

*Corresponding author.

2. LITERATURE REVIEW

Proper mapping of ditch networks is a valuable data for road
maintenance as well as hydrologic modeling. Field survey, Dig-
ital Elevation Models (DEM), and airborne LiDAR are the main
sources used in previous studies. Levavasseur et al. (2015) con-
ducted exhaustive field surveys to model the spatial variability of
man-made drainage density in agricultural landscapes. The study
pointed out that remote sensing data may not be accurate enough
to capture man-made drainage ditches, which can be very narrow
(width and depth of less than 1 m) and densely covered with vege-
tation. Rapinel et al. (2015) derived DEMs from airborne LiDAR
data with different point densities, and then extracted drainage
network from the DEM using an object-based image analysis
approach. The result suggested that the quality of the drainage
network map significantly depends on the point density of the Li-
DAR - which is consistent with Levavasseur et al. (2015). A pilot
study for roadside ditch detection was conducted in 2017 by the
Chesapeake Bay Program Partnership’s (CBP) Roadside Ditch
Management Team (RDMT) in Pennsylvania Ibeh et al. (2017).
The study utilized a DEM generated from airborne LiDAR data,
and detected roadside ditches based on three metrics: flow ac-
cumulation, positive topographic openness, and topographic con-
vergence index. The study also recommended that a DEM be
created from high-quality point cloud. The main limitation of
this study is the lack of quantitative quality control — the qual-
ity of the derived outcome was assessed using visual interpreta-
tion of aerial imagery. Roelens et al. (2018a, 2018b) extracted
drainage ditches directly from irregular airborne LiDAR point
clouds with an average point spacing of 0.10 m instead of in-
terpolated DEM. The LiDAR points were classified as ditch and
non-ditch points using random forest classifier. The ditch dropout
points were then reconstructed to form blind zones. Finally, the
LiDAR ditch points and dropouts were assembled into ditch ob-
jects (2D-polygons and their derived centerlines). The procedure
was tested in a grassland and a peri-urban agricultural area. The
derived ditch centerlines had a positional accuracy of 0.5 m.
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Previous studies suggested that the ground sampling distance of
the DEM or the inter-point spacing of the LiDAR data is criti-
cal to ensuring the quality of ditch mapping. This study utilizes
wheel-based LiDAR data which has a much higher point density
and accuracy when compared to airborne LiDAR data. The ob-
jectives of this study are to:

visualize the ditch cross-sections in 2D and 3D,

. assess the geometric quality of data collected by two grades
of wheel-based LiDAR systems, and

3. map the cross-sections of man-made drainage ditches and

perform an accuracy assessment of LIDAR mapping for var-

ious surfaces and vegetation coverage.

N =

3. MOBILE MAPPING SYSTEMS

Two mobile mapping systems are used in this study: a medium-
grade system, Purdue Wheel-based Mobile Mapping System-High
Accuracy (PWMMS-HA), and a high-grade system, Purdue Wheel-
based Mobile Mapping System-Ultra High Accuracy (PWMMS-
UHA). The PWMMS-HA (shown in Figure 1a) is outfitted with
four 3D LiDAR units: three Velodyne HDL-32Es and one Velo-
dyne VLP-16 High Resolution. Three FLIR Grasshopper3 9.1MP
GigE color cameras are also used for this system. All three cam-
eras utilize an 8§ mm Tamron lens. The remote sensing units of the
PWMMS-HA are directly georeferenced by an Applanix POS LV
220 GNSS/INS unit (i.e., the position and orientation informa-
tion of these units throughout the survey mission are directly de-
rived by the onboard GNSS/INS). The positional accuracy of the
POS LV 220 is 2 cm, and the attitude accuracy is £0.020 deg.
The range accuracy of the HDL-32E and VLP-16 are typically
+2 cm and £3 cm, respectively. The PWMMS-UHA (shown in
Figure 1b) is equipped with two profiling LiDAR units, a Riegl
VUX 1HA and a Z+F Profiler 9012. Two rear-facing FLIR Flea2
FireWire color cameras with 12 mm lenses are also installed on
the PWMMS-UHA. Direct georeferencing of the PWMMS-UHA
is provided by a NovAtel ProPak6 GNSS receiver and ISA-100C
near navigation grade IMU. Positional accuracy of the NovAtel
GNSS/INS system is in the range of £1 to =4 cm, and the atti-
tude accuracy is +0.003 deg. The range accuracy is £5 mm and
42 mm for the Riegl and Z+F units, respectively.

Camera triggering on the PWMMS-HA is accomplished using
the Pulse Per Second (PPS) output of the POS LV as an input to
the Grasshopper3’s opto-isolated General-Purpose Input/Output
(GPIO). In order to achieve a variable frame rate, the PWMMS-
UHA provides a separate Arduino-based triggering circuit to its
two Flea2 cameras. Event feedback for both systems is provided
directly from the cameras to the GNSS/INS systems through the
strobe feedback GPIO. PointGrey FlyCap is used as the software
interface for all cameras on both systems during data collection.

4. FIELD SURVEY

The study site is located adjacent to Purdue University’s campus
in West Lafayette, Indiana. The roadside ditches are present on
both sides of the road and covered by a variety of vegetation. The
width of the ditches ranges from 2 m to 10 m, and their depth
ranges from 0.2 m to 1 m. Portions of the surveyed area were
recently mowed providing an opportunity to evaluate the impact
of vegetation height on mapping accuracy. Figure 2a is an aerial
photo of the study site. Images of location i, ii, iii, and iv, taken by
the Grasshopper camera on PWMMS-HA, are shown in Figure
2b. The MMS datasets were collected on June 13““, 2019. The
PWMMS-UHA drove first, followed by the PWMMS-HA. The
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. Front Right LiDAR (VLP16)
ili. Rear Left LIDAR (HDL32E)
iv. Rear Right LiDAR (HDL32E)

. FrontLeft Camera

i. Front Right Camera

ii. Rear Camera
viii. GNSS Antenna

(a) Medium-grade system (PWMMS-HA)

ix. Rear Left LIDAR (Riegl VUX 1HA)
X. Rear Right LiDAR (Z+F Profiler 9012)
xi. Rear Left Camera
xii. Rear Right Camera
. GNSS Antenna
iv. GNSS/INS Unit

(b) High-grade system (PWMMS-UHA)

Figure 1: Purdue wheel-based mobile mapping systems.

MMSs drove all routes in both directions, so both datasets have
two tracks captured at an average driving speed of 30 mph col-
lected over 10 minutes (actual time that the MMSs drove through
the study site). An RTK-GNSS survey was carried out on July
15™, 2019 to evaluate the geometric quality of the LiDAR-based
mapping of the ditches at the four cross-section locations shown
in Figure 2a. For each profile, we surveyed a few points on the
road, and 20-25 points across the ditch. The team also took few
measurements on the sidewalk that was adjacent to the road in
profiles i and ii.

5. METHODOLOGY

5.1 Point Cloud Reconstruction

Raw data collected by the MMS includes LiDAR range and in-
tensity measurements, imagery, and GNSS/INS trajectory as rep-
resented by the position and orientation of the vehicle frame. The
key to deriving high accuracy point clouds, as well as integrat-
ing imagery and LiDAR data, is a system calibration procedure
that estimates the relative position and orientation (hereafter, de-
noted as the mounting parameters) between the GNSS/INS unit
and the LiDAR and imaging units. In this study, these mounting
parameters are accurately determined through a rigorous calibra-
tion procedure (Ravi et al., 2018a; Ravi et al., 2018b). A recon-
struction process is then carried out in order to bring all the range
measurements from different LiDAR units into one reference co-
ordinate system, which is defined by the reference frame for the
GNSS/INS trajectory. By coupling the range and orientation of
the laser beams, the position of laser beam footprints relative to
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(a) Study site and the surveyed cross-sections (red lines) (aerial
photo adapted from a 2018 Google Earth Image)

(b) Photo of the surveyed area at location i, ii, iii, and iv

Figure 2: Study site and cross-section locations.

the laser unit frame, r;* (¢), can be obtained. The GNSS/INS inte-
gration establishes the position, r;" (¢), and orientation, Ry"(t) of
the vehicle frame relative to the mapping frame. The relationship
between the laser unit frame and vehicle frame is expressed by
the mounting parameters: lever arm, r;,, and boresight matrix,

w- The 3D coordinates of a ground point, I, in the mapping
frame can then be derived through equation (1).

i = (1) + R (Orh + R (R () M

Apart from point cloud reconstruction, image-LiDAR integra-
tion is another equally important advantage of system calibration.
Since the mounting parameters between the GNSS/INS unit, Li-
DAR units, and cameras are accurately determined, all the im-
ages are georeferenced, i.e., the camera position and orientation
are known in a global reference frame. The images capturing
each profile can be identified, and moreover, the LiDAR points
can be back-projected to the images. One should note that the
image-LiDAR integration benefits the reporting mechanism of
ditch mapping (i.e., the ditches can be visualized and reported
in 3D point clouds as well as 2D images even though they are
mainly detected and mapped in 3D space). The image-based vi-
sualization is useful for effective mitigation of detected problems
during the mapping of ditches (e.g., deviation from the design
profile of the ditch, improper grade along the ditch, and debris
within the ditch).

5.2 Profile Extraction and Visualization

The proposed ditch mapping strategy includes three main aspects:
i) geo-referencing, ii) bare earth point cloud extraction, and iii)

ditch cross-sectional/longitudinal profile extraction and visual-
ization. All the sensor data are first aligned in a common ref-
erence frame so that multi-sensor/multi-date datasets can be ef-
fectively fused. The bare earth point cloud representing the ter-
rain is then extracted by a data filtering approach based on cloth
simulation, adapted from Zhang et al. (2016). Having the origi-
nal and the bare earth point clouds, a cross-sectional/longitudinal
profile can be extracted at any location. The terrain is represented
by line segments connecting the bare earth points. Since all the
images are georeferenced, the images capturing each profile can
be identified, and the LiDAR points can be back-projected to the
images. Therefore, ditches can be visualized and reported in 3D
point clouds as well as 2D images even though they are mainly
detected and mapped in 3D space.

6. EXPERIMENTS AND RESULTS
6.1 Point Cloud Compatibility Assessment

In this study, the reconstructed point cloud has an average point
density of 6,373 point/m* and 4,193 point/m?, which corresponds
to an inter-point spacing of 1.3 cm and 1.5 cm, for the PWMMS-
HA and PWMMS-UHA, respectively. The average point density
of the PWMMS-HA is higher than the PWMMS-UHA because
it has more LiDAR sensors, but the PWMMS-UHA has higher
fidelity sensors. One should note that this point density is much
higher than that of airborne LiDAR, which is usually less than 10
point/m>.

The relative vertical accuracy of the data collected by the two
MMS data acquisition systems is evaluated by assessing the point
cloud compatibility. To assess the compatibility between the de-
rived point clouds from different sensors on a given platform and
between different tracks (drive runs) in a given mission, we se-
lected and extracted a segment on the road which is presumed
to be planar, and checked the alignment across different sen-
sors/tracks.

e Figure 3a-3g show the PWMMS-HA point cloud alignment
along the road of profile i. The red points from westbound
and the blue points from eastbound are well-aligned and the
noise level (i.e., the spread of the point cloud in the vertical
direction) is approximately 0.030 m and 0.020 m for HDL
32E and VLP16 LiDAR sensors, respectively (Figure 3b-
3e). The point cloud also shows a good alignment across
multiple sensors, and the noise level is approximately 0.040
m for both tracks (Figure 3f and 3g).

e Figure 3h-31 shows the PWMMS-UHA point cloud align-
ment within the same area. The result suggests good align-
ment between two sensors, and the noise level is roughly
0.010 m and 0.006 m for Riegl and Z+F, respectively (Fig-
ure 3i and 3j). The point clouds across the two tracks are
also well-aligned, with a noise level of 0.006 m (Figure 3k
and 31).

Overall, the point cloud acquired by both systems have valid com-
patibility in the vertical direction between different tracks for a
given sensor, as well as between different sensors for a given
track. The PWMMS-UHA has a noise level much lower than
the PWMMS-HA.

6.2 Profile Extraction and Visualization

The previous section reported the vertical accuracy of the point
cloud derived from the PWMMS-HA and the PWMMS-UHA
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Figure 3: Point cloud compatibility between different sensors and
tracks (using profile i as an example). The units of the horizontal
and vertical axes are in meters with one-meter separation between
the ticks along the horizontal axis.

was approximately 4 cm and 1 cm, respectively. With the high-
accuracy dense point cloud, mapping a solid surface roadside
ditch is not a challenge. However, most of the roadside ditches
are covered with vegetation and thus the capability of mapping
such ditches as well as identifying the ground surface is critical

for evaluation of the system performance. The following anal-
yses evaluate the feasibility of mapping vegetated ditches using
MMS-based LiDAR data.

Four ditch cross-sections at location i, ii, iii, and iv in Figure
2 are segmented, reported, and visualized. Figure 4 shows the
3D and 2D visualization of the ditch at location iii, where the
right side of the road is recently mowed and the left side is un-
mowed. The cross-sectional profile, bare earth points, terrain, and
manually-collected RTK-GNSS survey measurements (hereafter,
RTK points) are illustrated in Figure 4(a). The bare earth points
are compatible with the RTK points, which indicates that some
LiDAR points penetrate to the terrain or close to the terrain while
other LiDAR points capture the grass. This evidence shows that
LiDAR can penetrate vegetation and report elevations below the
visible surface. The degree of penetration depends on the density
of the vegetation as well as the size of the laser beam footprint.
In addition to 3D visualization, the cross-sectional profile and the
corresponding ground points are projected onto the RGB images.
As shown in Figure 4(b), the back-projected points coincide with
the corresponding features in the images. The image-based vi-
sualization is useful for effective mitigation of detected problems
during the mapping of ditches (e.g., deviation from the design
profile of the ditch, improper grade along the ditch, and debris
within the ditch).

6.3 Accuracy Assessment

To quantify the discrepancy between the LiDAR and RTK points,
we manually classify the LIDAR/RTK points into four classes:
road, sidewalk, mowed grass area, and un-mowed grass area. The
elevation difference between each RTK point and the closest Li-
DAR point is calculated, and the statistics including the mean,
standard deviation, median, maximum, minimum, and the root-
mean-square error (RMSE) are reported (as shown in Table 1).
Figure 5 shows the interquartile range for each class. According
to the statistics, the variance of the elevation difference is small
for the road and sidewalk, and much larger for mowed and un-
mowed grass area. The RMSE suggests that the accuracy of ditch
mapping is =2 cm for PWMMS-HA and +1 cm for PWMMS-
UHA on the road and sidewalk. In the grassy area, the accuracy of
ditch mapping is in the range of £7 cm and 411 cm for mowed
and un-mowed areas, respectively. These results show that our
MMS units are capable of mapping ditches with a width less than
10 m and depth less than 1 m. The slightly better accuracy of the
PWMMS-HA-based profiles is mainly attributed to better pene-
tration of vegetated surfaces due to its higher point density and
larger beam divergence angle of the Velodyne units.

7. CURRENT AND FUTURE WORK

The objective of this study is to: 1) visualize the ditch cross-
sections in 2D and 3D, 2) assess the geometric quality of data
collected by two grades of LiDAR-based MMS units, and 3) map
the cross-sections of man-made drainage ditches covered with
vegetation and evaluate the quality. The compatibility of MMS
LiDAR point cloud between different sensors and tracks was val-
idated using a segment of point cloud on the road. The overall
point cloud accuracy was £4 cm for PWMMS-HA and 41 cm
for PWMMS-UHA. The ditch mapping result showed that the
MMS LiDAR point cloud is capable of mapping a ditch whose
width is within 10 m of the roadway edge and up to 1 m deep.
The mapping accuracy was found to be 2 cm (medium-grade
system) and £1 cm (high-grade system) for solid surface. For
rough mowed areas and areas with significant vegetation, the ver-
tical accuracy was found to be &7 cm and £11 cm, respectively,
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Figure 4: Cross-sectional profile of the ditch at location iii.
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Figure 5: Characterizing elevation difference between RTK
points and LiDAR points for two mobile mapping systems with
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for both systems. Current and future work will be focusing on
the investigation of the potential of UAV-based LiDAR for map-
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