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ABSTRACT: 
 
Terrestrial laser scanning (TLS) instruments find routine use for a range of precision engineering measurement applications. Depending 
on the accuracy requirements for a specific project, the instrument may require self-calibration to determine systematic error model 
terms. One of the goals of first-order network design for self-calibration is to acquire observations throughout the full instrumental 
field-of-view. Experience calibrating TLS instruments has demonstrated that while this goal can be achieved for horizontal deflection 
angle observations, it is seldom realized for the vertical angle observations. This paper presents results from a preliminary investigation 
into the impact of the distribution of vertical angle observations on the estimation of two critical systematic error parameters in TLS 
instruments: the collimation axis error and the trunnion axis error. First, a model to characterize the empirical observation distributions 
is developed. The model is a function of a single shape parameter that quantifies observation dispersion. Then, a means to estimate the 
impact of the distribution on the parameter estimation is developed. Results from six real datasets show the distribution model 
characterizes the overall general trend of the observations. Simulated results show the relative independence of the collimation axis 
error and the strong dependence of the trunnion axis error on the shape parameter. 
 
 

1. INTRODUCTION 

1.1 Terrestrial Laser Scanner Calibration 

Sensor modelling and calibration are recognized as important 
quality assurance processes for terrestrial laser scanning (TLS) 
instruments used for precise engineering measurement projects. 
Systematic errors inherent to TLS instruments must be identified 
and the model parameters estimated so that acquired point clouds 
can be corrected in order to maximize accuracy. Self-calibration 
has been identified as an effective procedure to determine these 
parameters. TLS self-calibration methods first emerged more 
than a decade and a half ago (Gielsdorf et al., 2004) and recent 
work has shown that they are still necessary (Lichti et al., 2019). 
Self-calibration can be performed in a laboratory setting (Lichti, 
2007) or on site (Abbas et al., 2014) using either signalized 
targets (Muralikrishnan et al., 2015; Reshetyuk, 2010) or 
geometric primitives inherent to the scene (Chow et al., 2013; 
Medić et al., 2017). 
 
A geometrically strong network is generally regarded as essential 
to the accurate estimation of systematic error parameters. Lichti 
(2007) reports that a large elevation angle range is needed for the 
estimation of certain error terms. Moreover, Lichti (2010) used 
simulation to investigate the impact of the range of elevation 
angle measurements on the precision of and the correlation 
between certain model variables. However, the exact impact of 
the distribution of these observations on the self-calibration 
solution is not known. This work focuses on modelling and 
quantifying the impact of the distribution of angular observations 
within a TLS self-calibration network. 
 
1.2 Camera Calibration Analogy 

To better illustrate this problem, an analogy to camera calibration 
is drawn. This is a well-documented process, e.g. (Luhmann et 
al., 2018), to determine the interior orientation parameters of a 
camera. Strong first-order network design measures are required 

to reduce the effects of projective compensation (Fraser, 1997) 
and to maximize parameter quality. One important design feature 
is to fill the image format or, equivalently, the camera’s field-of-
view (FoV), with image point observations. This aim of this 
measure is to improve the quality of the estimated radial lens 
distortion coefficients. The gradient of the distortion curve is 
typically greatest at the edges of the format, so observations near 
the periphery of the image plane have a strong impact on 
distortion parameter precision. 
 
A simple example is illustrated in Figure 1. For the sake of 
clarity, the camera calibration is distilled to a curve fitting 
problem to determine a single parameter of the radial lens 
distortion profile, k1, from 2D point coordinates. Two sets of 100 
observation points are shown. The location of each point was 
randomly drawn from a 2D uniform density function. Whereas 
the first set of observations spans the full image format (8 mm x 
6 mm), the second set only covers 80% of the image plane.  
 
The differences in error envelopes of the two curves clearly show 
the strong influence of the point distribution on parameter 
quality. A 20% reduction in data coverage leads to a 100% 
increase in the standard deviation of the distortion profile, δr. 
(The exact figure depends on the randomly-simulated point 
distribution, but from many repeated trials the factor was found 
to be about 100%.) 
 
1.3 Terrestrial Laser Scanner Observations 

Returning to the laser scanning problem, TLS instruments collect 
range observations, ρ, by time-of-flight laser range finding in a 
spherical imaging geometry (Figure 2). The emitted laser beam 
is deflected in nominally equal increments of elevation angle, α, 
within a vertical profile. The rotating instrument head allows the 
capture of a series of vertical profiles in nominally equally-
spaced increments of horizontal direction, θ. The spherical 
observations for point i appearing in scan j can be parameterized 
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in terms of the scanner space Cartesian coordinates (x, y, z) as 
follows: 
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Note that the observations have been augmented with systematic 
error correction terms (∆ρ, ∆θ, and ∆α) that are described in the 
next sub-section. 
  

 
Figure 2. TLS spherical imaging geometry. 

 
Different instrument architectures exist (Staiger, 2003). The 
focus here is on the panoramic geometry in which the respective 
angular fields-of-view for the horizontal direction, θ, and the 
elevation angle, α, are (0° ≤ θ < 180°) and (-αmin ≤ α ≤ 
180°+αmin). The parameter αmin ranges from 60° to 70°, 
depending on the instrument. As a result of this architecture, 
observations are collected “in front of” and “behind” the 
instrument. Thus, observations at the horizon are collected at two 
locations: α=0° and α=180°. 
 

1.4 Terrestrial Laser Scanner Systematic Error Models 

A number of systematic error models have been proposed for 
tripod-mounted TLS instruments (Lichti, 2007; Muralikrishnan 
et al., 2015; Reshetyuk, 2010). Lichti et al. (2011) propose a 
“basic” model comprising four additional parameters (APs): the 
rangefinder offset, a0; the collimation axis error, b1; the trunnion 
axis error, b2; and the vertical circle index error, c0.  
 

 0a∆ρ =  (4) 
    

 ij 1 ij 2 ijb sec b tan∆θ = α + α  (5) 
   

 ij 0c∆α =  (6) 
 

As mentioned, these APs can be estimated by the target-based 
self-calibration method. Scans are captured from different 
locations within a controlled environment comprising an array of 
signalized targets. The location and orientation of the scans and 
the distribution of the targets governs the distribution of the 
observations. It is hypothesized that, as demonstrated in the 
camera calibration example, the distribution of observations 
within the instrument FoV governs the AP solution quality. 
 
1.5 Terrestrial Laser Scanner Observation Distribution 

Histograms of the angular observations from six TLS self-
calibration datasets captured with five different panoramic 
instruments are shown in Figures 3 and 4. They were acquired in 
different indoor 3D calibration target fields. These datasets are 
described in greater detail in Section 3. Each dataset comprises 
observations captured from multiple instrument locations within 
the respective target field. 
 
Clearly, the horizontal direction observations (θ) are generally 
uniformly distributed throughout the horizontal FoV. However, 
despite the placement of many targets on the ceiling and the floor 

 
Figure 1. Lens distortion curve fit example. Top left: image points distributed throughout the image plane. Top right: estimated 
distortion curve (black) and 1σ envelope (blue). Bottom left: image points covering 80% of the format. Bottom right: distortion 

curve (black) and 1σ envelope with exaggerated scale (blue). 
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in the calibration rooms, the elevation angle observations are not 
uniformly distributed. Instead, they are clustered in two nearly-
symmetric lobes centred about the horizon (at α=0° and α=180°). 
The data are very sparse at large elevation angles (e.g. α = -αmin, 
90°, and 180+αmin). Two of the basic model APs, the collimation 
axis error, b1, and the trunnion axis error, b2, strongly depend on 
the elevation angle. They respectively vary with the secant and 
tangent of elevation angle. Given the data characteristics in 
Figure 4 and the steep gradient of the functions involved, one 
might expect a strong dependence of the precision of b1 and b2 
on the distribution of the elevation angle observations. 
 
With this background, the aims of this work are to: 
 

1. Develop a model for the distribution of elevation angle 
observations from real datasets; 

2. Examine how the distribution of the elevation angle 
observations influences the estimation these two APs;  

3. Develop a means to predict the quality of two APs, the 
collimation axis error and the trunnion axis error, given 

the hypothesized model for the elevation angle 
distribution;  

4. Validate the model prediction of AP quality by 
comparison with estimates from real dataset self-
calibrations; and 

5. Propose an observation distribution and, by extension, 
a calibration target field design, that maximizes the 
precision of the two APs. 

 
This paper is a report on preliminary efforts to address aims 1, 2 
and 3. 

 
 

2. METHODOLOGY 

2.1 Observation Distribution Modelling 

As can be seen in Figure 4, a wide variety of empirical histogram 
shapes exists. Whereas some lobes are very compact, others 
exhibit greater dispersion. The compactness/dispersion indicates 
the range of elevation angle observations over which data were 

 

Figure 4. Histograms of elevation angle observations from six real TLS self-calibration datasets. 
 

 

Figure 3. Histograms of horizontal direction observations from six real TLS self-calibration datasets. 
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collected for the self-calibration. Gaps exist in the histograms due 
to target field design, sample size and the choice of bin width. 
Moreover, the distribution depends on the target field layout and 
TLS instrument location, as mentioned previously. This 
complicates the development of a model that characterizes the 
observation distribution. 
 
A straightforward but realistic simulation has been performed to 
illustrate the role of target field layout and instrument location in 
determining elevation angle observation distribution. The real 
datasets were used to generate the 2D TLS calibration target field 
shown in Figure 5 so that the dimensions and the number of 
targets (200) are realistic. Two different sets of three TLS 
instrument (αmin=70°) locations are also shown. All targets were 
assumed to be visible from each instrument location. The targets 
and the instrument locations are confined to the xz plane, 
Spherical observations were derived from the Cartesian 
coordinates with y=0. The resulting histograms, each comprising 
600 observations, are shown in Figure 6. Clearly, both exhibit 
similar general behaviour, but they differ considerably in terms 
of fine-scale details. 
 
Density estimation is well-studied topic. In the univariate case, 
the goal is to determine the probability density function of a 
single random variable from a finite set of observations (Searle, 
1987). In this work, the function should exhibit certain traits. 
First, it should capture the overall general behaviour of the 
elevation angle observation distribution. Second, it should be 
relatively simple in terms of its functional form and involve as 
few parameters as possible in order to keep the mathematics 
described in the next sub-section tractable. Ultimately, the choice 
represents a trade-off between model complexity and goodness 

of fit to the data. Methods such as kernel density estimation can 
be used to obtain a very good fit to each of the distributions 
shown in Figures 4 or 6. This is not the aim here. The aim is to 
capture the overall trend under the hypothesis that a function 
describing the general behaviour will give insight into impact of 
the observation distribution on AP estimation quality. 
 
A simple parametric model that captures the general distribution 
behaviour is therefore sought. Although many possibilities exist, 
the biomodal raised cosine density function has been investigated 
here: 
  

( ) ( )

0 0
0 0

0 0
0 0

1 1 cos
4

1p 1 cos
4

0 otherwise

   π
+ α −α < α < α    α α   


  πα = + α − π π − α < α < π + α    α α   






 (7) 

 
It is a function of a single parameter, α0, which represents the cut-
off elevation angle for the observations and governs the shape of 
the distribution. This parameter also defines the extents of the 
distribution. The two lobes are centred at the horizon, 0° and 
180°. Raised cosine distributions for several values of α0 are 
shown in Figure 7. 
 
Estimation of α0 from sample data is straightforward. The 
variance, σ2, is computed with the mean of either 0° or 180°, 

 
Figure 5. Simulated 2D target field and instrument locations. 

 
Figure 6. Elevation angle histograms for the 2D network for instrument location set 1 (top) and set 2 (bottom). 
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whichever is closer to a particular sample. The shape parameter 
is computed from the variance as follows 
 

 0

2
1 2
3

σ
α =

−
π

 
(8) 

 
2.2 AP Quality Prediction Model 

To develop a model for AP quality, the correction model for the 
collimation axis and trunnion axis errors can be investigated 
separately from other model variables. This independent analysis 
is possible because these two APs are effectively decoupled from 
the other parameters in the panoramic scanner self-calibration 
solution when the geometric network design is strong. From the 
six datasets used herein, the maximum correlation coefficient 
between the two APs in question and the exterior orientation 
parameters was 0.37. The multivariate estimation problem thus 
reduces to a simpler regression task. 
 
The observation equation observation i is obtained by combining 
Equations 2 and 5 and rearranging 
 

 i 1 i 2 ib sec b tan′θ = α + α  (9) 
 
and by making the following substitution 
 

 i
i i

i

yarctan
x

 
′θ = θ −  

 
 (10) 

 
Note that the scanner subscript j has been dropped since the 
analyses can be performed without reference to object space.  
 
For a set of n observations, the system of observation equations 
is given by 
 

 
1 1 1 1

2 2 1 2 2

2

n n n n

sec tan v
sec tan b v

b
sec tan v

= +
′α α θ     

     ′α α θ      = +                 ′α α θ     

Ax y v

   

 (11) 

 
where A, x, y and v are the design matrix, parameter vector, 
observation vector and residual vector, respectively. The errors 
in the θ′ observations are assumed to be drawn from the same 
population, so the weight matrix P can be defined as a scalar 
matrix: 
 

 2

1
=
σ

P I  (12) 

 
The elevation angles, αi, are assumed to be error free. 
 
The least-squares normal equations are given by 
 

 T T=A PAx A Py  (13) 
 
The normal equations matrix, N, is of particular interest since its 
inverse is the cofactor matrix of the APs, which quantifies their 
quality. In this problem N has the following analytical form 
 

n n
2

i i i
i 1 i 1T

2 n n
2

i i i
i 1 i 1

sec sec tan
1

sec tan tan

= =

= =

 
α α α 

 = =
 σ

α α α 
 

∑ ∑

∑ ∑
N A PA  (14) 

 
Under the assumption of uniform sampling within a vertical 
profile, ∆α is the increment between two successive 
observations. Multiplying the normal equations by this scalar 
results in  
 

 T T∆α = ∆αA PAx A Py  (15) 
 
The normal equations are further multiplied by the function p(α), 
which represents the distribution of the vertical angle 
observations. 
 

 ( ) ( )T Tp pα ∆α = α ∆αA PAx A Py  (16) 
 
Focusing on N, Equation 14 becomes 
 

 
Figure 7. Bimodal raised cosine distribution for several values of the shape parameter α0. 
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As the number of observations becomes large, that is in the limit 
as n→∞, the summations above can be rewritten using the 
definition of the definite integral 
 

( ) ( ) ( ) ( ) ( )
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b b
2

a a
2 b b

2
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sec p d sec tan p d
1
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∫ ∫

∫ ∫

N

  (18) 

 
All integrands must be continuous on (a,b), where a=-90° and 
b=270°. This condition is not strictly met since the secant and 
tangent functions are infinite at α=90°. So, the two branches of 
each integral must be evaluated separately. Note that the off-
diagonal term is equal to zero if the limits are symmetric since 
the product of the secant and the tangent functions reduces to the 
odd-symmetric sine function. 
 
Equation 18 is an expression for the normal equations matrix that 
explicitly models the distribution of the observations. The inverse 
of this matrix is, of course, the cofactor matrix of the parameters, 
Qx, which contains parameter quality information.  
 

 1 1 2

1 2 2

b b b1

b b b

q q

q q
−

 
= =  

  
xQ N  (19) 

 
Thus, the evaluation of the integrals and subsequent matrix 
inversion allows investigation of AP precision as a function of 
elevation angle distribution. The model developed using the 
procedure described in Section 2.1 can be substituted into 
Equation 18 to investigate the impact of the shape parameter, 
which models the limits of data acquired in a self-calibration.  
 
Furthermore, other data distributions based on different target 
field designs can be investigated. Ultimately, this method can be 
used to identify an optimal distribution. This approach avoids the 
use of simulation techniques that necessitate performing many 
trials with artificially-generated observations. Instead, this 
completely analytical approach provides a more elegant means to 
estimate quality as a function of data distribution. It is therefore 
a powerful first-order network design tool. 
 
 

3. EXPERIMENT DESCRIPTION 

The methods developed in Section 2.1 have been applied to the 
six TLS self-calibration datasets depicted by the histograms in 
Figures 3 and 4. Some of the pertinent details are provided in 
Table 1. All were captured under controlled temperature and 
lighting conditions in a purpose-built, indoor 3D array of high-
contrast targets. As can be deduced from the tabulated metadata, 
each dataset comprises multiple scans of many targets and is 
highly redundant. Further details about these can be found in 
related publications. Datasets 1 and 2 are described in (Lichti, 
2007). Datasets 3 and 4 are documented in (Lichti et al., 2019). 
Datasets 5 and 6 are respectively described in (Al-Manasir and 

Lichti, 2015) and (Chow et al., 2013). For each dataset the shape 
parameter α0 was estimated and the quality of the model fit was 
evaluated. 
 

 
n 

 
Instrument 

 
# scans 

# 
targets 

# point 
observations 

1 iQsun 880 8 135 696 
2 iQsun 880 8 149 799 
3 Faro Focus 3D 9 200 1686 
4 Leica P40 9 197 1403 
5 Leica HDS7000 8 236 1824 
6 Leica HDS6100 6 261 1144 

Table 1. TLS self-calibration dataset details. 

 
In the second experiment, the cofactor matrix described in 
Section 2.2 was formed and the integrals were evaluated as a 
function of distribution shape. The observation variance, σ2, was 
assumed to be unity. 
 
 

4. RESULTS 

4.1 Distribution Modelling 

Estimates of the shape parameter are presented in Table 2. There 
is a wide range of values for the shape parameter α0: from 50° to 
more than 80°. The estimated distribution functions are 
superimposed on the histogram from Figure 4 in Figure 8. The 
raised cosine does capture the general shape of the histograms. 
However, there are large deviations at the horizon where more 
observations were captured than the raised cosine model can 
predict. Deviations are also visible where gaps occur in the 
histograms. These outcomes were anticipated from the 
simulation reported in Section 2.1. 
 
The goodness-of-fit is graphically depicted in Figure 9, which 
shows the cumulative distribution functions (CDFs) determined 
empirically from the elevation angle observations and the raised 
cosine CDFs computed from the estimated shape parameter. Note 
that the data above the zenith have been mapped to (-90°<α<90°) 
for the sake of clarity. The unimodal and bimodal raised cosine 
functions are related in amplitude by a factor of 2 so there is no 
loss of generality by performing this transformation. Visual 
inspection shows that the model fit is better for some cases than 
others, but all follow the general trend. 
 

 
n 

 
α0 (°) 

K-S test 
value 

Critical 
value 

 
Pass? 

1 66.88 0.10 0.05 No 
2 83.01 0.06 0.05 No 
3 51.00 0.08 0.03 No 
4 54.26 0.08 0.05 No 
5 58.51 0.05 0.03 No 
6 50.32 0.08 0.04 No 

Table 2. Estimated distribution shape parameters and K-S test 
statistics. 

The Kolmogorov-Smirnov (K-S) test is a non-parametric test 
performed to examine the quality of fit of an empirical 
distribution to an hypothesized distribution. The test statistic is 
the maximum difference in cumulative probability between the 
two distributions (Kanji, 1999) Table 2 gives the results of the K-
S test for all six datasets. None of them pass the test at the 5% 
level of significance. Although the aim here is to model the 
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general behaviour rather than the fine details, more investigation 
into model choice may be warranted. 
 
4.2 AP Precision Prediction 

Figure 10 shows the behaviour AP quality versus the shape 
parameter, α0. The square root of the cofactor, q, is used as an 
indicator of precision for each AP. The collimation axis error 
precision is only mildly affected by the distribution of 
observations. It is effectively constant up to about 48°, where it 
deviates by 5% or less from the precision at 5°. After that, the 
precision gradually improves by just under 22% at 85°, the 
maximum computed elevation angle. 
 
The trunnion axis error precision is strongly affected by the 
observation distribution. The precision is very poor at low 
elevation angles where the tangent function is only weakly 
observable. The trunnion axis error is indeterminate in the limit 
as α0→0°. It is more than 30 times worse than that of the 
collimation axis error at 5°. It improves considerably, though, as 
the range of elevation angle observations increases. At 85° the 
trunnion axis error precision is only 1.6 times worse. 
 
 

5. CONCLUSIONS AND FUTURE WORK 

The quality of systematic error parameters estimated by 
instrument self-calibration depends on the distribution of 
observations throughout the FoV. The distribution of 
observations is a function of network design. In TLS self-
calibration networks, elevation angle observations tend to be 
clustered around the horizon, which may have an impact on some 
APs due to their strong gradients near zenith and nadir. In this 
work, a model for the distribution of TLS observations from prior 
calibration datasets has been developed to investigate how 
additional parameter quality is influenced by the distribution. The 
raised cosine function, which depends only on one shape 
parameter, was investigated for this purpose. With focus on the 
collimation axis error and trunnion axis error APs, a means to 
predict their precision from the least-squares normal equations 
was developed. The application of the hypothesized distribution 
function and quality prediction method revealed that the 
collimation axis error is insensitive to the shape parameter. The 
trunnion axis error, though, was found to be strongly dependent 
on the observation distribution. The latter finding suggests that 
more observations at the extents of the field of view are needed 
to improve quality. Although this follows conventional general 
wisdom, using this modelling approach will allow future work on 
the development of an optimal distribution function. This will 

 
Figure 8. Elevation angle histograms and estimated distribution functions. 

 
Figure 9. Empirical and estimated cumulative distribution functions (CDFs). 
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provide informed guidance for TLS calibration network design 
and improve trunnion axis error estimation. Additional datasets 
will be acquired for further testing. Moreover, the model 
estimates for AP precision will be compared to actual results 
from real TLS self-calibration datasets. 
 
The observation distribution model was chosen for mathematical 
simplicity and the ability to model the general observation trend. 
The selected model did not fit any of the datasets at the 95% 
confidence level. Future work could be devoted to investigating 
other, more detailed models. In addition, the sensitivity of AP 
estimates on model shape can be investigated. 
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