CONSTRUCTION AND TEST OF BIO-INSPIRED IMAGING POLARIZATION NAVIGATION PROTOTYPE
Keywords: Bio-inspired Navigation, Imaging Polarization Navigation, Field-division Imaging Polarimetry, Real-time Navigation Sensor, Accuracy Calibration, Dynamic Navigation Experiment
Abstract. Bio-inspired polarization navigation is a promising navigation method inspired by insects’ autonomous foraging and homing behaviour. Many insects acquire their spatial orientation by sensing the polarization pattern of the skylight. We propose utilization of solar meridian in the polarized skylight as an orientation cue because of its significant features. Using its features, we then design and construct an imaging polarization navigation prototype. The prototype consists of a field-division polarization imaging sensor, the corresponding software, an interface, and the solar-meridian recognizing and measurement algorithm. The field-division polarization imaging sensor is the core component of the prototype and acquires polarized intensity images. To adapt to the demand of real-time on navigation system, we then propose an optimized real-time polarization image processing and pattern recognition algorithm based on Hough transform. The azimuth measurement accuracy of the sensor is then calibrated using a facility that is able to get higher azimuth accuracy by measurement of the star light. To verify the navigation capability of the developed system, we use a dynamic experiment, where the prototype is installed on the top of a vehicle and its navigation performance is compared with GNSS.