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ABSTRACT: 
 
This paper entails a methodological novelty and builds upon prior research on a wavelets-based model for digital camera self-
calibration. We introduce a new kernel function based on the compactly supported orthogonal third-order asymmetric Daubechies 
wavelet to correct systematic image distortion errors. Tests are done by using aerial images taken with a high-resolution metric 
digital aerial mapping camera. The quality of experimental results is evaluated by using reliable and high precision ground check 
points in the calibration field. For example, a four-fold block with this wavelet self-calibration model has the external accuracy of 
about 0.28 GSD (=ground sampling distance) in the horizontal direction, and about 0.43 GSD in the vertical direction, respectively, 
where 1GSD  4.6cm. The posterior standard deviations ߪො଴ of unit weight are reduced from 0.37 pixel to 0.27 pixel. The residual 
vector lengths are also significantly reduced after our wavelet additional parameters are used. Experimental results support the 
proposal and demonstrate the applicability of this new model. 
 

1. INTRODUCTION 

Digital images are widely used to record geometric, radiometric 
and semantic information in a target scene of interest. However, 
digital image has inevitably defects caused by some external 
factors, such as deviations in the manufacture and parts 
assembly of camera components, resulting in systematic 
differences between both actual and theoretical projections 
during the imaging process. Therefore, in the fields of 
photogrammetry, geometric computer vision, or optical 
engineering, high-precision geometric applications must take 
the effects of these systematic errors into account. A technique 
of determining the interior orientation parameters (IOPs) of 
cameras is called “camera calibration”. These IOPs include 
principal distance c (or focal length) of camera, the photo 
coordinates of the principal point (x0, y0), and lens distortion 
parameters. Camera self-calibration technique is commonly the 
most widely used method in photogrammetry, and has the 
ability to automatically select the appropriate additional 
parameters (APs) by means of statistical tests to correct the 
camera lens distortion. 
 
Many early studies proposed different traditional APs based on 
mathematics or physical phenomena to describe the lens 
distortion of analogue cameras. For example, the most classic 
physical self-calibration model was firstly proposed by Brown 
(1971) for calibrating the lens distortion of close-range cameras, 
and then Brown (1976) extended his model to calibrate the lens 
distortion of single-head analogue aerial cameras. Some 
traditional mathematical self-calibration models, such as those 
proposed by Ebner (1976), El-Hakim & Faig (1977), and Grün 
(1978), were established by using algebraic polynomials and 
spherical harmonics as mathematical basis functions. Although 
these traditional self-calibration models are helpful to improve the 
external accuracy of photo triangulation, Clarke and Fryer (1998) 
reveals that many of the traditional APs lack the foundations for 
observable physical phenomena and have the risks of over-
parameterization and high correlation with other correction 
parameters. In the era of digital photogrammetry, these traditional 
self-calibration models are also continuously used to calibrate 
diverse modern new types of digital aerial cameras although they 
might not be suitable for accurately calibrating the lens distortion 

of different kinds of digital cameras (Fritsch, 2015). Cramer 
(2009) and Jacobsen et al. (2010) calibrated a variety of digital 
aerial cameras with different self-calibration models to correct 
lens distortion of these cameras and verify their results. However, 
some of aforementioned inherent defects of traditional APs still 
exist. 
 
Tang et al. (2012a) proposed a series of Legendre self-
calibration APs based on orthogonal univariate Legendre 
polynomials to calibrate the lens distortion of digital aerial 
frame cameras. The correlations of Legendre self-calibration 
APs are lower than those of the traditional self-calibration APs, 
but an inherent defect of all polynomial APs, which is not 
completely independent between the x and y components of 
camera lens distortion, still exists. Tang (2012b) used bivariate 
Fourier series to define a family of Fourier self-calibration APs, 
which overcomes the drawback of all polynomial APs and has 
the advantages of orthogonal, mathematically rigorous, flexible, 
generic and efficient calibration of the lens distortion of all 
digital aerial frame cameras. Fourier is most suitable for 
representing and analyzing stationary signals, but it has inherent 
defects in displaying and decomposing non-stationary signals. 
Briefly to say, stationary image distortion signals are constant in 
their statistical parameters over the whole image array. Their 
frequency contents do not change from place to place in an 
image. However, the lens distortion signals of diverse modern 
new types of digital cameras might be stationary partly and non-
stationary another partly. In order to implement the novel ideas 
and to explore the possible application potential of wavelets on 
self-calibrating distortion parameters of modern diverse types of 
digital cameras, the orthogonal wavelet functions are adopted 
and used as the mathematical basis functions to establish new 
camera self-calibration APs, called wavelet APs (WAPs), in our 
studies since 2016. The WAPs have similar advantages as 
Fourier APs such as mathematical rigorousness, orthogonality 
between any two wavelet (child) functions, model flexibility, 
generic applicability and computation efficiency for camera 
self-calibration. Moreover, some wavelets such as both 
asymmetric and least asymmetric families of Daubechies 
wavelets still have advantages in expressing both stationary and 
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non-stationary, or even fractal distortion signals of digital 
images.  
 
Section 2 summarizes briefly the fundamental theory and 
concepts of wavelets as well as the related wavelet issues used 
in the current WAP model. And section 3 describes our WAP 
model briefly. In section 4, both introduction to our tests by 
using real digital aerial images and their test results are given. 
The performance of WAPs is evaluated, too. Some conclusions 
are then drawn in section 5. 
 

2. BRIEF INTRODUCTION TO THE RELATED 
WAVELET ISSUES 

Briefly speaking, wavelet theory and wavelet functions as well 
provide the second generation tool for signal and image 
processing, whereas the well-known Fourier theory and its 
kernel functions, namely sinusoidal and cosine functions in 
different frequency bands, as well give the first generation tool 
for signal and image processing. They include the wavelet series, 
continuous wavelet transform (CWT), discrete wavelet 
transform (DWT), fast wavelet transform (FWT) in the wavelet 
tools, as well as the Fourier series, continuous Fourier transform 
(CFT), discrete Fourier transform (DFT), fast Fourier transform 
(FFT) in the Fourier tools, respectively. Generally speaking, 
wavelets suit for representation and processing of both non-
stationary and stationary signals, while the Fourier tools are 
good only for stationary signals.  
 
Stationary signals are constant in their statistical parameters 
over time. If you look at a stationary signal for a few moments 
and then wait an hour and look at it again, it would look 
essentially the same, i.e. its overall level would be about the 
same and its amplitude distribution and standard deviation 
would be also about the same. On the other hand, signals whose 
frequency contents do not change over time are called stationary 
signals. In other words, the frequency content of stationary 
signals does not change over time. In this case, one does not 
need to know at what time durations frequency components 
exist, since all frequency components exist at all time locations. 
The sine and cosine functions are two typical examples of 
stationary signal functions. 
 
Contrary to the aforementioned examples of stationary signals, 
those signals, whose frequency constantly changes over time, 
are known as non-stationary ones. For instance, the "chirp" 
signal is non-stationary. 
 
Mallat (1989) proposed a theory for multiresolution signal 
decomposition. Multi-resolution analysis (MRA) plays an 
important role in the wavelet theory, and is often called multi-
scale analysis (MSA), too. It enables an efficient both signal, 
including image, decomposition and reconstruction in different 
levels of details. The wavelet representation can be used to 
display signals inclusive of two-dimensional image distortion 
functions. 
 
For the present, there are already diverse kinds of digital 
cameras such as digital frame cameras, virtual image 
composition cameras, multi-head cameras, fish-eye cameras, 
push-broom cameras, linear array cameras and so on. They may 
be metric or non-metric. The inherent image distortion may be 
stationary or non-stationary. Wavelets are able to represent both 
stationary and non-stationary image distortion signals. 
Moreover, some wavelets such as Daubechies wavelet functions 
display a fractal geometry, even though they are continuous for 
the order N>1 (Kaiser, 1994). The fractal geometry is 

apparently the correct mathematics for describing image texture 
(Jaehne, 1991) and real signals in nature. Real signals in nature 
are often fractal or Hoelder-continuous (also called “lipschitz 
continuous”) (Daubechies, 1994; Kaiser, 1994; Louis et al., 
1994). They are often not able to be described by traditional 
analytical functions or, briefly to say, to be expressed in a 
closed form. These signals in nature often have varied degrees 
of continuity from place to place. On the other hand, many 
signals in nature are fractal, and have the properties of, e.g., 
self-similarity or self-affinity. Due to the aforementioned 
considerations, wavelets are selected and applied in this study to 
design a new model called WAP, which is expected to be able 
to self-calibrate diverse kinds of digital cameras. 
 
Tsay (2016) proposed some original ideas for designing the 
WAP models, and mentioned that not only the theoretical and 
practical wavelet series (Strang, Nguyen, 1996) but also both 
the S-D model for interpolation and S-model for approximation 
proposed by Tsay (1996) can be extended and utilized for 
designing the WAP models. In this study, one of those novel 
models for WAP is proposed and tested. The concerned 
computation algorithm and the corresponding program system 
for self-calibrated bundle block adjustment are also developed 
by using the program language C# on a general personal 
computer.  
 
Furthermore, there are already diverse kinds of wavelet 
functions which might be available for this WAP model, such as 
Haar wavelets, Daubechies wavelets, Littlewood-Paley wavelet, 
Morlet wavelet, Meyer wavelet, Battle-Lemarie wavelets. They 
might be biorthogonal, orthogonal, semi-orthogonal, or non-
orthogonal wavelets. On the other hand, they might be 
compactly supported or not compactly supported. They might 
be real or complex wavelets. They may be continuous or 
discontinuous. Their function curves may be smooth or not 
smooth. These diverse wavelet functions may be regular or 
irregular. Their function curves might be symmetric or 
asymmetric. Some of them can be displayed explicitly, but the 
others cannot be described in a closed-form expression. 
Anyway, the accuracy, rigorousness and flexibility of this 
approximation model for image distortion and the computation 
complexity, namely the number of addition and multiplication 
operations, are taken into account in this study for selecting a 
proper wavelet family for our WAP model. For the present, the 
orthogonal, compactly supported asymmetric Daubechies 
wavelets of third order (N=3) including their father wavelet  
and scaled and translated scaling functions jk, j,kZ, are 
adopted in this study for establishing the WAP model, where 
the symbol Z denotes the set of all integers. 
 
Moreover, the orthogonal, compactly supported asymmetric 
Daubechies wavelets of third order (N=3) cannot be displayed 
explicitly in a closed-form expression. Nevertheless, their 
function values can be computed as accurately as needed by 
means of different methods such as Cascade Algorithm 
(Daubechies, Lagarias, 1991), Strang’s method (Strang, 1989), 
Fourier algorithm (Daubechies, 1994), and Kaiser’s Method of 
Cumulants (Kaiser, 1994). Moreover, Tsay (1996) proposed a 
method for calculating the derivative functions of Daubechies 
wavelets for the order N3, where a linearly independent 
equation given by Dahmen and Micchelli (1990) is applied for 
solving the rank defect problem in a linear equation system.  
 

3. WAVELET ADDITIONAL PARAMETERS 

Photogrammetric self-calibration can be regarded as a 
fundamental mathematical problem of function approximation. 
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The self-calibration models can be incorporated into the well-
known collinearity condition equations in photogrammetry 
(Wolf and Dewitt, 2000), as shown in (1). 
 

ݔ ൌ ଴ݔ െ ܿ
ଵଵሺܺݎ െ ܺ଴ሻ ൅ ଵଶሺܻݎ െ ଴ܻሻ ൅ ଵଷሺܼݎ െ ܼ଴ሻ

ଷଵሺܺݎ െ ܺ଴ሻ ൅ ଷଶሺܻݎ െ ଴ܻሻ ൅ ଷଷሺܼݎ െ ܼ଴ሻ
൅ ݔ∆ ൅ ௫ߝ
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			ሺ1ሻ 

 
where x and y are photo coordinates of an image point of 
interest; X, Y, and Z are the object coordinates of its 
corresponding object point; c is the camera focal length; x0 and 
y0 are the photo coordinates of the principal point; X0, Y0, and Z0 
are the object coordinates of camera exposure station; r’s are the 
functions of three rotation angles, e.g. omega , phi , and 
kappa ; ∆x and ∆y are the systematic error components in the 
photo coordinates x and y, respectively; εx and εy are the random 
error components in the photo coordinate observations x and y, 
respectively. 
 
We develop novel self-calibration additional parameters based 
on orthogonal wavelet functions, which are used to calibrate the 
digital frame cameras in the Cartesian coordinate system of 
Euclidean space. The systematic error components ∆x and ∆y in 
(1) can be given as (2), where W and H are the width and height 
of image, respectively; sx and sy are the scale factors of the 
wavelet basis functions in the x and y directions, respectively; 
aij and bij are the coefficients of WAPs in ∆x and ∆y, 
respectively; i and j are the translation parameters of the wavelet 
basis functions in the x and y directions, respectively; ߶ே  is 
Daubechies father wavelet function ϕ of order N defined in (3), 
where hn, ∀n, are the low-pass filter coefficients (Daubechies, 
1994). 
 

ݔ∆ ൌ ,ݔ൫ݔ∆ ,ܪ,ܹ,ݕ ,௫ݏ ,௬ݏ ߶ே, ܽ௜௝൯

ݕ∆ ൌ ,ݔ൫ݕ∆ ,ܪ,ܹ,ݕ ,௫ݏ ,௬ݏ ߶ே, ܾ௜௝൯
																			ሺ2ሻ 

 

߶ሺߦሻ ൌ √2 ෍ ݄௡߶ሺ2ߦ െ ݊ሻ
ଶேିଵ

௡ୀ଴

																							ሺ3ሻ 

 
The total number of WAP coefficients is determined by the 
definition of all parameters in Eq. (2). The number of significant 
WAPs used is decided automatically by the statistical tests, 
including correlation test, significance test and total correlation 
test. The thresholds for these statistical tests are referenced from 
the empirical values of the classic bundle adjustment software 
BINGO (Kruck, 2016). 
 

4. SELF-CALIBRATION TESTS AND EVALUATION 

The WAPs are tested in a test area located in Nangang, Nantou 
County, Taiwan. The test area shown in Figure 1 is an aerial 
camera calibration field built by the National Land Surveying 
and Mapping Center, Ministry of the Interior, Taiwan. A total of 
30 test images with 80% end lap and 60% side lap are taken 
with an UltraCam Xp Wide Angle digital aerial camera, and 
they are composed of three east-west and three north-south 
flight strips, each of which has 5 test images. The parameters of 
these test images are shown in Table 1.  
 

 
Figure 1. Location of the test area in Taiwan and its image 

coverage 

 
Acquisition Date September 21, 2012 

Camera UltraCam Xp Wide Angle 
Focal Length 70.500 ± 0.002 mm 

Pixel Size 6.0 μm 
Image Size 11310 pixels × 17310 pixels 

End lap ≈ 80% 
Side lap ≈ 60% 

Height (AGL) ≈ 545 m 
Groundel Size ≈ 46 mm 
Image Scale ≈ 1:7700 

Calibration Field Size 750 m × 600 m 
Ground Coverage ≈ 1433 m × 1433 m 

Table 1. The parameters of the test images 

 
Three sets of test images are tested, including (case 1) a block 
composed of two north-south flight strips with 60% end lap and 
25% side lap, (case 2) a block composed of two east-west flight 
strips with 60% end lap and 25% side lap, and (case 3) a block 
composed of cross strips with 80% end lap and 60% side lap. 
Each set of test images is used in both test cases of the bundle 
block adjustments without WAPs and with WAPs, respectively. 
The case number and the number of known ground points 
(GCPs and CHKs) are shown in Table 2, where the number of 
check points (CHKs) is 42 (case 1), 41 (case 2) and 49 (case 3), 
respectively, due to different image coverage in these three test 
cases. The distribution maps of all used known points and the 
image overlap of all used images are shown in Figure 2, where 
triangles and squares denote the full ground control points 
(GCPs) and the full check points (CHKs), respectively. Figure 2 
shows that all known ground target points including GCPs and 
CHKs are located inside the image coverage. There is not any 
known ground target point on the border and corners of the 
block model. This is evidently a defect of this study. 
 

 Without WAPs With WAPs 
North-south flight strips
(9GCPs / 42CHKs) 

Case 1-1 Case 1-2 

East-west flight strips 
(9GCPs / 41CHKs) 

Case 2-1 Case 2-2 

Cross flight strips 
(9GCPs / 49CHKs) 

Case 3-1 Case 3-2 

Table 2. Test cases 
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Figure 2. The distribution maps of all used known points, where triangles and squares denote the full GCPs and the full CHKs, 

respectively, and the image overlap of all used images in Case 1 (left), Case 2 (middle), and Case 3 (right) 

 
The observations include the photo coordinates of all tie points 
and the object coordinates of all ground control points (GCPs). 
The unknown parameters include the wavelet additional 
parameters (WAPs) in the cases 1-2, 2-2 and 3-2, the exterior 
orientation parameters of all test images used, and the ground 
coordinates of all object points. All image points on all used 
images are overlaid in the image frame as shown in Figure 3, 
which illustrates that the average image point density is 0.28 
points/mm2 (case 1), 0.29 points/mm2 (case 2) and 2.02 
points/mm2, respectively. Apparently, the case 3 has 
significantly larger point density than the cases 1 and 2. The 
bundle block adjustment results of all test cases are summarized 
in Table 3. By using the statistical tests mentioned in Section 3, 
the number of significant WAPs is reduced from 234 to 52 
(about 22% of all original WAPs in the wavelet model) for the 
two cases 1-2 and 2-2 of single block with WAPs, and reduced 
from 234 to 106 (about 45% of all WAPs) for the case 3-2 of 
four-fold block with WAPs. After using WAPs for self-
calibration, the posterior standard deviations ߪො଴ of unit weight 
in the three sets of test cases are significantly reduced from 0.33 
pixel to 0.27 pixel in the case 1, from 0.28 pixel to 0.23 pixel in 
the case 2, and from 0.37 pixel to 0.27 pixel in the case 3. The 
average redundancy is (n-u)/n, where n and u denote the number 
of observations and unknowns, respectively. Table 3 
demonstrates apparently that the average redundancy in the case 
3 is about 0.80 which is larger significantly than 0.32~0.36 in 
the cases 1 and 2. Also, the case 3 spends 15~85 seconds for 
computations which is much longer that <1~4 seconds in the 
cases 1 and 2. 
 

 
Figure 3. Overlaying all image points of all used images in the 

image frame 

 

Case
Number of 

WAPs ߪො଴ ሺpxሻ 
Average 

redundancy 
Calculation 

Time 
1-1 - 0.33 0.36 < 1 s 
1-2 52/234 0.27 0.34 2 s 
2-1 - 0.28 0.33 < 1 s 
2-2 52/234 0.23 0.32 4 s 
3-1 - 0.37 0.80 15 s 
3-2 106/234 0.27 0.79 85 s 

Table 3. The bundle block adjustment results of all test cases 

 
Figure 4 illustrates the average image distortion vectors 
estimated by the WAP model on all 0.1mm × 0.1mm grid points 
in a tile in the cases 1-2, 2-2 and 3-2 with WAPs, where an 
image frame is divided into 9 × 13 tiles. The average image 
distortion vectors calculated by the three sets of test images are 
different because they have different number and distribution of 
the tie points. For these three cases, the number of the tie points 
in a tile is in the range [4, 33], [7, 33], and [52, 172], 
respectively. Therefore, the average image distortion vectors of 
Case 1-2 and Case 2-2 are not considered to be significant. 
Moreover, the average residual vectors of all photo coordinate 
observations in the cases of “without WAPs” and “with WAPs” 
are displayed in Figure 5 and Figure 6, respectively. They 
illustrate that the average residual vectors of the photo 
coordinate observations have no significant systematic errors, 
and these residual vector lengths are also significantly reduced 
after WAPs are used. These test results indicate that this 
wavelet model for self-calibrated bundle block adjustment is 
helpful and applicable to correct the systematic distortion errors 
of images taken with aerial digital mapping cameras. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-407-2020 | © Authors 2020. CC BY 4.0 License.

 
410



 

 
Figure 4. Average image distortion vectors determined by using WAPs in Case 1-2 (left), Case 2-2 (middle), and Case 3-2 (right) 

 

 

Figure 5. Average residual vectors of the photo coordinate observations in Case 1-1 (left), Case 2-1 (middle), and Case 3-1 (right) 
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Figure 6. Average residual vectors of the photo coordinate observations in Case 1-2 (left), Case 2-2 (middle), and Case 3-2 (right) 

 

 

Figure 7. The horizontal coordinate difference vectors (left) and elevation difference vectors (right) on all CHKs 
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The external accuracy of all test cases shown in Figure 8 is 
derived from the root mean square discrepancies of all 
independent ground check points (CHKs) used. The object 
coordinates of all known points, including GCPs and CHKs, are 
measured by static GNSS surveying, whose accuracy is 
sufficient to evaluate the results of aerial triangulation. For the 
two cases of single block without self-calibration, the external 
accuracy is about 0.49 GSD and 0.56 GSD in the horizontal 
direction, and about 0.89 GSD and 0.93 GSD in the vertical 
direction, respectively, where 1 GSD  4.6 cm. However, in 
these two cases with WAPs, the external accuracy is improved 
to about 0.48 GSD and 0.54 GSD in the horizontal direction, 
and to about 0.70 GSD and 0.85 GSD in the vertical direction, 
respectively. For the case of four-fold block, high image 
overlaps and side laps as well as cross strips do help to 
eliminate some systematic errors and increase the average 
redundancy. The external accuracy in the case of “without 
WAPs” and “with WAPs” is about 0.29 GSD and 0.28 GSD in 
the horizontal direction, and about 0.46 GSD and 0.43 GSD in 
the vertical direction, respectively. Figure 7 illustrates the 
ground coordinate difference vectors on all CHKs in the 
horizontal and elevation directions in each case. 
 

 
Figure 8. External accuracy of all test cases 

 
The root mean square (RMS) values of the posterior accuracies 
,ො௑௒ߪ ො௓ߪ  of all ground points in all test cases are illustrated in 
Figure 9. For the cases of “without WAPs”, the RMS values of 
,ො௑௒ߪ  ො௓ are about 0.40 GSD, 0.39 GSD, and 0.58 GSD in theߪ
horizontal direction, and about 0.87 GSD, 0.80 GSD, and 1.02 
GSD in the vertical direction, respectively. Nevertheless, for the 
cases of “with WAPs”, the RMS values of ߪො௑௒, ො௓ߪ  are about 
0.36 GSD, 0.31 GSD, and 0.43 GSD in the horizontal direction, 
and about 0.72 GSD, 0.65 GSD, and 0.76 GSD in the vertical 
direction, respectively. 
 

 
Figure 9. The RMS of ߪො௑௒,  ො௓ of all ground pointsߪ

 

The RMS values of the posterior accuracies ߪො௑௒,  ො௓ of all GCPsߪ
used in all test cases are illustrated in Figure 10. For the cases of 
“without WAPs”, the RMS values of ߪො௑௒, ො௓ߪ  are about 0.12 
GSD, 0.12 GSD, and 0.06 GSD in the horizontal direction, and 
about 0.20 GSD, 0.17 GSD, and 0.09 GSD in the vertical 
direction, respectively. Nevertheless, for the cases of “with 
WAPs”, the RMS values of ߪො௑௒,  ො௓ are about 0.11 GSD, 0.09ߪ
GSD, and 0.06 GSD in the horizontal direction, and about 0.17 
GSD, 0.15 GSD, and 0.07 GSD in the vertical direction, 
respectively. 
 

 
Figure 10. The RMS of ߪො௑௒,  ො௓ of all GCPs usedߪ

 
5. CONCLUSIONS 

We develop novel wavelet additional parameters (WAPs) for 
self-calibrating digital frame cameras in the Cartesian 
coordinate system of Euclidean space. The test cases use aerial 
images taken with an UltraCam Xp Wide Angle digital aerial 
camera to perform bundle block adjustment without or with 
WAPs. For the two cases of single block with this wavelet self-
calibration model, the external accuracy is about 0.48 to 0.54 
GSD in the horizontal direction, and about 0.70 to 0.85 GSD in 
the vertical direction, respectively. For the case of four-fold 
block with this wavelet self-calibration model, the external 
accuracy is about 0.28 GSD in the horizontal direction, and 
about 0.43 GSD in the vertical direction, respectively. In 
addition, the number and distribution of the tie points may 
affect the solution of WAPs. These test results indicate that this 
wavelet model for self-calibrated bundle block adjustment is 
helpful and applicable to correct the systematic distortion errors 
of images taken with aerial digital mapping cameras by 
choosing a sufficient number and proper distribution of the tie 
points. Its applications for self-calibrating other digital cameras 
such as fisheye cameras will be further studied. 
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