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ABSTRACT:

In this paper, we demonstrate the inclusion of a top-view camera system mounted on a city bus in an existing sensor setup. A novel
sensor setup with five down-facing cameras is mounted on the roof of a MAN Lion’s City 12 city bus to extract landmarks in road
scene images. Its positioning is validated by an exemplary detection of lane markings. The concept for further landmark detection
with the help of the presented camera system is explained in this paper and sensor data fusion methods are proposed. Based on our
previous findings (Albrecht et al., 2019), strengths of the novel sensor system are introduced to improve the current environment
perception system. For now, only a qualitative observation of the capability to detect lane markings and other landmarks can be
presented. Future work will use the current findings for landmark detection for a vehicle self-localization system.

1. INTRODUCTION

Semantic segmentation is one of the main tasks for automated
vehicles on public roads. Not only the detection of objects,
but also their semantic information help perceiving the envi-
ronment. As semantics can only be determined by optical sen-
sors like cameras, a later fusion of semantics and range data is
preferable. Usually cameras in automated vehicles are mounted
horizontally to have a big field of view in the vertical direction.
(He et al., 2016) and (Chen et al., 2018) use these road scene
images for semantic segmentation. Also, some datasets (Geiger
et al., 2013) (Caesar et al., 2019) (Cordts et al., 2016) provide
horizontal camera images in combination with radars and laser
scanners.

In contrast, we are using a top-view system with cameras facing
downwards. From that sensor setup, we expect higher detection
rates of lane markings and curbs next to the vehicle. These
are areas where current sensor systems have their blind spots.
The area on the ground that can be observed increases with the
height of the sensor system. The accuracy on the other hand
decreases as a bigger area is covered with the same amount of
image pixels. As the top-view system is mounted on a bus, the
proposed method shall evaluate if the high mounting position
also increases overall detection rates.

Automated vehicles are not able to cover all possible driving
situations only by using camera data, so a fusion with ranging
sensors like laser scanners and radars are needed. Our previous
concept (Albrecht et al., 2019) focused on the sensor data fu-
sion of laser scanner point clouds with segmented road images
from horizontal cameras in an low-level fusion approach. In this
extension, we include objects detected by the top-view camera
system in a late fusion approach. For acquisition of sensor data,
we will make use of a neural network proprietary pre-trained
for semantic segmentation and a proprietary dataset consisting
of images from a passenger car. In future, we will extend the
data to also cover our current sensor setup.
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Figure 1. Mounting of top-view cameras on a city bus -
exemplary field of view is given by the green lines perpendicular

to the busses outer hull

In this paper, we estimate the benefits of including a set of cam-
eras facing down into a conventional sensor setup consisting of
laser scanners, radars and horizontal cameras. By projecting the
camera images to an assumed ground plane, there is no need to
estimate the distance in the image but to calculate that by extrin-
sic calibration. We state this leads to improvements in motion
estimation by visual odometry. Furthermore, the position of
given landmarks like lane markings and curbs can very well be
estimated in this plane-projection. The found static landmarks
will be included into an existing sensor data fusion method and
combined in a late fusion approach. Preliminary results of se-
mantic segmentation will be shown and the transferability to the
sensor system of the bus will be evaluated.
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2. RELATED WORK

Having a variety of different sensor modalities is essential for
a robust and reliable self-driving system. Introducing a novel
camera system into a sensor setup of mainly radars and laser
scanners has multiple advantages:

• Dense sensor output

• High horizontal and vertical resolution

• Field of view selectable by choice of lens

• Semantic information extractable

Especially the first two points enable research in the field of
(deep) neural networks. There are different approaches to eval-
uate camera images dependent on the requested output. In the
following paragraphs, an overview of object detection, semantic
segmentation, general use of top-view systems and their impact
on localization systems will be given.

For object detection one of the most well-known algorithms is
YOLO (Redmon et al., 2016) and its proceeding improvements.
With that, a simultaneous detection and classification take place
as in (Liu et al., 2015). (Meyer et al., 2019) are using convo-
lutional neural networks (CNN) to detect objects in a laser data
using similar techniques as known from computer vision. By
treating the laser scanner’s raw data as a range view images,
they also have a dense sensor output with high resolution de-
pending on the used sensor type. Using similar input formats
for different sensors will make it easier to fuse their data in fu-
ture.

In contrast, semantic segmentation is used to assign a class la-
bel to each pixel in the input image. One example of a semantic
segmentation framework is given by (Ronneberger et al., 2015).
The use a fully convolutional approach to classify cells in a mi-
crobiology application. With an evaluation time of one second,
this algorithm is too slow for robotic applications or automated
driving. (Zhu et al., 2019) show a video-based approach to fur-
ther improve the segmentation process by propagating labels
between two frames jointly. In contrast to that, (Chen et al.,
2018) show a network capable of close to real-time semantic
segmentation. Another big benefit of their method is to be able
to classify object at different scales, what is very important for
our use case. A variety of methods are furthermore explained
in (Long et al., 2015).

Systems with down-facing cameras have recently been used es-
pecially for advanced driver assistance systems. (Lin, Wang,
2010) present a model for top-view transformation to visualize
the back of a car. In contrast to automated driving functions, the
exact position in world coordinates and with the the intrinsic
and extrinsic parameters are not relevant. A similar approach is
given in (Li, Hai, 2011), again only to help the manual driver
while in a parking maneuver. (Geppert et al., 2019) use a multi-
camera system for visual odometry as well as localization in a
given map. In contrast to our system, the cameras are mounted
horizontally, and lack information of the near proximity of the
car.

In this paper, we present a concept on landmark detection with
a top-view camera system. Found landmarks are to be included
into a graph-based localization system similar to (Wilbers et al.,
2019). The constructed factor graph will be optimized by g2o

(Kümmerle et al., 2011) and the landmarks have to be added to
the graph accordingly. In contrast to (Gao et al., 2018), land-
marks are explicitly calculated. A direct approach will not be
used for this paper, as landmarks will be associated with a given
map. In addition to that, a localization approach simply relying
on camera images is not required.

In contrast to using a full simultaneous localization and map-
ping (SLAM) method, our method is only focused on a localiza-
tion problem. Current SLAM algorithms are evaluated in (Bres-
son et al., 2017) and will be further investigated if needed. Cur-
rently we assume to have a globally referenced map. Detection
of landmarks in the vehicle’s sensor image and co-registration
will be used to enable a city bus to self-localize in a given high-
definition map.

3. DATA ACQUISITION

The used test vehicle is a MAN Lion’s City 12 city bus equipped
with various sensor systems. Besides radars and laser scanners,
there are cameras designated mainly for object detection in the
front of the vehicle. Furthermore, there are five cameras built
up as a top-view system as can be seen in Figure 1. The po-
sitions and the covered field of view (FOV) projected to the
ground plane are depicted in Figure 2. The combined FOV is
used to perceive the near field up to 10 meters all around the
bus. To cover the entire 12 meters length of the bus, the open-
ing angle of the used cameras has to be sufficiently large and the
cameras have to be mounted high above the ground. Our sys-
tem is placed at approximately 2.85 meters above ground level.
With increasing height the area is enlarged, whereas accuracy
is reduced because of fewer pixels on the same surface. Nev-
ertheless, calibration and multiple sensor data fusion are eased
with less cameras.

Figure 2. Positioning (green) and field of view (blue) of the five
top-view cameras on the bus (facing right) - the right front

mirror causes the cut-out in the red box

The opening angle of the used cameras is 190◦ in horizontal di-
rection. With that, the camera’s output is a distorted raw image
with a resolution of 1928 x 1208 pixels on the sensor. An ex-
emplary image is shown in Figure 3. Not only distortions, but
in addition, self-reflections of the outer hull reduce the usable
region in the image. For further evaluation of landmark detec-
tors, different methods like pinhole calibration or methods from
(Scaramuzza et al., 2006) will be used for calibration and com-
pared with each other. Currently, only a deep learning based
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Figure 3. Exemplary raw-data from one of the bus-mounted
top-view cameras

method was used for extracting semantic labels from an input
image, so camera calibration was not necessary yet. Nonethe-
less, a region of interest (ROI) in the center of the image was
extracted to minimize the input of said self-reflections. The
data from five cameras is collected simultaneously and can be
fused in future work. Currently only one camera was used for
detection at a time.

With the given pixel size on the sensor (µ0) and effective focal
length, the pixel’s size on the ground can be calculated as:

µground =
d ∗ µ0

flens
(1)

Given µ0 = 3µm, flens = 2.09mm and d = 2.85m, the size
of one pixel on the road surface is 4.1mm. Future work will
evaluate if this accuracy is sufficient and can be used for future
research.

Due to temporary governmental regulations, data acquisition
with the measurement vehicle could not be performed before
the paper deadline. To get an estimation of the usability of de-
scribed algorithms, data from the same camera type on a similar
test truck could be used for first tests. Figure 5a shows a pic-
ture from that truck. The lower position of the camera makes it
comparable to a top-view system for passenger cars, but the self
reflections are more common to a bus. Because of lacking cali-
bration parameters, only one method for semantic segmentation
with deep neural networks was further investigated.

4. PROPOSED METHOD

As described in section 3, we show a novel positioning strat-
egy of our sensor setup higher above the ground than usual in
automated driving. Section 2 shows some examples how cam-
eras are usually used in road data sets and respective algorithms.
In contrast to their methods, we are using the top-view camera
system as an additional sensor for vehicle self-localization. In
(Albrecht et al., 2019), we proposed a concept on low-level sen-
sor data fusion as a combination of semantic labels from camera
images and a laser point cloud. The concept is shown in Fig-
ure 4 and extended by the inputs of our novel top-view camera
system.

Instead of combining the raw image data from these cameras,
first of all landmarks that are only to be recognized by camera
systems have to be extracted. In our case, these include lane
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Figure 4. Concept on vehicle self-localization with low-level
data fusion of camera and laser scanner data extended by the

presented top-view system. The base of this method is given in
(Albrecht et al., 2019), our novel impact is highlighted in gray.

markings and curbs in close proximity to the city bus. As al-
ready mentioned in Section 3, the camera system is closing the
gap in the field of view of the other sensors that are mainly
placed horizontally. The images don’t have to be intrinsically
calibrated, but their extrinsic calibration parameters have to be
known to be able to define the position of the detected landmark
relative to the reference coordinate frame. In our case, this is the
center of the busses rear axle.

To give an example of landmark detection from top-view im-
ages, we will show the procedure for lane markings in this sec-
tion. To localize candidates for lane markings, the given raw
image from a top-view camera was semantically segmented by
a pre-trained deep neural network used for a similar camera sys-
tem. This outputs the regions of interest (ROI) in the input im-
age, where lane markings can be found. In this case, there might
also be false positive class labels.

In the next step, the ROIs are projected to an assumed ground
plane in world space. By applying the transformation from
projection space to a birds eye view (BEV), the lines can be
detected by line-fitting algorithms. Since only lane markings
and curbs in close proximity to the test vehicle are regarded,
the search model can be a straight line for simplicity. The in-
trinsic and extrinsic camera parameters have to be determined
before to calculate the transformation matrix. We hypothesize
that having the cameras facing down, tracking of feature points
and later landmarks will be more robust because of the lacking
need of a depth estimation. The distance from a camera to the
ground should not change over time. This will only be valid for
lane markings close to the vehicle.
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(a) Original image (b) Semantic Segmentation of the image

Figure 5. Semantic Segmentation representation of an exemplary image taken from a similar sensor setup. The image is taken from a
camera on the front right corner of the truck and facing right. It was segmented pixel-wise to detect lane markings (yellow) on the

road.

For each ROI, the best fitting line in the BEV is found and val-
idated against given parameters. Outliers that are too wide or
their spatial area is under a specific threshold can be discarded.
Furthermore, lines not in the direction of travel or perpendicular
to it will also not be regarded.

Found landmarks are registered for all five cameras. These are
then combined with the landmarks detected by the previously
used detectors focusing on point clouds. Since the data fusion
takes place with landmark objects, this procedure is called a
late fusion. Landmarks can be detected by different sensors and
even by multiple sensors of the same sensor system. The land-
mark object fusion algorithm has to combine objects that are
spatially close to each other in world coordinates and find the
best way to represent the landmark. Future work will evaluate
the best metric for keeping, rejecting or combining landmark
candidates.

5. EXPERIMENTS

The camera system as presented in Section 3 is currently
mounted on a test bus. An exemplary image is shown in Fig-
ure 3. The provided FOV of each camera has been verified and
is in accordance to Figure 2, but data collection still has to be
performed with this specific sensor system as mentioned in Sec-
tion 3. The Proof of Concept for the method proposed in Sec-
tion 4 can also be shown with a similar sensor system, although
accuracies for future use cases have to have to be evaluated for
the real system again.

To evaluate the given concept with real data, a surround view
system mounted on an MAN TGX was used to generate sample
data. These cameras usually are used to help developers match
their data sets to specific situations in traffic. They are neither
intrinsically not extrinsically calibrated and are positioned sim-
ilar to surround view systems in passenger cars. Therefore, the
concept can only be tested up to the point that ROIs of lane
marking candidates are defined. A stitching of all top-view
cameras is not needed as already a single camera will give a
good estimation of the minimum overall system performance.

As there is no publicly available data for this type of sensor
setup, we can only start experiments with the collected truck
data. Without having neither intrinsic nor extrinsic camera pa-
rameters for the given data, only a qualitative estimation of the
camera setup is possible. For that, we performed semantic seg-
mentation with a pre-trained deep neural network on images

taken on an intersection in Wolfsburg. Results will be pre-
sented in Section 6 and further discussed there. A qualitative
evaluation is given by the accuracy of semantic ROIs around
lane markings in data collected by the test truck. These will be
transferred into world space and lane markings will be detected
on the ground plane representation.

The found lane markings will be used for self-localization in fu-
ture work, so a relative accuracy of about 10 cm will be needed
according to (Albrecht et al., 2019). As stated above, the accu-
racy of objects will be evaluated with the originally presented
top-view system mounted on the test bus. If the landmarks can
be detected accurately and robustly enough, they will be used
for our graph-based localization system based on (Wilbers et
al., 2019).

6. RESULTS

Figure 5 shows the potential of semantic segmentation for a top-
view camera system with fish-eye lenses. The image is taken
from a camera on the front right corner of the truck and facing
right. The direction of travel would be to the left in this case.
Although there was no given intrinsic camera calibration, the
results look quite reasonable. The ROIs found in the original
image are highlighted yellow in the right image. It can be seen
that most of the lane markings are detected correctly. On the
left side, there are spots where no ROIs are generated. This is
caused by the fact that the neural network is trained with pas-
senger car input data and there would be the car’s outer hull.

All possible lane markings were detected and highlighted, in-
cluding arrows on the tarmac. Furthermore, a manhole was
falsely detected as lane marking on the right in Figure 5b. All
other candidates are either in the direction of travel or in this
case perpendicular to it. By filtering the ROIs transformed to
the bespoke 2D ground plane, only these valid line segments
would remain.

In this case, all found lane marking candidates would be in-
serted to a list of landmarks. Further research has to be per-
formed to differentiate arrows from lane markings. Further-
more, there is no distinction between solid and dashed lines at
the moment. Environmental knowledge as well as line models
will be inferred for robust determination of line type. Not only
lane markings but also curbs have to be recognized in the fu-
ture. These are currently not detected and have to be added in
future work.
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For environment perception and localization, the detection of
landmarks has to be performed in real-time. According to previ-
ous research (Albrecht et al., 2019) algorithms should run with
at least 20 Hz. This image was generated in under 30 ms mak-
ing it usable for real-time application in an autonomous vehicle,
even though further processing has to be performed to transform
these ROIs into line landmarks.

7. CONCLUSION AND OUTLOOK

In this paper, we presented a concept to include a top-view cam-
era system into a sensor setup for environment perception con-
sisting mainly of radar and laser scanners. The general capabil-
ity of lane marking detection by deep neural networks is shown
in this paper. By now, only a qualitative assessment of the de-
tection accuracy could be given. Future work will further inves-
tigate the system’s performance in real-time applications. The
images used in this paper originate from a similar vehicle, but
do not reflect the full potential of the presented sensor setup.
Due to governmental regulations, further tests and data acqui-
sition with the measurement vehicle could not be performed
before the paper deadline.

This concept will be used as a basis for further research in ve-
hicle self-localization. Different methods of sensor data fusion
will extend this concept’s scope. Not only the detection of land-
marks in images generated by the presented top-view camera
system but also the tracking will be further investigated. An ex-
ample would be the realization of a visual odometry system to
estimate the vehicles motion.

Furthermore, not only lane markings should be extracted from
the camera images but also previously described landmarks
should be further classified to increase robustness of matching
while tracking landmarks. Sensor data fusion approaches will
be used for that as well.

REFERENCES

Albrecht, C., Kraus, S., Zimmermann, A., Stilla, U., 2019. A
Concept for an Automated Approach of Public Transport Vehi-
cles to a Bus Stop. Int. Arch. Photogramm. Remote Sens. Spatial
Inf. Sci., XLII-2/W16, 13–20.

Bresson, G., Alsayed, Z., Yu, L., Glaser, S., 2017. Simultane-
ous Localization and Mapping: A Survey of Current Trends in
Autonomous Driving. IEEE Trans. Intell. Vehicles.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E.,
Xu, Q., Krishnan, A., Pan, Y., Baldan, G., Beijbom, O., 2019.
nuScenes: A multimodal dataset for autonomous driving. arXiv
preprint arXiv:1903.11027.

Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille,
A. L., 2018. DeepLab: Semantic Image Segmentation with
Deep Convolutional Nets, Atrous Convolution, and Fully Con-
nected CRFs. IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 40(4), 834-848.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., Schiele, B., 2016.
The cityscapes dataset for semantic urban scene understand-
ing. Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion (CVPR).

Gao, X., Wang, R., Demmel, N., Cremers, D., 2018. LDSO:
Direct sparse odometry with loop closure. Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Syst. (IROS).

Geiger, A., Lenz, P., Stiller, C., Urtasun, R., 2013. Vision meets
Robotics: The KITTI Dataset. Int. J. Robot. Research.

Geppert, M., Liu, P., Cui, Z., Pollefeys, M., Sattler, T., 2019.
Efficient 2d-3d matching for multi-camera visual localization.
Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 5972–
5978.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learn-
ing for image recognition. Proc. IEEE Conf. Computer Vision
and Pattern Recognition (CVPR), 770–778.
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