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ABSTRACT: 

 

Over the decades, autonomous driving technology has attracted a lot of attention and is under rapid development. However, it still 
suffers from inadequate accuracy in a certain area, such as the urban area, Global Navigation Satellite System (GNSS) hostile area, 

due to the multipath interference or Non-Line-of-Sight (NLOS) reception. In order to realize fully autonomous applications, High 

Definition Maps (HD Maps) become extra assisted information for autonomous vehicles to improve road safety in recent years. 

Compared with the conventional navigation maps, the accuracy requirement in HD Maps, which is 20cm in the horizontal direction 

and 30cm in 3D space, is considerably higher than the conventional one. Additionally, HD Maps consist of rich and high accurate road 
traffic information and road elements. For the requirement of high accuracy, conducting a Mobile Laser Scanning (MLS) system is an 

appropriate method to collect the geospatial data accurately and efficiently. Nowadays, digital vector maps are const ructed by 

digitalizing manually on the collected data. However, the manual process spends a lot of manpower and is not efficient and practical 

for a large field. Therefore, this paper proposes to automatically construct the crucial road elements, such as road edge, lane line, and 

centerline, to generate the HD Maps based on point clouds collected by the MMS from the surveying company. The RMSEs in the 
horizontal direction of the road edge, lane line, and centerline are all lower than 30 cm in 3D space.  

 

1. INTRODUCTION 

Reacting to the era of autonomous driving, also called self-
driving, not only an industry but also academia has gotten 

involved in the relevant researches and development for 

autonomous vehicles. Autonomous vehicles dedicates to deliver 

better road safety to transport without human intervention and 

promise to bring several benefits including better fuel efficiency, 
less congestion and pollution, and reducing drivers’ cost (Litman 

2017). According to the definition of driving automation 

established by the Society of Automotive Engineers (SAE) 

International, the progress of self-driving development can be 

divided into six stages illustrated in Figure 1. Level 0 is no 
automation driving which means the driver has to carry out and 

concentrate on the whole driving process. Level 1 and Level 2 

employ the functions of Advanced Driver Assistance System 

(ADAS), such as lane departure warning (LDWs), lane keeping 

assist systems (LKAS), and adaptive cruise control systems 
(ACC), to reduce the drivers’ stress. However, the driver still 

needs to pay full attention to driving. For level 4, the automated 

driving system (ADS) can handle all driving tasks by itself 

instead of certain situations (NHTSA). 

 

Figure 1. SAE automation levels (reference: NHTSA) 

                                                                 
*  Corresponding author 
 

Generally, there are many sensors configured on the autonomous 

vehicle to support the navigation and perception services. These 
sensor systems can be separated into positioning sensors, such as 

Global Navigation Satellite System (GNSS), Inertial Navigation 

System (INS), and wheel-mounted Distance Measuring Indicator 

(DMI), and mapping sensors, such as camera, LiDAR, radar. 

Although the Positioning and Orientation System (POS), which 
integrates GNSS and INS, has been fully developed and widely 

used in our daily life, the GNSS signals are easily disturbed by 

multipath interference and Non-Line-Of-Sight (NLOS) reception 

in the urban canyon. It might lead to considerable positioning 

errors and unexpected accidents. Additionally, the mapping 
sensors are also inferior to inherent limitation, for example, 

camera is affected by the illumination, LiDAR suffers from the 

cost, and radar is limited to the spatial resolution. To overcome 

this dilemma, HD Maps becomes extra assisted information for 

autonomous vehicle. Compared with the conventional digital 
maps, HD Maps consist of rich road information, such as road 

geometry, road edge, lane line, centerline, traffic sign, traffic 

light, with highly precise accuracy. Moreover, all road elements  

in HD Maps defined in 3D space with equal scales of the real 

world to prevent misinterpretation. As well as, dynamic 
information is also recorded and shared in real-time (Harsha, 

2017).  

Concerning the accuracy requirement for various applications, 

the accuracy can be divided into four classes: Which Road, 

Which Lane, Where In Lane, and Active Control. Among them, 
the total error budget from positioning and mapping need to be 

lower than 1.5 meters for Which Lane application (Stephenson et 

al. 2011). Otherwise, the accuracy requirement in HD Maps 

should reach 0.2 meters in the horizontal direction and 0.3 meters 

in 3D space. In order to satisfy the requirements and 
characteristics of HD Maps, Mobile Laser Scanning (MLS) 

system, one branch of Mobile Mapping System (MMS), is a 

proper method to collect geospatial information with high 
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accuracy rapidly and efficiently. For the typical mapping task, 

digitalization is usually conducted manually which is time-

consuming and wasting manpower. Therefore, this study 

proposes to develop an automated feature extraction method 

based on point cloud data acquired by the MLS system, which 
takes advantage of extracting high-density 3D points 

representing the surface of objects and high resolution of 3D 

topographic data (Kukko, 2013). On the other hand, this study 

takes the modelling process into consideration to fit the extracted 

road elements since the HD Maps should be light vector maps 
rather than extracted point cloud for uploading and downloading 

efficiency (Gwon et al., 2016). Finally, generating the centreline 

and evaluating the results with verified HD Maps to guarantee 

the quality. 

 

2. RELATED WORK 

2.1 Road Surface Extraction 

Since this study only focuses on the features on the road surface, 

removing non-ground point clouds or useless points are 

contributed to subsequent extraction processing. Therefore, the 
first step is to obtain the correct road surface to improve the 

extracted results and computational efficiency. The researches  

for road surface extraction can be simply categorized into 2D 

image-based methods and 3D point cloud processing respectively. 

For 2D image-based method, there are many studies performed 
deep learning algorithms to segment the road surface from the 

background. Rezaee and Zhang (2017) conducted a patched-

based Deep Neural Network (DNN) model to detect roads on 

high spatial resolution orthophoto aerial data. Dai et al. (2017) 
applied the K-mean algorithm to divide the objects into road, sky, 

and background as well as using the Convolution Neural 

Network (CNN) to classify different road types. Instead of 

implementing deep learning methods and processing the images  

directly, Yang et al. (2012) generated the georeferenced image 
from laser points to represent the geospatial information of 

surroundings. The road surface can be determined by grey-value 

and elevation filtering. 

In contrast to 2D image-based methodologies, processing the 3D 

point cloud directly can avoid accuracy and data loss and 
maintain the whole process on a global scale. Smadja et al. (2010) 

performed RANdom SAmple Consensus (RANSAC) algorithm 

on each scan line of point cloud individually to extract the road 

surface. On the other hand, Hervieu and Soheilian (2013) 

proposed to detect the curb by computing the normal vector of 
the point cloud because the curbs are almost vertical to the road 

surface. Afterward, the point clouds between these two curbs are 

regarded as the road surface. Similarly, Ma (2017) and Guan et 

al. (2014) partitioned the point cloud into a series of profiles 

along with the MLS trajectory data. These profiles are further cut 
into many grids to extract the curb points based on the conditions 

of elevation difference and slope changing. 

 

2.2 Road Markings Extraction 

Road markings are vital road elements for guidance, warning, 
and prohibition for all road users. On the other hand, road 

markings are supported for the operation of autonomous vehicles 

and reliable centerline generation. In general, the road markings  

are high retro-reflective pattern on the road surface. It is a crit ical 

feature for road marking distinguishing. The road markings  
extraction researches can be categorized into carrying out 2D 

images converted from MLS points and MLS point clouds 

directly.  

For the image-based method, Wen et al. (2019) generated the 2D 

image whose grey values are calculated from the mean value of 

intensity of the points in each grid. Then, segmenting the road 

markings from the background based on the modified 

segmentation network, U-net. To determine the semantic 

information of the road markings, Euclidean Clustering (EC) 

algorithm and the CNN model are used for road markings  
classification. Additionally, Yu et al. (2014) proposed to filter out 

the non-road markings by Otsu’s algorithm, which is an adaptive 

thresholding method, since the intensity value is vary depending 

on the distance between the scanner center and measured object 

and incident angles of the emitted laser beams. These extracted 
road markings are further classified by adopting Deep Boltzmann 

Machines (DBM) and further using Principal Component 

Analysis (PCA). 

Except for using deep learning methods, Yang et al. (2012) 

applied Progressive Probabilistic Hough Transformation (PPHT) 
operator to extract the linear road marking extraction. 

Accordingly, Cheng et al. (2016) extracted the road markings  

from the enhanced 2D intensity images and clustered the road 

markings by neighbor-counting filtering and region growing 

algorithm. Furthermore, classifying these road markings based 
on the minimum bounding rectangle (MBR) algorithm and 

decision tree. 

 

2.3 Centerline Generation and Modelling 

Centerline is an essential road element for autonomous vehicle 
control systems. Cudrano et al. (2020) proved that the estimated 

centerline information is contributed to promoting the vehicular 

control system. From the literature review, there are many pieces 

of research for centreline generation based on various data 
recourse. The accuracy of the centerline generated by the GNSS 

trajectory is relevant to the GNSS quality. As well as, it is 

impractical for the large test field due to the length and number 

of lanes on the road (Gwon et al., 2016). Additionally, Zhao 

(2017) partitioned the road markings into several blocks along 
the trajectory. Then, the centreline can be created by calculating 

the center point in each block based on the midpoint formula 

from the bilateral lane line points. On the other hand, Guan (2013) 

and Ma (2017) proposed to generate the centerline parallel to the 

horizontal curved lane line extracted from the MLS points for 
ensuring road safety. 

Storage efficiency and data usability are also important for HD 

Maps. The extracted road edges or road markings points cannot 

become the road elements stored in the HD Maps due to a large 

amount of data volume. Therefore, the modelling process is 
required to represent the geometry information, reach maps 

assess efficiency, and satisfied with the specific HD Maps format 

standard. The clothoid algorithm is the best fitting model for 

depicting the road geometry and the smooth transition curve 

since the road is traditionally constructed corresponding to the 
clothoid (Marzbani et al. 2015). However, the clothoid is only 

defined in the 2D space. On the other hand, Xu et al. (2009) 

employed the B-spline model to fit the centreline generated by 

two boundary lines since B-spline is flexible to adjust the location 

of control points without changing the entire shape of the curve. 
Therefore, B-spline is widely developed in computer-aided 

design (CAD). Rather than giving control points and pre-set 

information, Guan (2013) and Ma (2017) interpolating a smooth 

curve based on a cubic spline algorithm, which is consisted of 

sequential three-degree polynomial functions. 
 

3. METHODOLOGY 

The methodology in this study can be separated into feature 

extraction and road elements modelling illustrated in Figure 2 

and Figure 3. 
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Figure 2. The flowchart for feature extraction 

 

 

Figure 3. The flowchart for road elements modelling 

 

3.1 Road surface extraction 

The point clouds collected by the MLS system provided by the 

surveying company is a large amount of data volume. So as to 

carry out these point clouds, point cloud pre-processing is an 

essential step before extracting the road surface to reduce the 

computational time and improve the quality of the results. First, 
the MLS point clouds, defined in an absolute coordinate system, 

are translated to the local level frame to decline the computing 

costs. Meanwhile, the point clouds are downsampled by using the 

Voxel Grid filter to approximate the points in every segmented 

voxel with the representative point under each voxel. It 
considerably drops down the number of point clouds without 

losing the features of the targets. Subsequently, since the distance 

between the IMU, representing the position of MLS trajectory 

data, and the road surface is ideally constant, the ground point 

clouds can be determined by setting the buffered range from the 
trajectory data. The non-ground point clouds, such as trees, traffic 

light, and traffic signs, are roughly eliminated. In the next step, 

the ground point clouds are partitioned into a set of profiles and 

voxelized into numerous voxels with a given size. The study 

areas lack curb structure, so the candidate curb points are defined 

by the intensity difference. Because the intensity of the sidewalk 

beside the road is significantly high, this characteristic is seemed 

to be a key factor to extract the road edge. If the intensity 

difference of two centroids in adjacent voxels is higher than the 

given threshold, the point will be considered to be the curb point. 
However, there existed wrong curb points derived from the road 

markings points, so these points are removed to refine the curb 

points.  

 

3.2 Road Markings extraction 

The essential element for centreline generation is lane line, which 

is linear road marking, due to its geometrical characteristics. On 

the other hand, the road markings high retro-reflective paintings 

on the asphalt road, so the intensity of road markings is far higher 

than the intensity of asphalt road. These road markings are easily 
distinguished by implementing intensity filtering on the ground 

point clouds with a given threshold. Then, the Statistic Outlier 

Removal (SOR) filter is used to filter out the noisy points rested 

from the intensity filtering. Instead of extracting the whole road 

surface, the refined curbs points are employed to capture the road 
marking points on the road surface from the point clouds 

processed by intensity filtering and SOR filter. Since the point 

clouds are unorganized, the next step is to cluster the road 

marking points by Euclidean Clustering (EC) algorithm based on 

the distance threshold. If the distance between two arbitrary 
points is larger than the threshold, these two points are 

differentiated into different clusters. Otherwise, these two points 

are in the same cluster. However, the EC method is unable to 

segment the stop line and lane line since they are connected with 
each other. This study proposes to segment the road marking 

points into several blocks along the trajectory. If the point density 

in each block, which calculated by the number of point clouds 

divides the area of block, is higher than the density threshold, the 

block is viewed as the location of the stop line. After separating 
the connected road markings, the Oriented Bounding Box (OBB) 

algorithm is applied to capture the width and length of each 

cluster. OBB method can derive the major orientation of the 

object based on PCA to construct a bounding box wrapped in 

each cluster. Therefore, these clusters can be classified into 
different types of road markings based on the geometry 

information defined in the road markings design standards. 

 

3.3 Road Elements Modelling and Centerline Generation  

The classified road marking points are not proper for use as road 
map due to large storage space. In addition, it is hard to elucidate 

the road geometry information (Gwon et al., 2016). This study 

conducts the cubic spline fitting algorithm, which is widely used 

in many pieces of research and proved to perform outstandingly 

for road geometry fitting (Gwon et al., 2016; Ma, 2017), to model 
the extracted road edges and lane lines. The cubic spline curve is 

comprised of a series of continuous piecewise cubic polynomial 

functions between two sequential breakpoints to describe the 

smoothing in every interval. The cubic spline interpolation 

function is expressed as follows. 
 

𝐹𝑖 =

{
  
 

  
 ∑[𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖)+𝑐𝑖(𝑥 − 𝑥𝑖)

2+𝑑𝑖 (𝑥 − 𝑥𝑖)
3]

𝑛

𝑖=1

,𝑤ℎ𝑒𝑟𝑒  𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

∑[𝑒𝑖 + 𝑓𝑖(𝑦 − 𝑦𝑖)+𝑔𝑖(𝑦 − 𝑦𝑖)
2+ℎ𝑖(𝑦 − 𝑦𝑖)

3 ]

𝑛

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒  𝑦𝑖 ≤ 𝑦 ≤ 𝑦𝑖+1

(𝑖 = 1,2,… ,𝑛 − 1)

 (1) 

 

where  𝑎𝑖~ℎ𝑖 = parameters for cubic spline functions 

 𝑥,𝑦  = the coordinate of point clouds 

 𝑥𝑖 , 𝑦𝑖 = the coordinate of break points 

 n = total numbers of interval 
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The advantage of the cubic spline algorithm is that it uses low 

degree polynomial functions to fulfill the interpolation in small 

intervals to avoid the vibration instability due to high degree 

fitting polynomials and reduce the computational complexity for 
a large amount of data. However, the cubic spline is susceptible 

to the noisy points, so the noise removal is a necessary stage 

before modelling. 

Owing to obey the road construction design, the centerline should 

be parallel to the lane line for traffic safety. Since the road width 
is fixed ideally, the centreline can be created by translating a 

certain distance from the central fitted lane line.  Concerning the 

HD Maps format standard defined in Autoware, which is notable 

and widely used platform for autonomous driving development, 

the fitting results are saved as CSV format containing 3D 
absolute coordinates. Finally, the quality and accuracy of the 

results are assessed with the verified HD Maps to ensure the data 

quality and evaluate the availability of the proposed method. 

 

4. RESULT AND ANALYSIS  

4.1 Study Area and Data Acquisition 

The study area is located in the Taiwan CAR Lab, which is the 

first domestic autonomous vehicle test proving ground. Taiwan 

CAR Lab is designed for simulating domestic traffic scenarios  

including intersection, roundabout, merging lane, and curved 
road shown in Figure 4. The lengths of the experimental areas are 

about 35 meters and 37 meters with four-lane road sections 

demonstrated in Figure 5. 

 

Figure 4. The designing schematic map of Taiwan CAR Lab 

 

 

Figure 5. The designing schematic map of Taiwan CAR Lab 

 

The point clouds and trajectory data are collected by the MLS 

system, RIEGL VMX-250, provided by the professional 

surveying company. RIEGL VMX-250 system is composed of a 

POS system and sensing sensors. Among these mounted sensors, 
the POS system composed of dual-constellation GNSS and INS 

integrated system to maintain the stability of 0.005 degrees and 

0.008 degree gyro drift for roll&pitch and heading respectively 

and DMI, while the mapping sensors contains laser scanning, 

which can reach 6000,000 measurements per second, and 
industrial-grade digital cameras to provide high-resolution 

images. 

 

4.2 Results and Discussion 

In order to evaluate the accuracy of the results, the existed 
verified HD Maps for Taiwan CAR Lab are considered to be the 

ground truth for assessment. The ArcGIS 10.5 Desktop is 

implemented to display and analyze the performance of the 

proposed methodology by overlapping the modelling results and 

the verified HD Maps. Figure 6 and Figure 7 show the two curve 
scenarios overlapping with the results and verified HD Maps in 

this study. Since the ArcGIS only supports 2D demonstration, the 

verified HD Maps are converted to CAD files and divided into 

one point per centimeter to represent the ground truth data for 

accuracy assessment.  
In addition, this study selects all points in each road element and 

calculates the statistical data. For the first scenario, the RMSEs 

in 3D space of road edge, lane line, and centreline are 0.210 m, 

0.083 m, and 0.204 m, respectively. While the RMSEs in 3D 
space of road edge, lane line, and centerline are 0.143 m, 0.049 

m, and 0.078 m for the second scenario. The details of accuracy  

are illustrated in Table 1. From the results, the road edge 

modelling is more difficult than other road elements due to its 

complexity and uncertainty for determining the location of the 
boundary, especially in the scenario without curbs. Therefore, 

there are some twisted points located on the road edges in the first 

scenario shown in Figure 6. Moreover, the modelling road edge 

might contain a few points derived from the lane line points near 

the real road edge since the road edges are determined by the 
intensity difference. It leads to the error budget from the distance 

between the lane line and road edge and results in poor modelling 

results for road edges displayed in Figure 7. Therefore, the 

accuracy of the road edge is worse than the accuracy of lane lines, 

which are modelled from the clear and correct extracted lane line 
points. On the other hand, since the centerlines are generated 

from the central lane line, which is a double yellow line in these 

experimental areas, the error in modelling central lane line is 

propagated to the generated centerline. Furthermore, the 

elevation is also a source of error since the elevation of centerline 
cannot be considered by the translating method. Therefore, the 

accuracy of the centerlines cannot be as good as the accuracy of 

the lane lines. 

Overall, the accuracy of all modelling road elements is lower than 

30 cm in 3D space, which is satisfied with the accuracy  
requirement of HD Maps in 3D space. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-285-2020 | © Authors 2020. CC BY 4.0 License.

 
288



 

 

Figure 6. Modelling road elements in first scenario overlapping 

with verified HD Maps (pink points represent the road edge; red 

points represent the lane line; yellow points represent the central 

lane line; blue points represent the centerline) 

 

 

Figure 7. Modelling road elements in second scenario 

overlapping with verified HD Maps (pink points represent the 

road edge; red points represent the lane line; yellow points 

represent the central lane line; blue points represent the 

centerline) 

 

Scenario 1 

 Road edge Lane line Centerline 

2D Mean (m) 0.101 0.033 0.056 

3D Mean (m) 0.115 0.044 0.065 

2D STD (m) 0.093 0.026 0.047 

3D STD (m) 0.084 0.022 0.042 

2D RMSE (m) 0.137 0.042 0.073 

3D RMSE (m) 0.143 0.049 0.078 

2D Max (m) 0.385 0.115 0.181 

3D Max (m) 0.386 0.120 0.182 

Number of 

points 
376 566 380 

Scenario 2 

 Road edge Lane line Centerline 

2D Mean (m) 0.147 0.060 0.084 

3D Mean (m) 0.151 0.070 0.190 

2D STD (m) 0.148 0.049 0.057 

3D STD (m) 0.146 0.045 0.073 

2D RMSE (m) 0.209 0.077 0.101 

3D RMSE (m) 0.210 0.083 0.204 

2D Max (m) 0.547 0.221 0.210 

3D Max (m) 0.548 0.222 0.309 

Number of 

points 
371 547 736 

Table 1. The accuracy of modelling road elements 

 

5. CONCLUSIONS  

This study proposes to automatically generate the centreline on 
the curved road section based on MLS point clouds and model 

the certain road markings to build the light HD Maps to achieve 

better usability and storage efficiency for autonomous vehicles. 

Additionally, the accuracy of the modelling results is verified 

with the verified HD Maps to guarantee the data quality. The 
RMSEs of the modelling results are almost lower than 20 cm in 

the horizontal direction and 30 cm in 3D space, which reaches  

the accuracy requirement of HD Maps. 
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