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ABSTRACT:

In recent years, the proliferation and further development of unmanned aerial vehicles (UAVs) led to a great number of key
technologies, advances and opportunities especially in the realm of time-critical applications. UAVs as a platform provide a unique
combination of flexibility, affordability and sensor technology which enables the design of cost-effective and intriguing services
particularly for disaster response. This contribution presents a concept for UAV-based near real-time mapping system for disaster
relief to provide decision-making support for first responders particularly for possible disaster scenarios in Austria. We outline our
system concept and its respective architecture, discuss requirements from a stakeholder perspective as well as legal regulations and
initiatives at an EU level. In the methodology section of this paper, the preliminary data processing pipeline with respect to the near
real-time orthomosaic generation and the semantic segmentation network are presented. Lastly, first experimental results of the

pipeline are shown, and further advances are discussed.

1. INTRODUCTION

UAVs have proven to be an important instrument for various
disaster scenarios (Alamouri et al., 2019; Erdelj et al., 2017).
Unlike traditional geodata acquisitions techniques, such as
aerial photogrammetry or satellite surveys, UAVs feature a
considerably more agile operational readiness allowing for
immediate on-site data capture, processing and visualisation
which ultimately expedites decision-making support for first
responders.

From a technical point of view, these merits pose certain trade-
offs or rather compromises. Requirements and limitations on
image orientation accuracy, image resolution as well as
processing performance let alone the derivation of tertiary
products such as semantic labels need to be well balanced for
such application-driven developments.

To this end, we design the system with the intention to share the
processing load between an air and a ground segment. While the
UAV platform itself is equipped with RGB as well as thermal
infrared sensors, positioning instruments and onboard
processing units, the ground segment features high-performance
processing capabilities for more demanding tasks.

Analogously, the algorithmic workflow varies based on the
mapping scenario at hand. At its core, the workflow performs
image orientation, sparse reconstruction and orthomosaic
generation in near real-time using the onboard processing
capacities of the UAV.

For additional information on the situation, further processing is
conducted successively and in parallel on the ground station.
These processes are usually computationally expensive and are
thus performed on the ground station.

2. RELATED WORK

UAVs have become a substantial asset for various disaster
scenarios, such as monitoring floods (Luo et al., 2015; Zhang et
al., 2016), assessing the damages caused by earthquakes (Duarte
et al., 2017; Kerle et al., 2019; N. Kerle et al., 2019; Suzuki et

al., 2008), mapping landslides (Lindner et al., 2016; Rossi et al.,
2018; Tanteri et al., 2017) or searching missing persons
(Miyano et al., 2019; Silvagni et al., 2017; Waharte and Trigoni,
2010).

Depending on the disaster scenario, different data and
respective processing steps are required to support first
responders. In general, an orthomosaic, i.e. a georeferenced and
geometrically rectified composition of images, is a helpful tool
to provide an overview of the situation and can serve as the
basis for further analyses. Depending on the system setup, i.e.
processing capabilities of the UAV, data downlink etc., and
time criticality of the disaster event, either offline or online
processing comes into play.

In the case of offline processing, the UAV only collects data
and needs to land for data transmission and processing. The
standard photogrammetric workflow or structure from motion
techniques can be used to reconstruct the scene for ortho image
generation (Ghosh and Kaabouch, 2016; Saeed Yahyanejad,
2013; Schonberger and Frahm, 2016). For this kind of
workflow, various commercial solutions are available'.

Disaster events, however, usually require information on the
situation as fast as possible. To this end, the data processing
chain needs to be (near) real-time. Depth reconstruction,
however, is a computationally expensive component in the
orthomosaic generation procedure.

Bu et al. (2016) circumvent this step by utilising projective
transformations, i.e. homographies, to warp acquired images
onto a virtual ground plane. Although this procedure is effective
in rather flat and consistent terrain, it inevitably leads to
geometric distortions in the resulting orthomosaic in
mountainous or urban areas. Alternatively, Hein et al. (2019)
resort to SRTM data’> with a ground sampling distance of 90

! Drone Deploy, https://www.dronedeploy.com/,

Pix4D, https://www.pix4d.com/, particularly Pix4D React,
https://www.pix4d.com/product/pix4dreact,

Agisoft, https://www.agisoft.com/

2 https://www2.jpl.nasa.gov/srtm/
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metres to provide height information for the orthorectification
process of acquired UAV images. Certainly, this rather low
resolution results in inaccuracies and distortions in the
orthomosaic similar to the aforementioned procedure if applied
in areas of uneven terrain.

Another noteworthy method is to reconstruct the scene using
stereo cameras mounted on a UAV (Fan et al., 2019). This
method, however, is only applicable for close-range mapping
since the base of the cameras is physically limited.

To achieve a stereo base wide enough for typical flying altitudes
for large-area UAV mapping (100 m or more), virtual stereo
pairs can be used (Hinzmann et al., 2018). In this case, using an
efficient stereo block matching algorithm enables rapid dense
reconstruction as well as orthomosaic generation.

The method used in the experiments in this paper is based on
the works of Kern (2018) and Bobbe et al. (2017). The authors
utilise ORB-SLAM2 (Mur-Artal and Tardos, 2016) to compute
a sparse point cloud of the scene which is then densified by
interpolation or using a plane-sweeping algorithm.

To understand the content of the images, semantic segmentation
can be used. It provides an assignment of specific class labels to
input images on a per-pixel basis. This task has especially
benefited from recent advances in machine learning and GPU
parallelisation. Especially the latter facilitated the application of
Convolutional Neural Networks (CNNs) to complex learning
problems (Chen et al., 2017; Long et al., 2014). Since semantic
segmentation requires large amounts of training data, another
import prerequisite was the increasing development of densely
label datasets in multiple application domains (Cordts et al.,
2016).

3. CONCEPT AND BACKGROUND

Various crisis and disaster scenarios, such as natural disasters,
industrial accidents, searches of persons, leakage of pollutants
or mass movements, benefit from the use of airborne systems.
In most cases, critical security situations require immediately
available and detailed situation information on a large scale.
From a stakeholder perspective, the system needs to be designed
fit-for-purpose, i.e. satisfies the requirements of completeness,
readiness, usability, coherence and reliability. Since various
disaster scenarios need to be accounted for, different algorithms
need be used to derive the information required. Consequently,
the design has to be modular and ideally extendable.

This is especially true regarding the scene understanding part of
our system. For instance, the suppression of forest fires requires
the mapping of hot spot locations with implicit change detection
mechanics. In this case, thermal imaging is incorporated, and
the UAV’s flight pattern is adjusted accordingly to map the area
in constant intervals. Floods on the other hand pose different
challenges, such as reliable information on the trafficability in
the area. To this end, semantic segmentation can be helpful to
understand which areas are affected by flooding and which
areas are traversable for disaster relief teams.

Whereas certain data products (i.e. orthomosaic and surface
model) are always obtained and constitute the fundamental
basis of this system and further analyses, other processing
methods or sensors (e.g. thermal) are optional.

Figure 1 illustrates the design concept of our system. The
separation into air and ground segment relates to hard- and
software components. The air segment’s priority is to provide
information as fast as possible and relay that information and
raw data to the ground segment where further task-related
analysis and the respective visualisation takes place.
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Figure 1. UAV mapping design scheme
3.1 Communication link

To connect both parts efficiently, a communication link tightly
couples both segments. For our system, the microhard
pDDL2450 Wireless OEM Ethernet & Serial Digital Data Link?
provides a direct radio link between the air and ground segment.
Using a ground-based tracking antenna, it provides an ethernet
interface with a bandwidth of 20 Mbit over up to 10 km.
Alternatively, a VPN connection between an onboard
processing unit and a ground processing unit utilising a
3G/4G/5G connection on both ends can be used. However,
using mobile network connections requires working mobile
internet infrastructure in the area of operation.

3.2 Air segment

The air segment consists of an UAV in combination with a
sensor package, a processing unit and a communication link. At
AIT, we develop two different fixed-wing UAVs for long range
aerial mapping.

The smaller development platform is based on the commercial
of-the-shelf product Skywalker EVE-2000* and serves solely as
a testing platform for interface and algorithm design (see Figure
2). With a wingspan of 2.24 m and a flight ready weight of 7 kg,
it reaches a flight time of 30 minutes. It features a single RGB
camera facing downwards in combination with a single
processing unit based on a Nvidia Jetson TX2.

Figure 2. Skywalker EVE-2000

3 http://www.microhardcorp.com/pDDL.php
4 http://skywalkermodel.com/en/89.html
5 https://developer.nvidia.com/embedded/jetson-tx2
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The second platform is based on an airframe developed in
conjunction with the Institute of Aviation at the FH Joanneum
Graz. With a wingspan of 3.8 m and a flight ready weight of up
to 30 kg, it offers the possibility to carry multiple different
sensors and one or more onboard processing units based on
Nvidia Jetson TX2, Nvidia Jetson Xavier or NUC sized mini
PCs (see Figure 3). The airframe is optimised for stall speeds of
less than 15 m/s which is desirable for on-board data processing
since a certain image overlap is required for 3D reconstruction
of the terrain. The modular payload bay allows for a flexible
integration of various sensors including RGB/near-
infrared/thermal-infrared cameras, radar-sensors or lidar-
sensors. Depending on the payload, a flight time between 20
and 50 minutes is achievable.

Figure 3. Blueprint of larger UAV

Both platforms are controlled by the onboard flight controller
Pixhawk 2° running the Arduplane flight control stack’. This
setup offers either manual control using an RC radio/receiver
pair, in this case an Fr-Sky Taranis®, manual control over the
onboard processing unit or autonomous flight controlled by the
flight controller itself or the onboard processing unit.
Communication between the flight controller and the onboard
processing unit is based on the MAVLINK communication
protocol’ using a serial interface connection. The state
estimation and sensor fusion are conducted by an Extended
Kalman Filter.

All onboard and ground processing units communicate using
ROS'0 utilising a simple network connection. Moreover, ROS
assigns a timestamp to all sensor readings which simplifies the
synchronisation of all data inputs for further processing.

3.3 Ground segment

The ground segment consists of a high-performance processing
unit and a visualisation unit. Data from the air segment is
processed by a 24-core Intel Xeon server with 384 GB of RAM
and four Nvidia Geforce RTX 2080 TI graphic cards. This
hardware allows for running advanced machine learning
algorithms in order to provide disaster-specific scene analyses.
A custom visualisation system offers easy to use inspection of
generated maps and data in addition to information generated by
the scene analyses for first responders.

% https://docs.px4.i0/v1.9.0/en/flight_controller/pixhawk-2.html
7 https://ardupilot.org/plane/

8 https://www.frsky-rc.com/product/taranis-x9d-plus-2019/

9 https://mavlink.io/en/

19 https://www.ros.org/

3.4 Legal regulations

In 2008, a regulation was introduced to ensure that drones are
safely integrated into European airspace. The regulation
establishes common safety rules for civil aviation and amends
the mandate of the European Aviation Safety Agency (EASA),
replacing the regulatory framework of 2008. After 2008, EU
Member States were responsible for the regulatory approach for
drones of up to 150 kg, which led to a fragmented regulatory
framework within the EU Member States. In 2019, the
European Commission adopted EU-wide rules on technical
requirements for drones (EASA, 2015a, 2015b). These
regulations are classified into three categories: open, specific
and certified with different safety requirements appropriate to
the risk (The European Commission, 2019). According to the
EASA roadmap, the EU-wide regulations will be implemented
in the EU Member States in July 2020 (EASA, 2019).

For risk assessment, a Specific Risk Operation Assessment
(SORA) is provided, which is a guideline for the operation of an
unmanned aerial vehicle system according to a specific
operational concept (JARUS, 2019). In this context, risk is
understood to be the combination of the probability of an event
and its associated severity. Safety is defined as a condition in
which the risk is considered acceptable. The risk on the ground
and in the air shall be mitigated to an acceptable level by an
appropriate combination of design and operational means of
mitigation. These mitigations have to meet a level of robustness
corresponding to the established risk classes on the ground and
in the air. The level corresponds to an appropriate combination
of integrity and safety levels. The integrity level is the safety
gain achieved by the mitigation and the reliability level is the
method to demonstrate that the integrity level has been
achieved.

In previous research projects, a preliminary multi-stage risk
assessment for beyond-line-of-sight operation was completed
and our custom platform was certified according to the latest
harmonised European regulations.

4. METHODOLOGY

Although the system is currently under development and many
methods and components are yet to be developed and
determined, a brief overview of the functionality of the
orthomosaic generation as well as exemplary scene analysis
approaches is given.

4.1 Orthomosaic generation

The orthomosaic generation is an essential part of our system.
First, it is designed to work in (near) real-time to provide an
overview of the disaster situation as fast as possible. Second, the
approach implicitly georeferences all image data and serves as a
basis for further analysis. Third, the orthomosaic provides a
base layer for all subsequent data visualisations.

The underlying framework is based on ROS, where all sensor
readings, i.e. GNSS/INS, images etc., are synchronised and so-
called sensor messages can be easily fed into an arbitrary
number of other processes during runtime.

As mentioned earlier, first experiments with respect to the
orthomosaic generation have been conducted using the works of
Kern (2018) and Bobbe et al. (2017). Their method is also based
on ROS for the communication, i.e. data transfer,
synchronisation etc. between the different steps of the
orthomosaic generation. Starting from geotagged images with
respective EXIF-headers or ROS messages containing the
images and corresponding metadata, a visual SLAM process
using ORB-SLAM?2 is triggered. ORB-SLAM creates a sparse
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point cloud using ORB detection and description. In parallel,
the platform’s attitude with respect to its relative orientation is
determined.

By introducing the absolute position of each image from either
the EXIF-header or the ROS message, the sparse point cloud as
well as the platform’s attitude determined by ORB-SLAM is
transformed into a global reference frame. Currently, the
process does not rely on IMU information for attitude
determination and a visual-inertial pose determination is
labelled future work.

The sparse point cloud is then either densified by simple
interpolation or plane sweeping. Although the plane sweeping
approach generally returns more details, the result is noisier
than the interpolation approach (see Figure 4). Especially in the
context of applications in mountainous or vegetated areas, the
reconstruction quality is crucial. Moreover, height information
is a valuable feature for semantic labelling tasks. In order to
achieve good reconstruction quality in these cases while
maintaining (near) real-time processing capability, future
endeavours will focus on the integration of more powerful yet
robust densification methods (e.g. Knobelreiter et al. (2019);
Tonioni et al. (2018)).

= |

kil
Figure 4. Densification approach: input image (left), plane
sweeping (centre), interpolation (right). Image courtesy Kern
(2018)

The actual orthorectification is conducted by retrieving the
images’ RGB information by pixelwise backprojection of the
height information into the respective image frame.

Finally, the orthomosaic is composed using a region blending
approach. The cells constituting the mosaic are selected by a
probabilistic method based on elevation variance, elevation
hypothesis and the number of observations.

The process is able to output all intermediary results, such as
point clouds, densified tiles, orthorectified images as well as a
complete orthomosaic or surface model as a final result.

4.2 Semantic segmentation

As a preliminary model architecture for our initial Semantic
Segmentation experiments, Deep Layer Aggregation introduced
by (Yu et al., 2017) was integrated into our learning and
inference pipeline. The main advantage of this architecture is its
elegant integration of scale levels and compact model size,
which facilitate the run-time performance required for our
application scenarios.

While an increasing number of datasets is available tailored to
certain applications, such as surveillance and autonomous
driving, only a small fraction of them is applicable to our
setting, which requires pixel-wise annotations from non-
canonical viewpoints in highly unstructured environments. One
widely known example is DOTA (Xia et al., 2017), a large-
scale dataset for object detection in aerial images. However, the
image data is captured from large distances and no annotations
are provided for background classes such as trees or roads,
which renders the adaption for a fine-grained scene analysis in
Search & Rescue operations difficult.

A more suitable data basis is provided by the Semantic Drone
Dataset (TU Graz (ICG), 2019), which consists of densely
labelled images captured from a UAV perspective. In order to

specialise the training data to flooding and forest fires, we
aggregated the 24 source labels of this dataset to our target
classes of vegetation, grass, building, person, vehicle, water and
traversable, the latter containing regions such as paved-area, dirt
or gravel. This approach allows for a continuous and seamless
integration of further datasets, as well as a specialisation to the
domains of flooding and forest fires, individually.

5. PRELIMINARY RESULTS

In this section, we present early results of the orthomosaic
generation as well as the semantic labelling method. The data
has been acquired by a Skywalker EVE-2000 in a rural area
south of Vienna, Austria. The area is predominantly flat and
comprises fields, regular as well as farm roads and a recycling
yard with a few buildings and vehicles.

In total, 650 images were captured (without a gimble) at an
average altitude of 100 metres with five frames per second and
a resolution of 1920 x 1080. The UAV flew 1.5 circles over the
area following the farm and paved roads leaving a gap in the
centre (see Figure 6).

5.1 Orthomosaic generation

Since the orthomosaic generation is not fully optimised yet and
the images were not resampled before processing, the procedure
had to be locked at two frames per second. Although most of
the steps in the orthomosaic generation process potentially
allow for buffering and caching the data and do not require
absolute real-time computation, feature tracking during the
visual SLAM pipeline is prone to interruption using higher
framerates.

The orthomosaic (see Figure 6) has been computed with a
ground sampling distance of 5 cm. The overall quality is
acceptable given the fact that a (near) real-time situation has
been simulated. Some areas could not be properly reconstructed
(see red circle in Figure 5). This is possibly due to the higher
acquisition altitude during the second circle. The visual SLAM
procedure could not close the loop and respective gaps
propagated to later steps causing a clear break in the resulting
orthomosaic.

Moreover, some blending issues are visible in the orthomosaic
(green circle in Figure 6). In general, poorly textured areas with
repeated patterns are difficult to reconstruct. Integrating inertial
measurements will likely allow for a more robust model and
hence reconstruction.

Interestingly, a shadow cast by a wind turbine is properly
projected into the orthomosaic (orange circle in Figure 6)
ascertaining a good reconstruction result in this region.

Figure 5. Computed DSM of the test area
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Figure 6. Orthomosaic of test area
5.2 Semantic segmentation

We conducted our semantic labelling experiments based on the
Deep Layer Aggregation model variant dla-34. The 400
publicly available images were split using a ratio of 80:20 for
training and validation, respectively.

Standard data augmentation techniques were applied, including
random resizing, horizontal/vertical mirroring and cropping to a
size of 640 pixels. With a batch size of 24, we achieve a mean-
intersection-over-union (mloU) of 55.4% on the validation set
after 60 training epochs on a test bench with three NVIDIA
2080 RTX GPUs. Tests conducted on a single GPU resulted in
a frame rate of 11.2 frames per second for inferring the labelled
images. Optionally, pixel-level confidences can be generated,
which can serve as an essential map-making cue for our SLAM-
based approach in combination with the provided distinction
between static and dynamic objects.

As visible in Figure 7, the model is able to sufficiently identify
traversable regions and distinguish them from classes such as
water, tree or building. Although there is a tendency to confuse
labels in visually similar image regions, most difficult cases can
be resolved correctly, such as water and persons in non-
canonical perspectives.

Compared to the validation examples, the test dataset is more
challenging regarding flight altitude and the unusual appearance
of most classes, as depicted in Figure 8. Besides some minor
issues in distinguishing between grass and vegetation, some
image regions resemble different classes in the training dataset
(e.g. similarities in texture and colour between regions of fields
and concrete areas). However, ambiguous regions can be
identified using the confidence map, which clearly shows higher
confidence values in correctly labelled regions. While the initial
results are already promising, we plan to further improve the
reliability of our scene analysis module with additional training
and test images to overcome the domain gap and increase data
variability.

Evidently, further improving the semantic segmentation
requires the acquisition and annotation of image data specialised
on flooding and forest fires. While a higher variability and more
thorough coverage of underrepresented classes is generally
important to mitigate data gaps, especially the latter scenario
will furthermore benefit from including IR-images as an
additional modality. Based on the preliminary results, an
ablation study will be conducted to identify and evaluate other
model architectures regarding their applicability for on-board
real-time processing.

Figure 7. Results on validation images of SemanticDroneDataset (left to right: input image, segmentation results, confidence map)
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Figure 8. Initial results on test dataset (from left to right: input image, segmentation .

6. CONCLUSION AND OUTLOOK

This paper presented the concept, the design and a brief
experimental study of a modular UAV-based near real-time
mapping system for disaster purposes. We outlined our
hardware and software architecture, summarised the legal
framework in The European Union and discussed two essential
parts of our pipeline, orthomosaic generation and semantic
segmentation, in the methodology and experimental section.

In the future, we conduct task-related campaigns, i.e. mapping
water bodies and mountainous terrain as well as acquire thermal
imagery. The orthomosaic generation will be further optimised
with respect to speed and reconstruction quality as well as be
ported to an embedded system to be executed directly on the
UAV hardware. Special emphasis will be placed on finding the
right balance between quality and performance with running on
an embedded system. The semantic segmentation will highly
benefit from training data ideally fit for our special purpose.
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