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ABSTRACT:

Localization is one of the first steps in navigation. Especially due to the rapid development in automated driving, a precise and
reliable localization becomes essential. In this paper, we report an investigation of the usage of dynamic ground control points
(GCP) in visual localization in an automotive environment. Instead of having fixed positions, dynamic GCPs move together with
the camera. As a measure of quality, we employ the precision of the bundle adjustment results. In our experiments, we simulate
and investigate different realistic traffic scenarios. After investigating the role of tie points, we compare an approach using dynamic
GCPs to an approach with static GCPs to answer the question how a comparable precision can be reached for visual localization.
‘We show, that in our scenario, where two dynamic GCPs move together with a camera, similar results are indeed obtained to using a
number of static GCPs distributed over the whole trajectory. In another experiment, we take a closer look at sliding window bundle
adjustments. Sliding windows make it possible to work with an arbitrarily large number of images and to still obtain near real-time

results. We investigate this approach in combination with dynamic GCPs and vary the no. of images per window.

1. INTRODUCTION

Localization is one of the basic tasks in navigation, a precise
and reliable position is, e.g., a fundamental pre-condition for
automated driving. Besides classical positioning sensors like
global navigation satellite system (GNSS) receivers and iner-
tial navigation systems (INS), more and more approaches also
employ camera and/or laser scanner data to improve localiz-
ation (e.g. (Garcia-Fernandez, Schon, 2019)). Both sensors
can also be used in GNSS denied areas. In addition, cameras
in particular have a relatively low cost and low weight, which
can be a decisive advantage, for instance when deployed on un-
manned aerial vehicles (UAV), although they need an external
light source. Due to these reasons, researchers increasingly
combine GNSS and INS sensors with image-based localization
techniques. As an example, (Cavegn et al., 2016) shows the im-
provement of image-based georeferencing compared to direct
georeferencing. The authors also demonstrate, that in challen-
ging urban areas the uncertainty derived from only GNSS/INS
can be too optimistic. Besides use in these challenging urban
areas, image-based localization can also be employed in tun-
nels and for indoor navigation (e.g. (Cavegn et al., 2018)).

To solve the localization task state-space approaches based on
Kalman or particle filters are often used. In photogrammetry
and computer vision, network-based approaches using bundle
adjustment are more common. (Colomina, Blazquez, 2004)
compare both methods and point out the respective advantages
and disadvantages: State-space approaches have a fixed and re-
latively small amount of state-parameters and are therefore typ-
ically chosen if real-time is a requirement. Traditional network
approaches, on the other hand, suffer from a much larger size
normal equation matrix. Also, they solve for all data in a sim-
ultaneous adjustment after data acquisition is finished. They
thus achieve the most precise results, but real-time as such is
not possible. Window-based sequential network methods, e.g.
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Figure 1. Basic scenario with one dynamic camera and dynamic
GCPs moving between static tie points.

(Beder, Steffen, 2008), (Wilbers et al., 2019), offer a solution
and can achieve near real-time results.

In this paper, we introduce a window-based sequential bundle
adjustment for cooperative visual localization of moving cam-
eras in an environment suited for autonomous driving. Follow-
ing an idea of (Molina et al., 2017) along with static tie points,
we introduce dynamic GCPs, i.e. GCPs which move in the
scene. An example scenario is depicted in figure 1, showing
one dynamic camera and multiple dynamic GCPs as well as a
set of static tie points. Using dynamic GCPs brings several pos-
itive effects. On the one side it is more flexible because GCPs
do not have to be placed on the trajectory in advance. In ad-
dition, in an automotive scenario if, for instance, a car coming
from a GNSS denied area observes some other cars which ac-
curately know and can communicate their position (i.e. act as
dynamic GCPs), the first car can use them for self-localization.

Our main contribution is first to show, that based on simulations
in a cooperative setting where vehicles pass on the informa-
tion about their own position, the ego-motion can be calculated
by using these vehicles as dynamic GCPs in a bundle adjust-
ment with similar precision as achievable by using static GCPs.
Second, we demonstrate how our approach can be extended to
a sliding window variant. We determine the precision based on
the variance-covariance matrix of the unknowns of the bundle
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adjustment with simulated data. As we want to show if such
an approach can be used in the automotive field, we investigate
typical traffic scenarios.

The paper is organized as follows: After introducing related
work in section 2, we show in section 3 the methods we are us-
ing. We first introduce our simulation scenario, which consists
of dynamic cameras, dynamic GCPs and static tie points. We
then present the functional and stochastic models we use, and
also take a closer look at how we obtain the results, before in-
troducing the sliding window approach. Section 4 contains our
experiments. First, the simulation process is described and val-
idated in a setting with regularly spaced tie points and no GCPs,
followed by the comparison between static GCPs and dynamic
GCP results. Finally, we report the investigations of the sliding
window approach. In section 5 we recapitulate the results and
discuss steps for future work.

2. RELATED WORK

Visual localization is a broad topic with many applications and
lots of ongoing research. Three examples are (Wolcott, Eu-
stice, 2014), (Cavegn et al., 2016) and (Cavegn et al., 2018).
The authors investigate the use of information derived from im-
ages for georeferencing in environments, which are challenging
for GNSS. (Wolcott, Eustice, 2014) use a monoscopic cam-
era together with a 3D-map obtained by light detection and
ranging (LIDAR). They compare the localization accuracy of
the global positioning system (GPS), a mono camera and the
LIDAR map-based localization, and show that both, the cam-
era and the LIDAR approach yield better results than GPS. Al-
though the camera is significantly cheaper than the LIDAR the
obtained errors are in a similar order of magnitude. (Cavegn et
al., 2016) deal with the challenge of georeferencing image se-
quences. As in urban canyons direct georeferencing is not suit-
able due to poor GNSS coverage, the authors add image-based
georeferencing by using bundle adjustment. With this method,
they are able to reduce the residuals at the checkpoints from ap-
prox. 40 cm to 4 cm. (Cavegn et al., 2018) use a multi-stereo
system in their work and obtain georeferencing by combining
simultaneous localization and mapping (SLAM) with highly re-
dundant image sequences in a bundle adjustment. They test
their work in urban environments with poor GNSS coverage
and also indoors, achieving a root mean square error (RMSE)
at checkpoints on the cm level. These results support the idea
to use visual localization in autonomous driving for determin-
ing ego-motion. A difficulty here is, however, that the cited
approaches need GCPs or current and accurate maps to work,
which is not always available. One possible solution is to use
a cooperative setting where some participants know their posi-
tion and can therefore be used to determine the position of other
participants.

In the work of (Stoven-Dubois et al., 2018), the authors in-
troduce a UAV tandem system for surveying objects in GNSS
denied areas. The surveying UAV flies next to the object to
be captured and takes images while being tracked in an image
and georeferenced by another UAV that flies at a higher altitude
with a good GNSS signal. Also MapKITE (Molina et al., 2017)
and (Nahon et al., 2019) use a tandem system. Here, the au-
thors combine a terrestrial mobile mapping van with a UAV, so
they can make use of both types of measurements. The van has
a much higher payload which can be used for heavier but more
accurate GNSS sensors. Therefore, the vehicle can be used as

a dynamic ground control point. For accurate automatic pos-
itioning, a circular target is placed on the vehicle roof. This
cooperation significantly reduces the effort for having to place
multiple static GCPs in the scene. We use this idea for localiz-
ation in a network of cooperating vehicles.

While classical network approaches in photogrammetry typic-
ally assume a static environment, approaches using dynamic
GCPs like (Molina et al., 2017) and (Nahon et al., 2019) have to
introduce time-varying parameters for the object scene. (Colo-
mina, Bldzquez, 2004) describes a model that can handle time-
dependent parameters including, for example, the trajectory and
the sensor orientation. To compute these parameters, they com-
pare a state space and a network approach and point out the
respective advantages and disadvantages. Inspired by this work
we decided to use a bundle adjustment with dynamic GCPs.
As we do not assume the observation of the GCP positions to
be synchronized to the image data capture, we interpolate the
epoch of the latter from the former. Similar problems are dis-
cussed in (Cucci et al., 2017a) and (Cucci et al., 2017b) regard-
ing raw observations from inertial measurement units (IMUs)
in dynamic networks.

One issue of using bundle adjustment is the computing time,
in particular for larger blocks. This is especially a problem in
traffic situations where results need to be available in real-time.
For image sequences, by using a window with a fixed number of
images, the size of the equation system can be bounded so the
computing time is bounded as well, see (Beder, Steffen, 2008)
and (Wilbers et al., 2019). Along those lines (Beder, Steffen,
2008) introduce a sequential bundle adjustment approach with
recursive estimation for speeding up the computation.

In our approach, we combine these ideas and transfer them to
an automotive setting: we develop an incremental bundle ad-
justment using dynamic GCPs for localization in realistic traffic
scenarios.

3. PRECISION DETERMINATION BY BUNDLE
ADJUSTMENT

In the following, we describe the functional and the stochastic
model we use for introducing dynamic GCPs into bundle ad-
justment. For the sake of completeness, we also describe how
we obtain the precision of the unknowns. Finally, we present
the sliding window approach we use.

3.1 Functional and stochastic model

We discriminate three different types of objects.

1. Dynamic cameras: The cameras we use are moving in the
scene. Therefore, the parameters of the exterior orientation
are functions of time.

2. Dynamic GCPs: These GCPs are points moving in the de-
picted scene. They can measure their 3D position in the
global coordinate system. The time of the measurement is
not necessarily synchronized with that of the image data
capture, therefore the latter have to be interpolated.

3. Static tie points: Tie points have a stable position in space
and time. Obviously, we could also use dynamic tie points,
but in this paper, we restrict ourselves to the static variant.
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Figure 1 shows such a scenario with one dynamic camera and
three dynamic GCPs as well as a set of tie points.

As GCP coordinates are not necessarily measured at the same
time as image data capture occurs, we map the object coordin-
ates to the camera frame according to equation 1, where ©*™X
are the 3D camera frame coordinates, R and X, represent the
exterior orientation of the camera and X ¢ p the GCP coordin-
ates. t is the time at which those coordinates were determined,
and f is an appropriate interpolation function.

Camy R" - (f(Xgop,t) — Xo) (1)

In our set-up the optical axis is horizontal and the camera looks
in driving direction, which is the X-axis of our camera frame.
As a consequence the image plane is a vertical plane. The Z-
axis of the camera frame is thus chosen to be vertical as well,
and the Y-axis completes the system to be right-handed, leading
to equation 2 for the relation between image and camera frame
coordinates (x; and y; are the image coordinates, ¢, x¢ and yo
represent the elements of interior orientation of the camera).

CamY
Xy = Xogo —C- W
Cam
Z
Y= Y00 oy 2

We assume that the position of the dynamic GCPs is updated re-
latively frequently so we use linear interpolation for f (Xccp,t)
considering the two closest positions of the observed point con-
cerning the time the image is taken (equation 3).

—t t—1t
+ Xaeopy, - 0
t1 —to

t
f(Xaep,t) = Xaopig - —

Pa— 3)

Here t¢,, is the time when the position of the GCP X,, was ob-
served, ¢ describes the time at which the image was taken.

As in our model the position of the tie points is independent of
time we can use equation 4 instead of equation 1 to transform
the tie points into the camera frame, where X is the 3D position
of the tie point in the global frame.

“emX = R" - (X - Xo) )

The 3D position of the dynamic GCP is observed in the global
frame at the time ¢,, giving rise to a direct observation
X(ccp,t,), for the unknown global position Xgcop,t, to be
able to introduce uncertainty for the GCP position.

X(acp,tn), = XGePp,t, ()

Finally, in some experiments we also use direct observations for
the image orientation which are introduced in a similar way as
shown in equation 5.

Besides the functional model, we also need a stochastic model
of the observations (equation 6),

Yy =o00-Qy (6)

where 3J;; represents the covariance matrix of the observations,
Q; the cofactor matrix of the observations and oo the variance
factor. In our work, we assume uncorrelated observations for all

observations. As all groups of observations are introduced with
their corresponding standard deviation we choose o9 = 1.

3.2 Precision

The precision of visual localization is obtained by standard vari-
ance propagation. According to the standard formulae of least
squares adjustment the cofactor matrix of the unknowns Q5 is
determined as follows.

_ of
A= = . %)
P = Q' (8)
N = ATpA )
Qza: = N71 (10)

Equation 10 shows that ()., depends on one hand on the struc-
ture of the system given by the Jacobi matrix of the functional
model A and on the other hand on the stochastic model of the
observations @Q;;. The diagonal of )., contains the variances
of the unknowns. To obtain the precision of the exterior orient-
ation of the camera for every image we use the two correspond-
ing 3x3 sub-matrices of Q.. regarding the position and the
rotation angles of the projection centre. As the unknowns are
defined in the global frame we use the rotation matrix of the ex-
terior orientation R to transform the cofactor sub-matrices into
the camera frame. The diagonal elements of ), then contain
the variances of the unknowns regarding the driving direction
and the direction of the horizontal Y and vertical Z axis of the
image plane. We use the square root of these elements, i.e. the
standard deviations, as the measure of precision.

3.3 Sliding window

To achieve near real-time behaviour when using bundle adjust-
ment, sequential window-based approaches are often used
(Beder, Steffen, 2008). In this paper, we make use of such slid-
ing windows. A window contains a certain number of images
(size) W, and overlaps with the next window by a certain num-
ber of images W,;. The bundle adjustment then uses all images
in one window, whereby the six exterior orientation parameters
of all W,,; images overlapping with the previous window (and
thus having been computed in the previous adjustment) are used
as additional direct observations. In the stochastic model, the
entries of the ., matrix of the predecessor window are used
in @ to describe the variance and covariance of these direct
observations.

4. EXPERIMENTS

In our experiments, we first discuss the influence of the tie
points on the stability of the image block. Then, we compare
the precision of the camera exterior orientation using dynamic
GCPs to the case with static GCPs. Finally, we demonstrate the
effects of using sliding windows with a dynamic GCP setup.
All investigations are based on simulations.

4.1 Simulation environment

In our simulation setup, the camera moves on a pre-defined tra-
jectory through the scene with constant velocity and with a hori-
zontal viewing direction parallel to the driving direction. Static
tie points are placed throughout the whole scene. The distri-
bution of the static and dynamic GCPs differs in the different
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Figure 2. The camera trajectory and the placement of the GCPs
for testing the static setup.

experiments. Images are taken at regular intervals. For every
image exposure, the time is recorded and the global 3D coordin-
ates of all GCPs and all tie points are mapped into image space.
The 3D positions of the dynamic GCPs are recorded at differ-
ent time steps, which leads to the time offset we consider in
equation 3.

The camera we use has a resolution of 1936x1216 px with
a pixel size of 5.86umx5.86um and a focal length of 5 mm.
These are typical values for a camera used in the automotive
field, so our simulation can be used in such an application.

In the stochastic model weuse ox =0y = 0.1mandoz = 0.2
m for the dynamic GCP coordinate observations and ox =
oy = 0.05mand oz = 0.1 m for static GCP observations
to take into account that static GCPs can typically be meas-
ured with a higher accuracy, and that GCP coordinates (typic-
ally measured with GNSS/IMU these days) in general have a
higher uncertainty in Z direction. The standard deviation of the
image coordinate observations is set to o, = o, = 0.5 px.

4.2 Scenario

For our experiments, we selected a symmetric trajectory, so the
interpretation of the results becomes more meaningful (figure
2). The shape of the trajectory is square with corners cut in
45-degree angles. The length of the trajectory is a little more
than 700 m. Except for the experiments using window-based
bundle adjustment, images are taken every 20 m, resulting in
35 images altogether. The viewing distance for the camera is
restricted to 100 m to reduce effects caused by the camera see-
ing more tie points at the beginning of a long straight part of the
trajectory than towards the end. For simplicity, the height of the
projection centre is set to 0 m for the whole trajectory under the
assumption of a flat environment. In the first experiments the
tie points are arranged in a regular 3D grid with a grid size of
20 m, and all tie points lying in the viewing cone of the camera
are assumed to be visible in the images. In further experiments
the tie points are randomly placed within each 3D grid mesh,
and for the window-based approach a grid size of 15 m is used.

4.3 Block stability without GCPs

For all experiments we made sure to have enough tie points, ad-
equately distributed in image space. Despite the fact that mov-
ing and viewing direction are parallel, we obtain a somewhat
stable photogrammetric block in this way. To demonstrate this
stability, we first investigate the precision of exterior orientation
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Figure 3. Results of visual localization with regularly spaced tie
points, but without GCPs.

without GCPs. The block datum is defined by direct observa-
tions of the camera projection centres with ox, = oy, =0z, =
1 m, which are realistic values for the kind of GNSS receivers
used in the automotive field. The results can be seen in figure
3, where the precision of the exterior orientation is depicted as
a function of image number (or time).

Due to the symmetric course, also the obtained precisions show
a symmetric behaviour. The precision of the projection centre
improves by about a factor of 3 compared to the precision of the
direct observations, which demonstrates that the bundle based
on the tie points is indeed relatively stable. It is also visible,
that in the curves the precision decreases, although not by a
large amount. This effect is explained by the fact that images in
these positions of the trajectory are connected to fewer images
than those along the straight lines. The angular precisions show
a similar behaviour. When comparing the different directions
it can be seen, that the precision of the vertical coordinate is
lower than that of the horizontal coordinate perpendicular to
the driving direction, which is a consequence of the rectangular
image format. The precision of the angles around the horizontal
and the vertical axis again show a similar behaviour.

4.4 Comparison between static and dynamic GCPs
In the next step, we investigate the question, under which condi-

tions dynamic GCPs can reach similar precision as static GCPs
in a realistic traffic scenario. We choose a convoy formation

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII1-B1-2020-363-2020 | © Authors 2020. CC BY 4.0 License. 366



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2020, 2020
XXIV ISPRS Congress (2020 edition)

driving [mm]

horizontal [mm]

vertical [mm]

image

(a) Precision of the position of the projection centre
in the vertical and horizontal axes of the image and in
driving direction.

0.06

0.04 4

driving [deg]

0.02 T T T T T T T U
0.06

0.041 w

0.02

horizontal [deg]

=]
o
=)

vertical [deg]
o
o
4

— e~ N~

o
o
]

0 5 10 15 20 25 30 35
image

(b) Precision of the angles around the vertical and
horizontal axes of the image and in driving direction.

a4

GCPs.
~
.
.
.
.
.
.
.
.
.
.

(c) Number of seen GCPs in every image.

Figure 4. Results of visual localization with regularly spaced tie
points and static GCPs.

where the camera follows two dynamic GCPs. Convoy situ-
ations are typical for traffic and enable the possibility to use the
same dynamic GCPs over a long distance. In our case, we use
two GCPs in front of the camera. The first GCP drives 15 m in
front of the camera and the second one 30 m, which corresponds
to the recommended distance between vehicles at a speed of 50
km/h. The camera as well as the two dynamic GCPs have a
height of 0 m. As a consequence, the camera sees the 2nd GCP
only in the curves, otherwise, it is occluded. In addition, on the
straight parts of the trajectory, the dynamic GCP is depicted in
the centre of the camera image.

We placed the GCPs in tuples all around the trajectory (see fig-
ure 2), so the whole path can be consistently connected to the
global coordinate system. As we want to have GCPs in most
images to further increase the block stability, we placed two
GCPs in the middle and two GCPs at the end of every straight
part of the trajectory. Heights of 3.5 or -3.5 m guarantee that the
image coordinates move towards the respective image corners,
when the camera approaches the GCP tuples. By alternating
the heights the GCP position in the images is evenly distributed
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Figure 5. Results of visual localization with regularly spaced tie
points and dynamic GCPs.

among all four corners.

First, we analyse the influence of the static GCPs (figure 4) on
the precision by comparing the results to those without GCPs.
The static GCPs improve the precision significantly: the posi-
tion of the projection centre is improved by a factor of 5, those
of the angles by approximately a factor of 3. When inspecting
the projection centre results it can be seen, that - not surpris-
ingly - when four GCPs per image are visible instead of two,
the precision improves. This effect adds two local minima per
straight trajectory part to the plots, as two tuples per straight
part are used. In the precision of the angles, we obtain the same
effect around the vertical and horizontal axis, although the angle
around the horizontal axis is not so strongly influenced. The
angle around the driving axis is improved using the GCPs, but
the variations are very similar to those without GCPs.

When investigating the precision reached with the dynamic
GCPs especially the driving direction is noticeable (figure 5).
Here we see an opposite behaviour as in the two previous cases.
The precision decreases while driving on the straight line and
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Figure 6. Results of visual localization by using static GCPs in a
random tie point cloud.

rises in the curve. This effect is caused by the convoy config-
uration, as on the straight line only one GCP is visible and is
depicted in the image centre. If either the 2nd GCP or the cam-
era turn around the corner, two GCPs become visible and the
precision improves. The horizontal and the vertical position on
the other hand are dominated by the block stability provided by
the tie points, because, except the overall level, the plots of fig-
ures 4a and 5a are rather similar to figure 3a; the same is true
for the angles.

The results reported so far were obtained using a regular 3D
tie point grid, for which the results are easier to interpret, but
which is less realistic. Next, we present results obtained with
tie points randomly placed within this grid. The point density
is one tie point per cube with edge length 20 m. By using ran-
domly scattered tie points (see figures 6 and 7) the symmetry
of the previous plots is of course somewhat disturbed, but the
main patterns can be still seen (compare figures 4 vs. 6 and 5
vs. 7). This influence can be especially seen in the angles. All
in all, the results show that by a comparison between static and
dynamic GCPs mainly the precision in driving direction differs,
which is due to the selected convoy scenario and the resulting
occlusions. In the other parameters, a similar level of preci-
sion was reached, and the higher precision of the static GCP
coordinates is compensated by the larger amount of dynamic
GCPs measurements.
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Figure 7. Results of visual localization by using dynamic GCPs
in a random tie point cloud.
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Figure 8. Distribution of images for the window-based
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4.5 Sliding window in combination with dynamic GCPs

In the last experiment, we investigate the influence of a slid-
ing window on the precision of the results when using dynamic
GCPs. As mentioned before, the background is that sliding win-
dows allow for near real-time results, which are important in
the automotive field. In general, the sliding window has two
independent parameters, namely window size and overlap. As
we want to obtain results of each image as fast as possible, we
select an overlap of (W, — 1) images, where W is the win-
dow size. The choice of W, itself is a compromise between
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Figure 9. Precision of the position in the vertical and the
horizontal image axes and the driving direction with W 10, 20
and 30. Note that the scale of the driving direction is adapted to

better visualize the results.

the necessary precision, which is better for larger windows, and
the required computational speed, as smaller windows can be
processed faster.

A problem occurs when using dynamic GCPs in combination
with the sliding window in our scenario: for small windows
only part of the straight course is included, leading to only one
visible GCP, located in the image centre, which results in nu-
merically instable solutions. Therefore, in this experiment we
move the second dynamic GCPs to a second lane to the left
of the original trajectory, where it is not occluded any longer.
Thus, we now simulate two-lane traffic rather than a convoy as
before.
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Figure 10. Precision of the angle around the vertical and the
horizontal image axes and the driving direction at W 10, 20
and 30.

In our experiment we compare three different window sizes,
namely W,. = [5;10;20]. In order to have a denser dataset,
we rise the rate of image capture to one image every 2 meters
(figure 8) which is equivalent to 7 fps at our assumed speed of
50 km/h. This rate can easily be reached by typical automotive
cameras. We use randomly scattered tie points with a point
density of 1 tie point per cube with a grid size of 15 m.

The results (see figures 9 and 10) show that when using a slid-
ing window with dynamic GCPs the precision is rather poor
in the first part of the first straight line of the trajectory, even
though the two-lane traffic scenario is used, in particular for
the position in driving direction and for the angles. Afterwards,
similar effects over the trajectory are obtained as by using the
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full bundle (compare to figure 7). The four corners have a clear
effect and, again, the precision of the position in driving direc-
tion is the lowest (note the different scale of the axis in figure
9). Also, as in the previous case the precision improves in the
curves.

Regarding the window size, it can be seen, that as expected
larger windows produce better precision. For the other two co-
ordinates of the projection centre, the precision is similar to that
for the full bundle (which, however, has a different number of
tie points and of images), in the horizontal direction the curves
are well visible. Due to the higher rate of image capture the
smaller 45-degree parts of the trajectory are also visible. The
precision of the angles achieve expected results. Stable values
are reached after the first corner, then the values are more or
less constant. Again, larger windows lead to better results.

In summary, our results show that after a starting phase the
precision obtained with the sliding window approach reaches a
stable level. It can also be seen that there is a trade-off between
the reachable level of precision and the needed processing time
represented by the window size. Based on our results the sliding
window approach seems to offer a good opportunity to reach
near real-time behaviour for the bundle adjustment with dy-
namic GCPs.

5. CONCLUSION

Based on simulations we showed in this paper, to which extent
dynamic GCPs can be used for visual localization in realistic
traffic scenarios using the obtained precision for the elements
of exterior orientation as criterion. We also presented the pre-
cisions obtained for a sliding window approach. While in case
of a convoy formation problems can occur for the driving dir-
ection, the situation is improved for two-lane traffic.

In further research, we will study the effect of introducing ad-
ditional GNSS and IMU measurements for the elements of ex-
terior orientation. On the more methodological side we will
study ways to deal with points at infinity (see (Forstner, Wrobel,
2016) for possible ways to do so). Another topic is the intro-
duction of dynamic tie points and the question of how to then
differentiate between the two types. Also, a combination of
multiple cameras is a topic of interest for us. Finally, our res-
ults should be verified with real data.
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