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ABSTRACT:  

 

With an ever-increasing network of thousands of miles of pavement laid out over highways, road networks, and airport runways, their 

continuous monitoring is a task of utmost importance to public agencies responsible for their maintenance. The existing approaches 

mostly rely on a manual detection of pavement distress based on acquired image or video data – an approach that is time-consuming, 

costly, and whose results are subjective to the designated rater. This necessitates the need for a system that is capable of a quick data 

acquisition along with an efficient algorithm for the detection and quantification of pavement distress based on the acquired data. This 

paper proposes a LiDAR-based pavement distress detection and quantification using a mobile mapping system (MMS). Starting with 

a comparison of a medium-grade and high-grade MMS in terms of their accuracy and captured level of detail, this paper proves the 

ability of the high-grade MMS to allow the detection of shallow potholes and cracks in the pavement. Next, a fully automated algorithm 

is proposed to detect pavement distress from 3D point cloud followed by a quantification of the severity (in terms of the depth and 

volume) of the detected potholes/cracks. Finally, an experimental verification conducted over a 10 mile highway segment and two 

airport runway strips indicates the efficient performance of the proposed data acquisition system as well as the algorithm to report the 

pavement distress ranging from shallow cracks over airport runways to deeper potholes along highway segments. 

 

 

 

1. INTRODUCTION 

Highways, road networks, and airport runways cumulatively 

comprise thousands of miles of pavement laid out using asphalt, 

concrete, or composite materials. Routine inspection and 

maintenance of pavement surface is of utmost importance, 

especially in highways with vehicles driving at high speeds and 

runway strips designed for take-off and landing of aircrafts at 

significantly higher speeds. Detection of pavement distress is 

crucial for public agencies tasked with the maintenance of 

roadways and airport runway strips. Currently, the acquired 

image and video data over pavements are manually inspected by 

technicians on computer monitors to detect any defects. Besides 

this being a time-consuming and costly task, the final results are 

influenced by the subjectivity and the experience of the raters 

(Bianchini, 2010). The development of an automated procedure 

for pavement quality assessment and characterization is vital to 

facilitate large-scale pavement monitoring.  

A proposal for automated pavement monitoring entails two major 

components – (a) sensor modality for pavement data acquisition 

and (b) algorithm for pavement distress detection and 

quantification based on the acquired data. Several alternatives 

have been researched over the years for pavement surface 

condition assessment along transportation corridors (or, 

highways) and airport runways. A thorough review of some of 

the existing strategies for pothole detection along highways was 

conducted by Coenen and Golroo (2017) and Kim and Ryu 

(2014). There are four major choices for sensor modalities – 

vibration-based, vision-based, thermography-based, and LiDAR-

based – to acquire data for pavement inspection. Each of these 

methods of data acquisition have been coupled with different 

algorithms for varying aspects of pavement surface assessment. 

In the area of vibration-based methods, Yu and Yu (2006) 
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developed a specialized data acquisition hardware mounted on a 

vehicle for conducting preliminary evaluation of pavement 

conditions. Their approach relied on the vertical vibration of the 

vehicle caused by cracks along pavement surfaces. Eriksson et al. 

(2008) developed a Pothole Patrol (P2) method for detecting and 

reporting surface conditions of roads using a vibration-based 

strategy. They collected data from vibration and GPS sensors to 

assess road surface conditions and developed a machine-

learning-based approach to distinguish potholes from other road 

anomalies. However, in all such vibration-based approaches for 

pothole detection, the accuracy of detection would be lower than 

that from cameras or laser scanners because it can only detect 

potholes when the vehicle’s wheels encounter a pothole. 

In the field of vision-based methods for pothole detection, Buza 

et al. (2013) proposed an unsupervised vision-based method for 

pothole detection, without any requirement for additional 

filtering or training. They adopted a three-step process consisting 

of image segmentation, shape extraction using spectral 

clustering, and identification, extraction, and roughness 

estimation of potholes. Zhang et al. (2014) proposed an algorithm 

for pothole detection using stereo-vision. They used a disparity 

map generated from an efficient disparity calculation algorithm 

to detect potholes by analyzing their distance from the fitted 

quadratic road surface. However, they report some false pothole 

detections caused by disparity calculation errors. One should note 

that such vision-based methods for pavement assessment are 

limited by the occlusion in the dataset occurring due to 

neighboring vehicles and certain potholes may remain undetected 

in these approaches. This calls for a pothole detection using a 

more complete dataset, which can be provided using LiDAR 

units onboard mobile mapping systems. 
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In the field of pavement assessment, especially for airport 

runways, thermography is a technique that has been explored 

over the past years. Shahin et al. (1980) developed a Pavement 

Condition Index (PCI) for rating jointed concrete airfield 

pavements. The PCI was developed as a measure of pavement 

structural integrity and surface operational condition based on 

measured distress types, severities, and densities obtained during 

a manual pavement inspection. The PCI was found to be 

correlated closely with maintenance and rehabilitation needs of 

airfield pavements. The applicability of infrared thermography 

was explored by Moropoulou et al. (2001) in order to detect 

delaminations in airport pavements. Their approach relied on the 

ability of thermography to sense the infrared radiation emitted by 

any structure, which subsequently allows it to detect temperature 

differences on the surface. They used a temperature difference 

threshold of 0.5˚C (determined according to standard 

specifications) to detect distressed areas. Another work utilizing 

the method of thermography was done by Tsubokawa et al. 

(2007), wherein they detected de-bonding between layers of 

flexible pavement in airports. Their experimental validation 

indicated the ability of infrared thermography to detect de-

bonding at a depth of 40-70 mm from the surface of pavements 

depending on the weather conditions. While thermography is a 

technique that can detect the onset of pavement distress by 

detecting delamination and de-bonding in pavements, a major 

shortcoming of this technique is its inability to quantify the 

detected distress, such as the depth and thickness of delamination 

or detected cracks.  

The use of LiDAR in the field of pavement inspection is a rapidly 

expanding area with many agencies even providing 

recommendations, guidelines, or standards for LiDAR data 

acquisition and processing. A report published by the National 

Cooperative Highway Research Program in 2013 provided 

guidelines for the use of mobile LiDAR in transportation 

applications (2013). Kang and Choi (2017) used two 2D LiDAR 

units for extracting distance and angle information of road 

surface. Their approach for pothole detection using 2D LiDAR 

includes noise removal, clustering, line segment extraction, and 

finally, obtaining the gradient of the pothole. They also employed 

an image-based pothole detection to improve the accuracy when 

combined with the results from 2D LiDAR-based detection. It 

includes noise filtering, brightness control, binarization, edge 

extraction, and finally, pothole detection. The moving speed of 

the 2D LiDAR units used in their study was 2.7 km/hr. Moreover, 

the experimental verification includes only the results obtained 

for a single pothole detected from different positions of the 

mapping system with respect to the pothole. The approach by 

Kang and Choi (2017) deals with LiDAR units moving at 

extremely slow speeds and relies on individual scan line 

processing for pothole detection. This implies that their approach 

cannot be applied to mobile mapping systems moving at a 

considerably high speeds or LiDAR data captured by 3D LiDAR 

units. Laurent et al. (2008) proposed the use of Laser Crack 

Measurement System (LCMS) for crack monitoring using two 

2D laser units. The system generates transversal profiles 

throughout the road segment to detect cracking and is reported to 

have an accuracy of 90% for transverse crack detection when the 

3D crack is captured. The scope of this study was to determine if 

we could effectively map pothole volume and surface area at 

highway speeds so that patching tables can be derived. 

This research is focused on proposing a fully automated strategy 

that is suitable to conduct a two-fold assessment of pavements 

over highways as well as airport runway strips. The first 

component consists of detecting and reporting locations that 

exhibit any form of pavement distress, such as cracking, rutting, 

and potholes (occurring due to wear-and-tear, pavement patching 

discontinuity, missing RPMs). Secondly, the detected distress 

locations are characterized based on their severity, which 

constitutes the following attributes – depth below road surface, 

surface area denoting the level of degradation at different depths 

below road surface, and filling volume of the detected potholes. 

In order to achieve this end goal, we first start by introducing and 

comparing two different grades (medium-grade and high-grade) 

of LiDAR-based mobile mapping systems (MMS) in terms of the 

relative and absolute accuracy of their acquired point clouds. The 

qualitative and quantitative accuracy analysis of point clouds 

from the two MMS validates our choice of using the high-grade 

MMS for pavement distress monitoring. Finally, the proposed 

strategy for cracking and pothole detection and characterization 

is validated by testing it on a 10-mile-long highway segment and 

two airport runway strips. The results indicate the ability of 

LiDAR-based mobile mapping systems to accurately detect 

locations exhibiting pavement distress with varying severity and 

different causes. 

 

2. MOBILE MAPPING SYSTEMS: DESCRIPTION AND 

COMPARISON 

This study relies on data acquired by two mobile LiDAR 

mapping systems – medium-grade and high-grade, as shown in 

Figure 1 (a) and (b), respectively. The medium-grade system 

consists of four Velodyne LiDAR units (three HDL32E and one 

VLP16) with an Applanix POSLV 220 GNSS/INS unit. It also 

consists of three RGB cameras – two forward-looking and one 

rear-looking Grasshopper 9.1MP cameras. The high-grade 

system is equipped with two LiDAR units (a Riegl VUX 1HA 

and a Z+F Profiler 9012), two rear-looking RGB cameras (FLIR 

Flea2 5MP cameras), and a NovAtel IMU-ISA-100C GNSS/INS 

unit. Both MMS are calibrated in order to estimate the mounting 

parameters of the onboard LiDAR units and cameras relative to 

the GNSS/INS unit using the calibration strategies proposed by 

Ravi et al. (2018a) and Ravi et al. (2018b). The resultant 

accuracies of point clouds acquired by these calibrated systems 

are translated to their ability to capture varying level of details 

and detect pavement distress with varying severity. Owing to the 

onboard sensor specifications and system calibration, this 

research demonstrates that the high-grade MMS can accurately 

capture point clouds with a relative accuracy of less than 1 cm 

and an absolute accuracy of 1 to 2.5 cm. Such an accuracy 

facilitates the use of MMS to capture extremely minute details 

such as pavement tining (grooves with a depth of 3-5 mm in the 

pavement), which in turn, translates into its ability to detect 

cracking or potholes with depth as low as 1-2 cm. On the other 

hand, the relative and absolute accuracies for point clouds 

acquired by the LiDAR units onboard the medium-grade MMS 

is approximately 2-3 cm and 5 cm in the horizontal and vertical 

directions, respectively. A qualitative comparison between the 

two grades of MMS is conducted by illustrating two areas 

showing potholes with varying severity as captured from the 

medium-grade and high-grade mobile mapping systems as shown 

in Figure 2. Figure 2 (B) and (C) show a deep pothole with depth 

ranging upto 10 cm as captured by a high-grade and medium-

grade mobile mapping system, respectively. It can be seen that 

this pothole is very accurately identifiable from the high-grade 

system as compared to its comparatively less accurate visibility 

in the medium-grade system. However, a shallower pothole with 

a depth of 5 cm shown in Figure 2 (D) and (E) indicates that it 

fails to be detected in the point cloud from medium-grade system 

but is easily detected from the high-grade system. For the region 

shown in Figure 2, the road surface captured by the medium-

grade mobile mapping system has a vertical accuracy of up to 5 

cm, whereas the high-grade mobile mapping system has an 

accuracy as high as 5 mm in data captured from a single track, 

which results in a better detection of potholes with varying 
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depth/severity. While Figure 2 depicts a qualitative assessment 

over a highway pavement, another illustrative example over 

airport runway pavement is shown in Figure 3 to demonstrate the 

performance of the two MMS in terms of the level of detail 

captured by the different onboard sensors. Figure 3 shows a 

coarsely tined pavement with 3 to 5 mm deep grooves over an 

airport runway strip. The figure clearly indicates that the 

pavement texture is accurately captured by the Riegl and Z+F 

sensors, while such a detail is lost within the noise range of 2-3 

cm from Velodyne LiDAR unit. This would render the medium-

grade MMS incapable of detecting shallower cracks or potholes 

which are less than 5 cm deep and accurately characterizing the 

severity of deeper potholes due to its 5 cm vertical accuracy.  

 

 
(a) 

 
(b) 

Figure 1. Wheel-based mobile mapping systems (MMS): (a) 

Medium-grade and (b) High-grade 

 

Based on the qualitative and quantitative comparison of the 

relative and absolute accuracies from the two grades of MMS 

along with the level of detail captured by each MMS over 

pavements, it can be concluded that the high-grade MMS is more 

competent in terms of acquiring data that can be used for the most 

efficient and accurate detection of pavement distress ranging 

from minor cracking in airport runway pavements to deeper 

potholes over transportation corridors (or, highways). Abiding by 

the above conclusion, this paper only focuses on the data 

acquired by the high-grade system for further assessment of the 

proposed pothole detection algorithm. The better absolute 

accuracy of the resultant point cloud from the high-grade MMS 

translates towards determining the accuracy in the reported 

location of distress, whereas the relative accuracy of the point 

clouds captured from different sensors is reflected in the derived 

quantitative characteristics, such as the surface area and 

volumetric estimation of the detected potholes. 

      
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 2: Two potholes: (a) RGB image of deeper and shallow 

potholes; (b) Deeper pothole: High-grade MMS, (c) Deeper 

pothole: Medium-grade MMS, (d) Shallow pothole: High-grade 

MMS, and (e) Shallow pothole: Medium-grade MMS 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 3: Pavement tining captured by different sensors: (a) 

RGB image of pavement tining, (b) 3D point cloud by Riegl 

VUX 1HA, (c) 3D point cloud by Z+F Profiler 9012, and (d) 

3D point cloud by Velodyne HDL32E (does not capture 

pavement texture) 

 

3. METHODOLOGY 

Having ascertained the accuracy of the high-grade MMS, we 

proceed to develop a fully automated strategy for pavement 

distress detection and characterization, which constitutes the 

following steps: 

1. Road surface extraction: The road surface points are 

automatically extracted from the complete 3D point cloud  

with the aid of vehicle trajectory elevation information. The 

prior knowledge of the height of the onboard IMU above the 

road surface is used along with an additional height buffer 

to extract road surface points from the complete 3D point 

cloud. This is illustrated in Figure 4 (a), which shows the 

whole point cloud colored by height and colored by intensity 

followed by the extracted road surface points based on the 

proposed strategy. 

2. Classification and clustering of 3D points into road surface 

and below-road (or, crack/pothole) points: A fully 

automated tile-based strategy is developed to identify all the 

points that lie below the iteratively obtained best-fitting 

plane denoting the road surface within each tile. An 

additional round of detection is conducted with a shifted 

tiling of the road surface in order to account for false 

detections along the edge of the tiles. The intersection of the 

candidate below-road points from the two tiling sequences 

are finally reported as the desired pavement distress points. 

The detected pavement distress points are labeled according 

to their depth below the road surface and also clustered 

using a distance-based region growing approach to delineate 

individual distress locations along the road or runway 

segment. These steps are illustrated in Figure 4 (b) starting 

from the road surface colored by intensity and colored by 

height followed by the two sequences of tiled road surface, 

which is finally succeeded by the detected distress points 

colored by their depth below the road surface. 

3. Boundary tracing and quantitative analysis of individual 

distress location: Each cluster (or, distress location), as 

shown in Figure 4 (c), can be visualized by backprojecting 

the detected boundary on the corresponding RGB imagery. 

This would aid in identifying the source of pavement 

distress (such as longitudinal wear-and-tear, pavement 

patching discontinuity, or missing raised pavement 

markers). Next, each cluster is characterized by assessing 

the maximum depth of below-road points within the cluster, 

which in turn would indicate the severity of the detected 

distress location. Moreover, the points at different depth 

levels are used to trace a boundary through a minimum 

convex hull approach in order to derive the surface area at 

different depths below the road surface. The change in 

surface area with the depth would indicate the amount of 

degradation within each distress location. Finally, a 

volumetric estimate is computed in order to determine the 

type of patchwork and the amount of fill material required 

for fixing each distress location. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4: Automated pavement distress detection: (a) Road 

surface extraction, (b) Detection of below-road points (or, 

pavement distress points), (c) Clustering and boundary tracing 

for detected distress points followed by its backprojection on 

RGB image  
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4. EXPERIMENTAL RESULTS 

The above-mentioned approach is tested for 10-mile-long 

highway segment and two airport runway strips. It is observed 

that the proposed strategy can accurately detect potholes ranging 

from a depth of 2 cm (due to pavement patching discontinuity) to 

over 10 cm (due to wear-and-tear of pavement). Three samples 

of detected potholes over a highway road segment are shown in 

Figure 5, where Figure 5 (a) shows a pothole that is about 10 cm 

deep occurring due to a longitudinal wear-and-tear of the 

pavement, Figure 5 (b) depicts a 4 cm deep pothole as a result of 

pavement patching discontinuity, and Figure 5 (c) illustrates a 2 

cm deep depression caused by a missing Raised Pavement 

Marker (RPM). The varying depth and cause of detected potholes 

proves the feasibility of the proposed approach for highway road 

network asset management. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5. Detected potholes over highway road segment: (a) 10 

cm deep pothole caused by pavement wear-and-tear, (b) 4 cm 

deep pothole caused by missing RPM, and (c) 2 cm deep 

pothole caused by pavement patching discontinuity 

 

The same approach when applied to airport runway strips is seen 

to be able to detect cracking along and across the pavement 

occurring due to patching discontinuities or regular wear-and-

tear. Figure 6 demonstrates a sample of the point cloud captured 

over runway colored in grayscale based on intensity with the 

detected cracking (colored from blue to red based on depth below 

road surface) overlaid on the intensity data. These experimental 

results prove the ability to use mobile LiDAR systems for large-

scale pavement inspection to report the location, severity, cause, 

and a quantified estimate of the spatial and volumetric 

characteristics of pavement distress. 

 

 

 
Figure 6. Cracking detected on airport runway pavement 

overlaid on point cloud colored by intensity 

 

5. CONCLUSIONS 

This paper proposed a fully automated pavement distress 

detection and quantification strategy applicable to highways as 

well as airport runway pavements. The accuracy of the derived 

point clouds was observed to be ± 1-2 cm using the high-grade 

MMS. A comparison between the medium-grade and high-grade 

MMS indicated the ability of the latter to conduct a fine detection 

of various types of pavement distresses over highways and 

airport runways. The proposed algorithm was seen to efficiently 

detect distresses attributed to varying causes, such as regular 

wear-and-tear, pavement patching discontinuities, missing 

RPMs, and shallow cracking of pavements. The applicability of 

a unique algorithm to pavements in different scenarios captured 

by an MMS at regular driving speeds indicates the versatility of 

the proposed research to conduct an automated pavement 

inspection without manual intervention. 

In further stages of the study, we aim to use RGB imagery as 

auxiliary data for increasing the accuracy of pothole detection. 

Moreover, we aim to classify the potholes based on the severity 

as well as the root cause of the potholes, i.e., regular wear-and-

tear, rutting, or missing RPMs. Our future work will also be 

focused on denoising and improving the relative accuracy of 3D 

point clouds obtained from medium-grade mobile mapping 

system in order to facilitate an accurate pothole detection using 

the proposed algorithm for varying types of potholes and 

generate results as accurate as those obtained from a high-grade 

mobile mapping system. 
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