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ABSTRACT: 
 
In this work we present the development of a prototype, mobile mapping platform with modular design and architecture that can be 
suitably modified to address effectively both outdoors and indoors environments. Our system is built on the Robotics Operation 
System (ROS) and utilizes multiple sensors to capture images, pointclouds and 3D motion trajectories. These include synchronized 
cameras with wide angle lenses, a lidar sensor, a GPS/IMU unit and a tracking optical sensor. We report on the individual 
components of the platform, it’s architecture, the integration and the calibration of its components, the fusion of all recorded data and 
provide initial 3D reconstruction results. The processing algorithms are based on existing implementations of SLAM (Simultaneous 
Localisation and Mapping) methods combined with SfM (Structure-from-Motion) for optimal estimations of orientations and 3D 
pointclouds. The scope of this work, which is part of an ongoing H2020 program, is to digitize the physical world, collect relevant 
spatial data and make digital copies available to experts and public for covering a wide range of needs; remote access and viewing, 
process, design, use in VR etc.  
 

1. INTRODUCTION 

3D mapping platforms are a core component for many and 
diverse workflows and are becoming increasingly useful the last 
years. There is a growing interest for platforms that allow 
accurate, but also fast and massive capturing of data for 3D 
mapping. Many commercial solutions are offered as products or 
services that target the recording of either outdoors or indoors 
environments. They usually rely on a combination of modern 
geospatial technologies such as laser scanning, GNSS 
navigation and photogrammetry. They come in different forms; 
systems mounted on cars, trolleys, backpacks, or even 
autonomous robots. Such systems can capture effectively large 
urban areas, or buildings and construction sites, but they remain 
very expensive due to the top-end hardware components they 
rely on.   
 
Urban planning and public infrastructure management are 
application areas that benefit from such technologies as they 
require constantly updated geographic information. Mobile 
mapping technologies have been widely used in a variety of 
applications in urban areas, for mapping transportation 
infrastructure, utilities, buildings, vegetation and lately for 
autonomous vehicle driving (Shi et al., 2017). A recent survey 
of such applications for lidar based mobile mapping is presented 
in the work of Wang et al. (2019). Real Estate, and 
Architecture, Engineering, Construction (AEC) sectors are also 
adopting digitization. Building Information Modelling (BIM) 
and Geographic Information Systems (GIS) are becoming 
standard tools that handle large amounts of geospatial data.  
 
Besides specialists, the general public is also daily consuming 
mobile mapping data through online tools or mobile apps like 
Google Street View (Anguelov et al., 2010). Of special interest 
is also the case of Mapillary, a collaborative alternative of 
Google Street View that allows users not only to access but also 

to capture street level videos or image sequences with any 
camera and upload them on a map.  
 
The development of new, more versatile mobile mapping 
systems is expected to grow due to i) an abundance of new 
medium/low cost sensors that are widely produced for the 
mobile phone and the automotive industry, and ii) constant 
advancement of the underlying methods and technologies from 
the robotics and autonomous navigation communities. 
 
The work presented here is part of an ongoing European H2020 
STARTS Research Program called “Mindspaces” that aims to 
utilize 3D mapping among other technologies, towards art-
driven adaptive outdoors and indoors design (Alvanitopoulos et 
al., 2019). The scope of our research is to provide a tool that 
captures multiple types of relevant spatial data of the 
environment such as raw video footage, georeferenced imagery, 
pointclouds etc. These can be subsequently exploited by 
designers and artists to collaborate with scientists and engineers 
towards the creation of innovative designs and experiences. 
 
In the following sections, after a short review of related work, 
we present the individual sensors and components of our 
platform, we describe their integration within the Robotics 
Operation System (ROS) and discuss processing workflows for 
generating 3D reconstructions from the collected data. Initial 
experiments are also presented. 
 

2. RELATED WORK 

2.1 Mobile Mapping Systems  

3D laser scanners, photogrammetry and surveying have been 
the typical means for 3D recording of physical world and 
manmade constructions. The scientific and technological 
advances during the last decade have made possible the 
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adaptation in everyday use of much more scalable approaches 
of data capturing for 3D reconstruction. In this context, during 
the last years, several mobile mapping platforms are available in 
the market (Puente et al., 2013). These fall into two main 
categories, i) those that are suitable for mapping of large-scale 
outdoor environments and ii) those suitable for indoor scenes.  
 
2.1.1 Outdoor mapping 

Most major players in the geospatial market offer similar 
systems, like UltraCam Mustang by VEXCEL (VEXCEL, 
2020), RIEGL (RIEGL, 2020), LEICA Pegasus by HEXAGON 
(LEICA, 2020) and VIAMETRIS (VIAMETRIS, 2020). All 
these systems combine proprietary high-end laser scanners with 
high performance INS/GNSS units and optionally 360 
panoramic high resolutions multi-camera rigs. The latter two 
offer also backpack versions of their platforms for vehicle 
restricted areas. Imajbox by imajing, originally designed for 
trains and now updated for cars is a lower cost vision-based 
alternative (imajing, 2020). 
 
2.1.2 Indoor mapping 

For interior spaces different approaches exist. There are 
platforms with similar technologies like the car-mounted 
systems that are built on trolleys (NAVVIS, 2020), helmets 
(REscan, 2020) or backpacks (LEICA, 2020) (VIAMETRIS, 
2020). Handheld devices like the PARACOSM PX-80 
(PARACOSM, 2020) are also available but their accuracy is not 
directly comparable to the above systems.  
 
Matterport (MATTERPORT, 2020) has a dedicated solution for 
creating digital twins for the Real Estate market. Indoor spaces 
are scanned via a proprietary low-cost 360 camera with depth 
sensors, or lately via a mobile phone and all required processes 
as well as hosting of data is done on a web service they provide.   
 
For the Architecture, Engineering, Construction (AEC) market 
Doxel (DOXEL, 2020) provides automated solutions for quality 
inspection and progress tracking. They use artificial intelligence 
and autonomous robots that capture images and perform laser 
scanning surveys on a daily basis. 
 
2.2 Simultaneous Localization and Mapping 

Estimating the 6 Degrees of Freedom (DoF) motion trajectory 
of a mobile mapping platform is key to obtain georeferenced 
data. Direct Georeferencing from the GNSS/INS sensors is not 
always accurate and can fail in GPS restricted areas. Lately 
many systems adopt workflows from the robotics literature, like 
Visual Odometry or Simultaneous Localization and Mapping. A 
taxonomy and review of standard methods for visual odometry 
can be found in the well-known articles of Scaramuzza and 
Fraundorfer (2011a,  2011b). 
 
Simultaneous Localization and Mapping is currently under 
heavy research. Current state-of-the-art SLAM algorithms 
exploit a broad range of data, such as images, IMUs or laser 
scanners and achieve remarkable results (Zhang and Singh, 
2015), especially in autonomous driving scenarios, whilst 
maintaining near real-time performance. Visual methods of 
SLAM can be divided into feature-based, where features are 
first extracted on images (Mur-Artal et al., 2015) and direct 
methods that exploit all image gradients on the available images 
(Newcombe et al., 2011). Forster et al., (2017) proposed a semi-
direct approach that combines direct methods for tracking pixels 
and features correspondences to refine both camera poses and 

structure by bundle adjustment. In a recent publication Kuo et 
al. (2020) propose a generic vision based SLAM solution, 
which is sensor-agnostic and adapts to arbitrary multi-camera 
configurations. Other approaches rely on 3D point cloud to 
image matching using specialized descriptors (Pujol-Miro et al., 
2017), as well as on constraining a SLAM algorithm given a 
street map background (Vysotska and Stachniss, 2017).  
 
2.3 Structure from Motion 

Structure from Motion (SfM), for the last two decades, is 
widely considered as the dominant image-based technique for 
automatic image alignment and 3D model generation and can be 
employed in workflows of processing data from mobile 
mapping platforms. SfM is a well-studied topic in the research 
community with a lot of nearly production-ready 
implementations (Schonberger and Frahm, 2016) and 
extensions, such as integration of video from aerial platforms 
(Leotta et al., 2016). However, it’s still an open research field 
and new approaches have emerged, for example in robust image 
matching, mainly due to recent developments in deep learning 
(Yi et al., 2016). 
 

3. SENSORS - COMPONENTS 

Most mobile mapping systems share similar sensors for 
recording simultaneously visual information, depth, 3D point 
clouds, as well as the position and the orientation of the system 
in the world. More specifically, the proposed space sensing 
platform can support multiple sensors. The current 
implementation (Figure 1, Figure 2) consists of: i) four 
embedded 13MP machine vision cameras by econ-systems 
which can record still images or synchronized 4K video 
sequences, ii) a Velodyne® PUC VLP-16 LiDAR sensor which 
captures 3D point clouds, iii) an Xsens MTI-G-700 GPS/IMU 
unit that record absolute 3D positions and rotations and iv) an 
Intel RealSense T265 Tracking camera for relative positioning 
in GPS restricted areas (such as indoor scenes). Currently no 
lighting device is integrated in the platform.  
 

 
Figure 1. Sensors in the current implementation of the platform 
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Figure 2. Prototype of the mobile mapping platform 

 
3.1 Multi camera rig 

For image and video capturing the platform hosts a multi-
camera rig of four 13MP embedded cameras. The rig is based 
on a multi-camera board (e-CAM130_CUXVR) by an OEM 
camera manufacturer (e-con systems), that targets the 
NVIDIA® Jetson AGX Xavier™ development kit. Cameras are 
connected on the board via high-speed 4-lane MIPI CSI-2 
interface. These four camera modules can capture and stream 
synchronized 4K resolution (3840x2160) video sequences at 
30fps in RAW or H.264 compressed format. Synchronization is 
achieved via an on-board Pulse Width Modulation (PWM) 
generator circuit that provides the necessary trigger signal for 
synchronous capturing. Each camera holds a wide-angle lens 
with 95o x 73o field-of-view (FOV). The four cameras are 
positioned at 90o configuration facing sideways offering a full 
360o horizontal FOV. No upside camera is used in the current 
setup.  
 
3.2 Lidar 

The platform uses a Velodyne® PUC VLP-16 LiDAR sensor 
for pointcloud recording. The specific sensor is selected for it’s 
relatively low cost and high performance balance. It has a range 
of 100m, a positional accuracy of ~3cm, and 360o horizontal 
and 30o vertical fields of view (at 16 discrete channels). It can 
capture up to 600.000 points/second depending on the selected 
horizontal rotation velocity. It can be directly connected to a 
GPS/IMU device and supports data synchronization with 
precise GPS-supplied time via Pulse-Per-Second (PPS), in 
conjunction with a once-per-second NMEA GPRMC or 
GPGGA sentence. The lidar sensor is mounted on a ball camera 
tripod head on top of the platform to avoid occlusions from the 
other sensors and it is placed with an inclination of ~35o to 
capture floors and ceilings.  
 
3.3 GPS/IMU 

For direct Georeferencing in outdoors spaces the platform uses 
the Xsens® Mti-G-700 GPS/IMU Unit. It is the 4th generation 
motion tracker by Xsens and has built-in vibration-rejecting 
gyroscopes and accelerometer, a multi-GNSS receiver (GPS, 
GLONASS, BeiDou and Galileo) and a barometer. It measures 
attitude angles and accelerations and Xsens applies a Kalman 
Filter based sensor fusion algorithm to provide 3D position and 
orientation information.  
 
3.4 Tracking camera 

For GPS restricted areas like indoors environments the platform 
uses a new sensor by Intel®, the RealSense™ Tracking Camera 
T265. It is an embedded computer vision solution that combines 
two fisheye lens sensors with a combined close to hemispherical 

~160o FOV, an Inertial Measurement Unit (IMU) and an Intel 
Movidius Myriad 2 Visual Processing Unit (VPU) that runs a 
proprietary Visual SLAM algorithm directly on the device. The 
T265 is connected and powered via USB and outputs 6DoF data 
at a sample rate of 200Hz. 
 
3.5 Embedded PC & Laptop PC (optional) 

To host the multi-camera rig, the platform utilizes an NVIDIA® 
Jetson AGX Xavier™ development kit that is widely used for 
the development of end-to-end AI robotics applications. This kit 
bundles a carrier board, an integrated thermal solution together 
with the embedded system-on-module (SoM) Jetson AGX 
Xavier. It combines an 8-Core ARM v8.2 64-Bit CPU, a 512-
Core Volta GPU with Tensor Cores and 32 GB 256-Bit 
LPDDR4x Memory. It is configured to run Ubuntu 18.04.  
 
An NVMe disk is added for storage and an LCD touch screen 
for control and visualization. Since this embedded system is 
powerful enough, our initial intention was to build the entire 
platform on it. This was partially achieved, except of support for 
the Xsens GPS/IMU unit, since no drivers were implemented 
for the ARM architecture. Thus, a laptop PC configured with 
Ubuntu 18.04 is an additional component used to include the 
GPS/IMU sensor (see distributed architecture implementation in 
Section 4.1). In an upcoming version of the platform we plan to 
replace the specific sensor with one compatible with the 
embedded PC.  
 
3.6 Power supply 

To power all the sensors and the embedded PC a 4 cell LiPo 
Battery of 5500mAh and 14.8V voltage was used. This provides 
enough power to run the platform for ~30min. When the 
platform is mounted on a car a typical 12v-220v inverter can be 
used instead.   
 
3.7 Mounting 

To combine physically all available sensors a prototype base 
was designed in 3D and then 3D printed (Figure 3). This design 
also provided a good approximation of all sensors’ relative 
orientations (boresight alignment parameters). The base 
includes a typical camera mount that can be connected on a 
camera tripod on a dolly (Figure 2) and pushed around to 
perform data collections of interior environments or relatively 
small outdoors areas (like squares, individual buildings etc). 
Alternatively, it can be mounted on a car roof, via a DSLR 
suction cup camera mount. To further optimize the capturing 
process the use of a gimbal to reduce sensors shake as well as a 
backpack form factor version are considered for future 
implementations.  
 

 
Figure 3. 3D Design of the base supporting the sensors. 
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4. SENSORS INTEGRATION & DATA PROCESSING 

Our platform aims to provide precise and fast 3D recording of 
outdoors and indoors spaces and consists of two main modules, 
i) the space sensing module that is responsible for data 
collection and ii) the 3D reconstruction module for processing 
all available data. The platform runs also in two separate modes, 
one for indoors and one for outdoors, each with some different 
hardware components, such as the tracking camera for indoors 
and the GPS/IMU sensor for outdoors.  
 
4.1 Space Sensing Module 

For the integration of all sensors into a single capturing system 
the Robotic Operation System (ROS) (Quigley et al., 2009) was 
adopted. ROS is a middleware that is widely used by robotics 
teams both in Academia and the development of commercial 
products. Several ROS based opensource projects that 
implement sensors integration are available. Lately ROS was 
also proven to be a suitable platform for building mobile 
mapping systems to capture 3D interior (Blaser et al., 2018) and 
underground environments ((Blaser et al., 2019). ROS was 
selected since it is open source, it supports multiple 
programming languages (C++ and Python), it allows for low-
level device control and is modular by design, making it 
relatively easy to add or remove devices. 
  
ROS implements a message-passing communication 
architecture. A node is created for each sensor, which publishes 
sensor data as messages on specific topics. Topics may contain 
raw or processed values and each data entry inside a topic is 
assigned with a timestamp. Real-time processes are usually 
implemented as nodes that subscribe to specific topics and then 
publish their estimations in new topics. For offline processing, 
all messages are recorded on a single “bag” file. This is 
implemented by a “rosbag” node that subscribes to all messages 
from available sensors and stores them on the disk drive in a 
“bag” file. Then “bag” files can be reproduced for developing 
and testing algorithms.  
 
ROS offers tools to monitor all recorded topics (“rqt-topic”) 
(Figure 4) as well as tools to visualize 2D and 3D sensor data 
(rviz) (Figure 5). Since all data are published as topics with 
timestamps, these timestamps are recorded in the “bag” file. 
Synchronization during offline data access or processing is 
usually handled by taking the data of each sensor that 
corresponds to the nearest timestamp or by interpolation.  
 

 
Figure 4. Data from all sensors in ROS can be monitored via 
“rqt-topic” tool. Data entries are usually accessed through a 

timeline feature. 
 
More specifically, the proposed space sensing platform was 
implemented in ROS Melodic Morenia on Ubuntu 18.04. A 

node was created for each sensor. Nodes communicate with the 
sensors and publish their data on a suitable designed topic.  
 

 
Figure 5. Visualization of the pointcloud topic from the 

Velodyne VLP-16 Lidar node in rviz ROS tool. 
 
For the Velodyne® PUC VLP-16 LiDAR node, the official 
ROS “velodyne_driver”1 and “velodyne_pointcloud”2 packages 
were used. The first provides basic device handling for 
Velodyne lidars and publishes the raw data packets that are 
transmitted from the sensor through an ethernet connection. The 
second provides point cloud conversions. The Velodyne node 
publishes a “velodyne_points (sensor_msgs/PointCloud2)” topic 
which contains accumulated Velodyne points transformed in a 
selected frame of reference. 
 
An official ROS package “xsens_mti_driver”3 was also used for 
the Xsens® Mti-G-700 GPS/IMU Unit Node. The node 
publishes a “tf (geometry_msgs/TransformStamped)” topic that 
contains 6 DoF orientation parameter (X, Y, Z translations and 
quaternion rotations) transformed in a selected frame of 
reference. A similar topic is published from the RealSense™ 
Tracking Camera T265 node that uses the ROS 
“realsense2_camera”4 package.   
 
A new package was developed by our team for the multi-camera 
rig since no ROS compatible implementation was available. It is 
designed to work on the NVIDIA® Jetson AGX Xavier™, with 
custom made nodes and topics. The package consists of two 
subprograms, the “capturer” (C) and the “publisher” (C++). 
The first handles the cameras and captures images via v4l2 and 
gStreamer libraries, while the second is responsible to publish 
image data and metadata as a ROS topic. Initially we published 
image frames in a ROS topic but this approach lead to low FPS 
performance. In the current implementation the “capturer” app 
records 4 synchronised 4K videos at 30 FPS as .mkv files with 
H264 encoding format at a storage path defined by the 
“publisher” app. The latter publishes the start/end timestamps of 
the video sequence, as well as the timestamps and the frame_ids 
of every synchronized frame that is added to the buffer of the 
gStreamer. Video files require ~60MB/camera/minute.  
 
ROS natively supports a distributed architecture where sensors 
can run across multiple machines, which communicate through 
a local Network via a talker/listener logic. All nodes are 
configured to use a single ROS Master app (“roscore”), the 
address of which is defined by an environmental variable 
(“ROS_MASTER_URI”). Although the initial plan was to build 
the space sensing module on a single machine (NVIDIA® 
Jetson AGX Xavier™) where all sensors would be connected, 

 
1 http://wiki.ros.org/velodyne_driver 
2 http://wiki.ros.org/velodyne_pointcloud 
3 http://wiki.ros.org/xsens_mti_driver 
4 http://wiki.ros.org/realsense2_camera 
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due to incompatibility of the GPS/IMU sensor with ARM 
processors, the system was actually built following two 
alternative architectures (Figure 6). A single machine mode, 
when GPS/IMU is not used (for example in indoors 
environments) and a distributed one that supports the GPS/IMU 
device. In the latter configuration all sensors are connected on a 
laptop pc, except for the camera-rig, which by design requires to 
run on the Nvidia Jetson Xavier embedded computer. 
 

 

 
 

Figure 6. Robotic Operation System (ROS) integration of 
mobile mapping platform. Single Machine architecture (up) 

Distributed architecture (down).  
 
The space sensing module is executed by a script that launches 
all processes (Figure 7). A basic GUI for touch screens (Figure 
8) was also developed. It has tools to set the capturing 
parameters and start/stop the capturing session. Tools to inspect 
sensors connectivity and to assist the refocusing of each camera 
are also included.  
 
 
 

 

 
 

Figure 7. ROS subprograms of the space sensing module  
 

 
Figure 8. Basic user interface to set capturing parameters, 

start/end data capture and test/troubleshoot sensors connectivity 
 
4.2 3D Reconstruction Module 

Every capturing mission with the space sensing module collects 
multiple types of data, from the connected sensors, which are 
stored into a “bag” file. All data are organised based on their 
timestamps.  For any given time point or period it is possible to 
retrieve the corresponding data (ie image frames, pointclouds 
and 6DoF motion trajectories) and apply 3D reconstruction 
workflows. Since the work presented here is part of an ongoing 
research, several alternative approaches are into consideration 
before concluding to an optimal workflow.  
 
More specifically, for the 3D reconstruction module of our 
platform we relied on existing software libraries, such as ORB-
SLAM2 (Mur-Artal et al., 2015) and Google Cartographer 
(Hess et al., 2016) for vision-based and lidar-based SLAM 
respectively, AliceVision & Meshroom (Jancosek and Pajdla, 
2011 and Moulon et al., 2012) for Structure-from-Motion and 
Open3D (Zhou et al., 2018) for pointcloud processing.  
 
Direct georeferencing from the specific GPS/IMU sensor or the 
tracking camera is not preferable due to their limited accuracy. 
However initial tests have shown that the provided trajectories 
from these sensors can be used to assist vision-based or lidar 
based SLAM algorithms. The latter provide more accurate 
estimations of the platform’s motion trajectory and initialization 
of orientation parameters for the individual pointclouds and the 
image frames. Global maps in the form of registered 
pointclouds are also provided but are most of the times sparse, 
incomplete, and noisy. In most cases though, the 3D models can 
be further improved by means of Structure-from-Motion 
Solutions.  
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-243-2020 | © Authors 2020. CC BY 4.0 License.

 
247



 

Since the four cameras of the platform capture images at high 
FPS rates, each data collection mission consists of several 
millions of image frames. Using the SLAM provided image 
orientations, key poses of the multi-camera rig are selected so 
that they capture the area of interest with sufficient overlap and 
leave no gaps. Only these key frames are used in a Structure-
from-Motion workflow through Meshroom open-source 
software framework. Meshroom implements a self-calibration 
bundle adjustment solution that supports Camera Rig 
Calibration. This allows for optimal estimation of the four 
cameras interior orientation parameters along with their relative 
orientation. This also leads to more accurate and consistent 3D 
reconstruction results. Finally, dense 3D point clouds are 
generated via Multi View Stereo 3D reconstruction algorithms.   
 
In GPS deprived areas, where absolute orientation is a requisite, 
relative path and reconstruction estimations can be updated by 
means of Ground Control Points (GCPs) measured through 
standard Surveying techniques.  
 
It must be mentioned that since all sensors were placed on a 
custom designed 3D printed case with known dimensions, good 
approximations of all sensors relative orientations were a-priori 
available. The effect of small misalignments was handled by the 
SLAM and bundle-adjustment solutions. An approach that we 
plan to further investigate is to update those relative orientation 
parameters by matching in 3D space the individual motion 
trajectories provided from the different sensors. 
 

5. EXPERIMENTS 

To demonstrate the effectiveness of a first prototype of the 
platform two data collection experiments are presented.  
 
5.1 Indoors Environment 

During the development of both the space sensing and the 3D 
reconstruction modules of the platform several experiments 
were conducted inside our office space. The presented survey 
corresponds to a single loop of the platform around an open 
desk area of ~90m2. Figure 9, shows four image frames from 
the multi-camera rig.   
 

 
Figure 9. Example frames from an indoor environment mapping 

session of an office space, in Athens, Greece 
 
In this experiment the 6 DoF motion trajectory from the 
RealSense™ T265 Tracking Camera was used to initialize a 
Structure-from-Motion Solution, with Camera Rig Calibration. 
A subset of the multi-camera rig image frames was used (Figure 
10) (images at a given distance interval). Figure 11 shows an 
accumulated pointcloud from individual scans of the 
Velodyne® PUC VLP-16 LiDAR. The 3D translations and 
rotations of each individual scan were interpolated from the 
synchronized trajectory of the tracking camera.  

 

 
Figure 10. Estimation of mobile mapping platform trajectory by 
means of SfM. The solution was initialized by the RealSense™ 

T265 Tracking Camera. 
 

 
Figure 11. Registered pointcloud from individual Velodyne 

scans 
 
5.2 Outdoors Environment 

A second, more complete data capture mission was carried out 
in the area around the cultural centre of Tecla Sala which is 
situated in the City of L’ Hospitalet, in Barcelona, Spain. This is 
the first Pilot Use Case of the “Mindspaces” H2020 Research 
Program. The tripod dolly was moved slowly around the 
cultural centre building to ensure that there is sufficient overlap 
between scanlines and image frames. The whole survey with the 
mobile mapping platform lasted ~15 minutes. 
 

 
Figure 12. Tecla Sala cultural centre area overview  

(image from Google Earth) 
 
In this experiment a vision-based SLAM solution was used to 
estimate the motion and rotation trajectory of the platform and 
then an automatically selected subset of the collected image 
dataset was fed to the Structure-from-Motion workflow (Figure 
14). A dense point cloud was also computed via Multi View 
Stereo Dense Reconstruction (Figure 15).  
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Figure 13. Four synchronized frames from an outdoor 

environment mapping in Tecla Sala in City of L’ Hospitalet  
 

 
Figure 14. Estimation of mobile mapping platform trajectory by 

means of SLAM and SfM  
 

 
Figure 15. Final dense pointcloud from the Tecla Sala 3D 

survey (SfM).  
 

6. CONCLUDING REMARKS 

In this contribution we presented a first implementation of a 
modular mobile mapping platform that is based on commercial 
hardware components and open source software libraries. The 
integration of all sensors was carried out with the Robotics 
Operation System which allows for easy additions, changes and 
updates of the platform’s components. 
 
Several improvements are under consideration. A first one is the 
replacement of the GPS/IMU sensor with one compatible with 
ARM CPUs. This will allow the platform to run exclusively on 
the NVIDIA® Jetson AGX Xavier™ development kit and thus 
minimize it’s dependency on hardware, it’s size and it’s overall 
portability. The mounting of the platform on a camera gimbal is 
also considered to facilitate data collection sessions and obtain 
more stabilized data. The 3D reconstruction module requires 
further development and all workflows need to be thoroughly 
tested and evaluated with respect to their effectiveness, 
accuracy, and performance on well organised experiments.  
 
A final more general remark has to do with a well-known 
restriction of mobile mapping systems, which is the inability to 
capture spatial information that is not directly visible from 
street-level (i.e. building roofs, backyards etc). Occlusions due 

to obstacles such as buildings, parked cars or trees lead also to 
unavoidable gaps. To get complete digital copies of complex 
spaces mobile mapping missions need to be combined with 
either existing geospatial data from open databases, either with 
aerial missions from drones. This was initially planned for the 
Tecla Sala Pilot Use Case but was not realised because of a 
general ban of drone flight missions in the specific area. 
However, a second Pilot Use Case is currently under 
preparation in a more suitable area where licence to perform 
both mobile and aerial mapping missions is granted to the 
consortium. This will allow us to present soon the potential of 
combining mobile mapping with UAV photogrammetry.  
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