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ABSTRACT: 

 

With the development of space technology, more and more lunar researches are performed by different countries. For the lunar landing 

mission success, the lunar landing module should equip with advanced Positioning and Orientation System (POS) for the navigation 

requirements. For the pinpoint landing mission formulated by NASA, a good POS with error less than 100 meters is needed in order 

to make the lunar module land safely at the exact destination on lunar surface. However, the existing technologies for lunar navigation, 

such as satellite positioning and star tracker, have poor performance for the navigation requirements. The visual-based positioning 

technology is an alternative way to make sure a lunar landing module reaches the destination. There are two types of visual-based 

positioning technology, absolute and relative navigation. The relative navigation system can provide the solution at a higher rate, but 

the error would accumulate over time. On the contrary, the absolute navigation could provide an initial position or updates of position 

and attitude for relative navigation. Thus, the integrated navigation system from those two methods can take advantage of both stand-

alone systems. On the other hand, the Inertial Navigation System (INS) can help it overcome the disadvantage that the images much 

closer to the lunar surface are not available. This study shows an integrated navigation system that integrates a visual-based navigation 

system and an INS, which is implemented in a simulated lunar surface.   

 

1. INTRODUCTION 

The moon is the closest celestial body to the Earth. Before 

starting the exploration, how to land on lunar surface safely is an 

important issue. Advanced positioning and navigation 

technology are required to land on target precisely. Traditional 

inertial navigation integrates the angular increment and velocity 

increment of the IMU to obtain the position and the attitude. 

However, the error would accumulate due to the initial error, 

measurement deviation and noise, even can reach kilometers. 

Since satellite positioning system is not yet complete on the lunar 

environment, visual-based navigation technology, which has 

high autonomy and accuracy for positioning, is an alternative 

way for navigation.  

 

The extraction, matching, and tracking effects determine the 

quality of visual-based navigation, which means that the feature 

extraction and matching during lunar landing are more important. 

However, these feature detections, such as Scale-Invariant 

Feature Transform (SIFT) algorithms (Lowe, D. 1999), and 

tracking algorithms are computationally intensive and require 

long processing time. Therefore, there are still difficulties in real-

time application in landing. 

 

In order to reduce computation time and avoid the effects of the 

environment, that is, to have too few features, a new Visual 

Odometry (VO)method called Direct Sparse Odometry (DSO) is 

proposed (Engel, J., Koltun, V., & Cremers, D. 2017). DSO has 

strong robustness and speeds up the operation compared to the 

past. The visual-based navigation method continuously provides 

stable position and attitude estimations with the error not 

exceeding a certain range. However, the navigation algorithm has 

the disadvantages of large amount of data calculation and low 

data update rate, which sometimes cause temporary loss of 

tracking targets. 

 

The purpose of this research is to establish an integrated visual-

based navigation system to realize the combination of inertial 

navigation and visual-based navigation and improve the 

navigation accuracy of the lunar landing process. The integrated 

navigation system overview is shown in the Figure 1. 

 

 

Figure 1. Integrated Navigation System Overview 

 

2. VISUAL-BASED NAVIGATION ALGORITHMS 

The necessary input for the visual-based navigation system is the 

image. First, using the Planet and Asteroid Natural scene 

Generation Utility (PANGU) software to simulate the lunar 

surface image. Once the image is simulated, it can be used in a 

visual-based navigation system. The visual- based navigation 

system is divided into two parts; one is the relative navigation 

algorithm and the other is the absolute navigation algorithm. 

 

2.1 Visual-based Relative Navigation 

In this research, the algorithm of visual-based relative navigation 

is Direct Sparse Odometry (DSO) (Engel, J., Koltun, V., & 

Cremers, D. 2017), which is a kind of VO algorithm using the 

direct- method. It has strong robustness and speeds up the 
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operation compared with the past. Direct-method tracks the 

points in the image and computes the camera displacement and 

attitude changes by minimizing the photometric error. The direct 

method eliminates the feature extraction and matching process, 

thereby reducing computation time. Therefore, the direct method 

is used in this research under the assumption that the system 

operates in real time. 

 

Figure 2 shows the basic concept of DSO. The camera 

displacement 𝑇𝑘,𝑘−1 and attitude changes between  k  and k − 1 

frame are estimated by minimizing the photometric error of the 

pixels corresponding to the two images. 

 

 

Figure 2. Basic concept of DSO 

 

When a new image inputs to DSO algorithm, it will go through 

the flow chart shown in Figure 3, performing steps such as 

initialization, attitude estimation, calculating residuals, 

optimizing, and removing outliers. First, use the initial few 

images to complete the initialization, calculate the initial position 

and attitude, and then use the images to update the depth of the 

immature point, which is called “trace new coarse” in the process. 

The optimization is to process the key frame, add new residual 

items, remove the wrong residuals, extract immature points, and 

update the points with new images. 

 

 

Figure 3. DSO system flow chart (J. Engel et al., 2017) 

 

2.2 Visual-based Absolute Navigation 

In order to complete the visual-based absolute navigation model, 

two main processes are needed. One is to use the Speeded Up 

Robust Features (SURF) to find the image feature points, and the 

other is to use the image from the resection technology to get the 

camera position and attitude. 

 

2.2.1 Speeded Up Robust Features (SURF) 

The SURF algorithm consists of the following three steps: feature 

point detection, feature proximity description, and descriptor 

matching. For feature point detection, SURF uses the integral 

map and square filter as the approximation of the Gaussian filter. 

Furthermore, SURF maintains the original image on a spatial 

scale, uses the 9 × 9 square filter results as the initial scale group 

to build the corresponding layer under each scale by changing the 

square filter size, and then constructs the layer into a pyramid-

like concept. After each layer is set according to the scale space, 

each pixel is compared with the adjacent 26 points. If the pixel is 

of maximum value and greater than the threshold value, it is then 

a feature point. 

 

When the feature points are found, their descriptors are created. 

The method of descriptor construction is to describe the changes 

between the feature point and its adjacent phase points. In order 

to ensure rotation invariance, the main direction is first assigned 

to the feature points. Focusing on the feature points and with 6σ 

as the radius of the circle, the Harr wavelet of all pixels is counted 

and multiplied by the Gaussian weight of the corresponding 

position. 

 

In order to obtain the main direction, a sector-shaped sliding 

window with an opening angle of 60 degrees is used to calculate 

the sum of the horizontal and vertical responses of the Harr 

wavelet in the region, and the direction corresponding to the 

largest response area obtained by sliding the sector window is the 

main direction of the feature point. Along the main direction, a 

rectangular area of 20×20 is taken as its neighborhood and 

divided it into 16 sub-areas. Then, each sub-area calculates the 

sum of Harr wavelet responses of the pixel points in the area. The 

response of each pixel point is multiplied by the corresponding 

Gaussian weight of position. In this way, each sub-area vector 

has a total of four magnitudes, and a total of 64-dimensional data 

descriptors is generated. Finally, matching pairs can be found by 

comparing descriptors obtained from different images. 

 

2.2.2 Photogrammetry Space Resection (PSR) 

Photogrammetry Space Resection (PSR) technology uses the 

camera to observe at least three noncollinear known feature 

points and the exterior orientation parameters (EOPs), which 

means that the position and attitude of the photos are calculated 

by these known points. The core theory of the space resection is 

collinearity. The local coordinates (XA, YA, ZA) , the image   

coordinates (xa, ya) of point A and camera perspective center 

(XC, YC, ZC) are collinear. The mathematical expressions are as 

shown in equations (1) and (2). 

 

xa = x0 − 𝑓
𝑚11(XA−XC)+𝑚12(YA−YC)+𝑚13(ZA−ZC)

𝑚31(XA−XC)+𝑚32(YA−YC)+𝑚33(ZA−ZC)
  

      (1) 

ya = y0 − 𝑓
𝑚21(XA−XC)+𝑚22(YA−YC)+𝑚23(ZA−ZC)

𝑚31(XA−XC)+𝑚32(YA−YC)+𝑚33(ZA−ZC)
  

      (2) 

 

Where (x0, y0, 𝑓) is the internal orientation parameter which 

means the principal point and focal length of the camera, and 
(𝑚11, 𝑚12, … , 𝑚33)  are the rotation matrix elements of the 

camera rotating from the local coordinate system to the camera 
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coordinate system. The concept is shown in Figure 4. Let the 

EOPs of the photo be unknown and the image coordinate of the 

target be the observation, then input to the least squares model. 

After calculation, the EOPs of the photo are obtained. 

 

 

Figure 4. Space resection concept 

 

2.2.3 Visual-Based Absolute Navigation Model 

The visual-based absolute navigation model is a combination of 

SURF and PSR algorithm. The first step is to use the SURF 

algorithm to extract the feature points of each simulated image, 

find out their object coordinate, and then store them into the 

database. The flow chart of database construction is shown in 

Figure 5. The images in the database are composed of a few 

groups of images, and every image has its own information, such 

as the EOPs and SURF parameters for its feature points. 

 

 

Figure 5. Database construction flowchart 

 

The second step is to load target images, process SURF algorithm 

on them, and use the current position, which means the estimated 

EOPs from visual- based relative navigation, as the center point 

to make a circle within a 10 kilometers radius. Then, match target 

images with database images one by one with the set SURF 

parameters to find the closest image with the highest success rate 

in the database. 

 

The third step is to find out the object coordinates of the feature 

points, which are extracted from the closest image found in the 

previous step in the database. Finally, figure out the object 

coordinates corresponding to the image coordinates extracted 

from the target image. Thus, the collinear equations are obtained 

in order to process the PSR algorithm. The flow chart and 

illustration of the whole process are shown in Figure 6. 

 

 

Figure 6. Visual-based absolute navigation model flow chart 

 

Figure 7 is the illustration of visual-based absolute navigation 

model, it expresses the first and second step that is mentioned 

above, including how the moon image looks after SURF 

processing and the concept of searching within a radius. The red 

points in the lunar surface images indicates the point number of 

the extracted feature point.  

 

 

Figure 7. Illustration of visual-based absolute navigation model 

 

3. VISUAL-BASED INTEGRATED NAVIGATION 

SYSTEM 

The visual-based integrated navigation system proposed in this 

research is integrated by visual-based relative navigation, visual-

based absolute navigation and inertial navigation system. From 

the system architecture shown in the Figure 1, it is known that 

the system will first fuse the visual-based relative navigation with 

visual-based absolute navigation, and then integrate the fused 

visual-based navigation result with inertial navigation system. 

This chapter will first describe the comparison of different fusion 

methods, and then present the methods in which the proposed 

system is used. 

 

3.1 Loose and Tight Coupling 

Visual information and IMU data fusion can be divided into two 

kinds of data interaction, loose coupling and tight coupling. 

Loose coupling adopts an independent inertial positioning model 

and a positioning navigation model. The update frequency of the 

two models are inconsistent, and there is a certain information 

exchange between the two models. In loose coupling, the inertial 
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data is taken as the core, and the visual measurement data corrects 

the cumulative error in the inertial measurement data. 

 

Tight coupling uses IMU to perform motion estimations in VO. 

The error of IMU integration between image frames is relatively 

small, and IMU data is used to predict frame-to-frame motion, 

accelerates the point matching process, and completes VO 

position and attitude estimation. In loose coupling, GPS 

calculates the result and then input to KF in order to integrate 

with INS. In tight coupling, GPS raw measurement is input to KF 

to integrate with INS. Comparison between characteristics of 

loose coupling and tight coupling is shown in Table 1. 

 

Comparison Loose Coupling 

System 

Tight Coupling 

System 

Basic Each processor has 

its own memory 

module. 

Processors have 

shared memory 

modules. 

Memory Generally do not 

encounter memory 

conflict. 

Generally 

experiences more 

memory conflicts. 

Data rate Low High 

Price Less expensive More expensive 

Table 1. Comparison between Loose Coupling and Tight 

Coupling (Tech Differences, 2017) 

 

There are several tight coupling schemes (Mourikis, Trawny, 

Roumeliotis, Johnson, & Matthies, 2007; Trawny, Mourikis, 

Roumeliotis, Johnson, & Montgomery, 2006) and loose coupling 

schemes (Pham, 2010) in the literature that combine absolute and 

relative state estimates. One disadvantage of tight coupling is that 

algorithms are difficult to disassemble. In contrast, loose 

coupling is more modular and simpler. The loosely coupled 

system can easily choose different absolute navigation system or 

relative navigation system to replace the original algorithm. In 

this research, therefore, the visual-based integrated navigation 

system uses loose coupling to fuse the two kinds of sensors in 

order to achieve its flexibility. 

 

3.2 Fusion of Visual-Based Navigation 

Figure 8 shows the fusion process of visual-based navigation. 

The output of both visual-based navigation algorithms is camera 

state, that is, the position and attitude of the camera, but one is 

relative camera state, and the other is absolute camera state. The 

position of this moment plus the relative movement distance can 

get the position of the next moment. When the absolute 

navigation has a solution, the position of the next moment is 

replaced by this solution, and then the position continues to 

accumulate the subsequent relative movement distance until the 

next absolute navigation solution input. When the absolute 

navigation has no solution, the relative navigation is not updated 

and continues to accumulate the subsequent relative movement 

distance. 

 

 
Figure 8. Fusion of Visual-Based Navigation 

 

3.3 Fusion of Visual-Based Navigation and INS 

The visual-based integrated navigation system overview is 

shown in Figure 9. The output of visual-based navigation 

algorithms is low frequency absolute camera state. At the same 

time, the inertial navigation requires the simulated IMU data to 

generate high frequency relative position and attitude of the 

camera as its output. These output states will eventually become 

the input of KF, and the final absolute camera state result is 

obtained. 

 

 
Figure 9. Fusion of Visual-Based Navigation and INS 

 

The Kalman filter (KF) (Welch G., & Bishop G.1995) is a highly 

efficient recursive filter that estimates the state of a dynamic 

system from a series of incomplete and noise- containing 

measurements and has numerous applications in technology. One 

common application is guidance, navigation, and the control of 

vehicles, aircrafts and space crafts. It is also widely used in time 

series analysis, such as signal processing and econometrics. 

 

The main concept of KF is as shown in Figure 10. The algorithm 

is a two- step procedure. First is the estimation step, also called 

time update, which is shown in equations (3) and (4). The KF 

produces an estimate of the current state, which also includes 

uncertainty. Next is the update step, also called measurement 

update, which is shown in equations (5) to (7). If the next 

measurement is observed, the estimated value will be updated by 

a weighted average called the Kalman gain. The higher the 

certainty, the higher the weighted weight of the measurement. 

This algorithm is iterative and can be executed in a real-time 

control system. 
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Figure 10. The main concept of KF (Welch G., & Bishop 

G.1995) 

 

 �̂�𝑡|𝑡−1 = 𝐹𝑡 × �̂�𝑡−1 + 𝐵𝑡 × 𝑢𝑡  (3) 

 𝑃𝑡|𝑡−1 = 𝐹𝑡 × 𝑃𝑡−1 × 𝐹𝑡
𝑇 + 𝑄𝑡  (4) 

 𝐾𝑡 =
𝑃𝑡|𝑡−1×𝐻𝑡

𝑇

𝐻𝑡×𝑃𝑡|𝑡−1×𝐻𝑡
𝑇+𝑅𝑡

   (5) 

 �̂�𝑡|𝑡 = �̂�𝑡|𝑡−1 + 𝐾𝑡(𝑧𝑡 − 𝐻𝑡�̂�𝑡|𝑡−1) (6) 

 𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡 × 𝐻𝑡 × 𝑃𝑡|𝑡−1  (7) 

 

where  𝑥𝑡 = state vector at time 𝑡 

 𝑢𝑡 = vector that controls the parameters 

 𝐹𝑡 = the state transition matrix 

 𝐵𝑡 = control parameter matrix 

 𝐾𝑡 = Kalman gain 

 𝑄𝑡 = process noise covariance matrix 

 𝑅𝑡 = measurement noise covariance matrix 

 𝑃𝑡 = estimation error covariance matrix 

 𝑧𝑡 = measurement vector 

 𝐻𝑡 = rotation matrix of state vector to measurement 

 

At each discrete time increment, KF use a linear dynamical 

system and IMU data to predict the new state, and to get the less 

noise result of position by the update from other measurement. 

 

4. EXPERIMENT SETTING 

4.1 Flight Path Region 

The landing site is set at the lunar longitude of 59.921°E and the 

latitude of 87.185 °S, and the simulated reference trajectory is 

about 80 km long and 10 km height from the landing site. In 

Figure 11, the entire reference trajectory is displayed in the local 

level frame that uses the landing point as the origin. The whole 

landing process descends from 10km-0km high from the lunar 

surface. Figure 12 shows the simulated reference attitude, which 

means the roll, pitch, and yaw angle of the lunar module. The 

reference attitude shows that after the first 60 seconds of the large 

yaw angle changing, the lunar module will move smoothly. The 

simulations of all images are based on an approximate vertical 

image, so the variations of roll and pitch angle are close to zero. 

 

 
Figure 11. The reference trajectory in local level frame 

 

 
Figure 12. The reference attitude local level frame 

 

4.2 Image Data Setting 

Figure 13 shows the height change over time. The blue line is the 

height of the whole reference trajectory, and the orange point 

means the location of the image database which is prepared for 

visual-based absolute navigation. An important factor that affects 

the feasibility of visual-based navigation algorithms is the image 

resolution. If the image is too blurry, the two visual- based 

navigation algorithms would not work or would have very poor 

accuracy. However, the lunar DEM source that covers the region 

of reference trajectory is downloaded from the NASA website 

and has the highest spatial resolution of only 10m/pixel. As 

shown in Figure 14, if the gradually decreasing ground distance 

corresponding to one pixel is smaller than the spatial resolution, 

which means the closer it is to the ground, the image may be too 

blurred to be used in visual-based navigation. 

 

 
Figure 13. Height of the simulated reference trajectory 

 

 
Figure 14. Relationship between a pixel and the ground during 

descending 

 

Therefore, according to the limitation of the image resolution, 

which is, the dependence on the space resolution of the lunar 

DEM that inputs to the PANGU software, this study determines 

the most appropriate height for the visual-based system algorithm 

through multiple tests. The input image for DSO algorithm is 

limited to 10km-2km high, and the input image for PSR 

algorithm is limited to 10km-6km high. If the position is beyond 

the limited height, it is assumed that the image input is interrupted 

and that the algorithm would stop executing. Therefore, the 

simulation of the image database is also from 10km-2km high. 
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For visual-based absolute navigation, it is assumed that the 

execution time interval is 5 to 10 seconds. Therefore, a set of 

images around the current reference position is created every 7.5 

seconds and is stored in the image database. For example, a set 

of images is stored at a reference height of 7.5 seconds, and 

another set of images is stored at a reference height of 15 seconds. 

In 7.5 seconds between executions, the relative positioning 

algorithms will continue to run so that the estimation of the 

trajectory will not be interrupted. The number of every set of 

images is shown in Table 2. The increase in the number of images 

at 22.5 seconds is since the surface is too flat at this location, 

resulting in too few feature points for extraction and matching. 

Therefore, more images are needed to improve the extraction and 

matching success rate of the feature points. 

 

Flight time 

(centisecond) 

Height  

(km) 

Number of 

images 

0 10 15 

7.5 10.39314 15 

15.0 10.14727 15 

22.5 9.41365 18 

30.0 8.36972 15 

37.5 7.20211 15 

45.0 6.09739 15 

Table 2. Number of images for Database 

 

The camera parameters used in research are set as an ideal 

pinhole camera. The parameters are shown in Table 3. If there is 

an actual camera, the camera parameters will be changed to the 

corrected parameters. The experiment settings for visual-based 

navigation algorithms and the inertial navigation are shown in 

Table 4. The three methods used in the system have raw data with 

different efficiencies. The full flight time of the trajectory is 

228.08 seconds. 

 

Parameters Content Setting 

fx Camera focal length / 

X direction resolution 

0.78125000 

fy Camera focal length / 

Y direction resolution 

0.97656252 

cx Image center point 

X position offset 

0.5 

cy Image center point 

Y position offset 

0.5 

distortion Camera geometry 

correction parameters 

0 

Input width Input image wide 

resolution (pixels) 

1280 

Input height Input image high 

resolution (pixels) 

1024 

Table 3. Camera parameters setting in DSO algorithm 

 

FOV 60 

image size (pixel) 1280*1024 

DSO efficiency 10Hz 

PSR efficiency 0.2 Hz 

IMU data efficiency 100 Hz 

Number of DSO images 1485 

Number of PSR images 108 

Full flight time 228.08 sec 

Table 4. Settings for the full system 

 

5. RESULTS AND ANALYSIS 

5.1 Results and Analysis of Position 

Currently, the PSR algorithm can only be used down to 6 km in 

height, and the DSO algorithm can only be used down to 2 km in 

height. Thus, this research assumes that when the time is less than 

60 seconds, the PSR, DSO, and INS in the system are working at 

the same time; when the time is between 60 and 150 seconds, the 

PSR cannot operate, leaving the DSO to assist the INS algorithm; 

when the time is more than 150 seconds, the visual navigation 

algorithms is invalid, and only the INS operates independently. 

The execution time period of each algorithm is shown in Figure 

15, with the vertical axis as the height of algorithm execution. It 

can be observed that the time is about 60 seconds when the PSR 

algorithm stops at about 6 km high, and the time is about 150 

seconds when the DSO algorithm stops at about 2 km high. 

 

 
Figure 15. Execution time period of each algorithm 

 

The complete result trajectory of the algorithm and simulated 

reference trajectory are shown in Figure 16. In the figure, the blue 

line is the reference trajectory, the red line is the result trajectory 

of the inertial navigation, the yellow line is the result trajectory 

of the visual-based navigation system, the purple star symbolizes 

the absolute positions calculated by the PSR algorithm, and the 

green line is the result trajectory of the integrated navigation 

system. Figure 17 to Figure 19 show the trajectories on different 

planes. Figure 20 shows the position errors of the INS, and Figure 

21 shows the position errors of the integrated navigation system. 

 

 
Figure 16. Trajectory result of the integrated system 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-305-2020 | © Authors 2020. CC BY 4.0 License.

 
310



 

 
Figure 17. Trajectory result on X-Y plane 

 

 
Figure 18. Trajectory result on Y-Z plane 

 

 
Figure 19. Trajectory result on X-Z plane 

 

 
Figure 20. Position error of INS on the three axes 

 

 
Figure 21. Position error of integrated system on the three axes 

 

In the above position error, the amount of error reduction 

provided by the PSR in the first 60 seconds exists but is less 

obvious, because the simulated INS is assumed to be just turned 

on, and the error accumulation is not fast. If a higher spatial 

resolution DEM can be obtained in the future to make the PSR 

execution time more durable, the effect of the PSR on reducing 

the errors should be more obvious. 

 

In Table 5, the comparison between INS and Integrated 

navigation system is shown, including the position error at the 

end point of the trajectory and error Root Mean Square (RMS). 

The error of the integrated navigation system decreased 

obviously, especially in the horizontal direction. As shown in 

Table 6, the trend of the error in the horizontal directions is 

affected by the length of the trajectory. Unlike the horizontal 

trajectory that moves almost in a straight line, the cumulative 

error in the vertical direction is less affected by the length of the 

trajectory which is possibly because that the vertical trajectory 

has undulations and the error is eliminated. 

Error Analysis X (m) Y (m) Z (m) 

End Point 

Error (m) 

INS 52.5267 99.1625 4.7218 

Integrated 17.0813 21.1907 1.6610 

Error RMS 

(m) 

INS 25.5665 49.2207 3.9800 

Integrated 9.8208 13.3538 2.2628 

Table 5. Analysis for position errors 

 

Trajectory Length (km) 33.3772 77.5748 11.9894 
𝐸𝑛𝑑 𝑃𝑜𝑖𝑛𝑡 𝐸𝑟𝑟𝑜𝑟

𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝐿𝑒𝑛𝑔𝑡ℎ )
 INS 1.5737 1.2783 0.3938 

Integrated 0.5118 0.2732 0.1385 

Accuracy Improvement (%) 67.48 78.63 64.82 

Table 6. Analysis for position accuracy 

 

Table 7 shows the position error in the end point of different 

algorithms and that in the horizontal direction, the error in INS-

only is larger than that of visual-based-only; but in the vertical 

direction, the error in INS-only is smaller than that of visual-

based-only. The possible reason is that the length of the simulated 

reference trajectory in the horizontal direction is larger than the 

length in the vertical direction, resulting in a larger error of the 

INS-only in the horizontal direction. The reason why the visual-

based-only has a larger error in the vertical direction may be that 

the later in the trajectory, the closer to the lunar surface the 

camera is, and the more blurred the image. 

  

(meters) Horizontal 

Error 

Vertical 

Error 

Total Error 

INS only 112.2152 4. 7218 112.3145 

DSO only 111.6353 601.3034 611.5784 

Visual-based only 44.4339 291.6924 295.0573 

Integrated 27.2179 1.6610 27.2685 

Table 7. Position error in the end point of different algorithm 
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5.2 Results and Analysis of Attitude 

The execution time period of each algorithm on attitude is shown 

in Figure 22, with the vertical axis as the heading result, which is 

the yaw angle, of the algorithm execution. The PSR algorithm 

stops at about 60 seconds and the DSO algorithm stops at about 

150 seconds. 

 

 
Figure 22. Time period of each algorithm execution on attitude 

 

Figure 23 and Figure 24 show the attitude errors of INS and of 

the integrated system. The errors are reduced in all three angles. 

In Figure 24, the pitch angle error has a decreasing trend at 50 to 

150 seconds. At this time, it should be the period in which DSO 

and INS are executed. Therefore, it can be observed that DSO 

provides a good contribution to the reduction of pitch angle error. 

After 150 seconds, the period in which only the INS is being 

executed, it can be observed that the error of the pitch angle starts 

to accumulate again. 

 

 
Figure 23. Attitude error in INS 

 

 
Figure 24. Attitude error in the integrated system 

 

 

 

 

Error Analysis Roll Pitch Yaw 

End Point 

Error (deg) 

INS 0.2543 0.3554 0.4258 

Integrated 0.1507 0.1609 0.3662 

Error RMS 

(deg) 

INS 0.1511 0.2066 0.3033 

Integrated 0.0936 0.0764 0.1888 

Accuracy Improvement 40.74 % 54.73 % 14.00 % 

Table 8. Analysis for attitude errors 

 

The exact statistics are shown in Table 8, displaying the attitude 

errors of the INS and integrated navigation system. It shows that 

errors are significantly reduced in all three angles at the end point 

error and the error RMS. This indicate that the visual-based 

navigation results have a good effect in reducing attitude errors. 

The attitude error of less than 0.5 degrees is enough for the pin-

point landing problem of the moon landing process. 

 

6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

This paper presents a visual-based integrated navigation system. 

Relative positioning and absolute positioning can be achieved 

simultaneously by using different technologies. First, the relative 

but drifting positioning is achieved by the DSO algorithm and the 

INS. At the same time, through feature point matching and PSR 

algorithm, the absolute but time-consuming positioning is 

realized. When visual-based navigation does not work, the INS 

continues providing navigation solutions; and when visual-based 

absolute navigation does not work, the visual-based relative 

navigation continues providing navigation solutions to correct 

the INS in a short time. The proposed method effectively reduces 

the position and attitude error and only needs a monocular camera 

and a tactical level IMU. 

 

6.2 Future Works 

The proposed method effectively reduces the position and 

attitude error in this research. However, the algorithm still has 

some shortcomings. First, the IMU data of the algorithm uses 

simulated data, and the simulation process may be overly 

idealized, which is not enough to match the real environment. 

The camera parameters also use an ideal monocular camera, 

which requires additional consideration for camera errors such as 

lens distortion when using an actual camera. The scale variability 

between image coordinate system and navigation coordinate 

system must also be considered more rigorously in the design of 

the filter. Secondly, the lunar surface image simulated by the 

software is affected by the DEM resolution, and the accuracy of 

the actual image may increase when it is close to the surface. The 

difference clarity between the images captured by the actual 

camera and the reference images of the database may also affect 

the navigation results. Finally, the simulated image is dominated 

by vertical surface images, and the image may have a large tilt 

angle during actual shooting. The simulation of images with large 

tilt angles is also the direction of future testing. 

 

In future research, efforts will be made to bring the simulation 

situation closer to the real lunar environment and to improve the 

visual-based navigation system. If a higher spatial resolution 

DEM open resource is available, it is expected that the execution 

time of the visual-based system will be longer and the 

improvement in error will be more significant. Testing the 

algorithm with actual camera and hardware devices in the earth's 

environment is also a plan in the future. Finally, an important 

plan is that the parameters used in the fusion method and the filter 

are also more fully analysed after various tests. 
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