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ABSTRACT: 
 
In recent years, the proliferation and further development of unmanned aerial vehicles (UAVs) led to a great number of key 
technologies, advances and opportunities especially in the realm of time-critical applications. UAVs as a platform provide a unique 
combination of flexibility, affordability and sensor technology which enables the design of cost-effective and intriguing services 
particularly for disaster response. This contribution presents a concept for UAV-based near real-time mapping system for disaster 
relief to provide decision-making support for first responders particularly for possible disaster scenarios in Austria. We outline our 
system concept and its respective architecture, discuss requirements from a stakeholder perspective as well as legal regulations and 
initiatives at an EU level. In the methodology section of this paper, the preliminary data processing pipeline with respect to the near 
real-time orthomosaic generation and the semantic segmentation network are presented. Lastly, first experimental results of the 
pipeline are shown, and further advances are discussed. 
 
 

1. INTRODUCTION 

UAVs have proven to be an important instrument for various 
disaster scenarios (Alamouri et al., 2019; Erdelj et al., 2017). 
Unlike traditional geodata acquisitions techniques, such as 
aerial photogrammetry or satellite surveys, UAVs feature a 
considerably more agile operational readiness allowing for 
immediate on-site data capture, processing and visualisation 
which ultimately expedites decision-making support for first 
responders.  
From a technical point of view, these merits pose certain trade-
offs or rather compromises. Requirements and limitations on 
image orientation accuracy, image resolution as well as 
processing performance let alone the derivation of tertiary 
products such as semantic labels need to be well balanced for 
such application-driven developments.  
To this end, we design the system with the intention to share the 
processing load between an air and a ground segment. While the 
UAV platform itself is equipped with RGB as well as thermal 
infrared sensors, positioning instruments and onboard 
processing units, the ground segment features high-performance 
processing capabilities for more demanding tasks.  
Analogously, the algorithmic workflow varies based on the 
mapping scenario at hand. At its core, the workflow performs 
image orientation, sparse reconstruction and orthomosaic 
generation in near real-time using the onboard processing 
capacities of the UAV.  
For additional information on the situation, further processing is 
conducted successively and in parallel on the ground station. 
These processes are usually computationally expensive and are 
thus performed on the ground station. 
 

2. RELATED WORK  

UAVs have become a substantial asset for various disaster 
scenarios, such as monitoring floods (Luo et al., 2015; Zhang et 
al., 2016), assessing the damages caused by earthquakes (Duarte 
et al., 2017; Kerle et al., 2019; N. Kerle et al., 2019; Suzuki et 

al., 2008), mapping landslides (Lindner et al., 2016; Rossi et al., 
2018; Tanteri et al., 2017) or searching missing persons 
(Miyano et al., 2019; Silvagni et al., 2017; Waharte and Trigoni, 
2010).  
Depending on the disaster scenario, different data and 
respective processing steps are required to support first 
responders. In general, an orthomosaic, i.e. a georeferenced and 
geometrically rectified composition of images, is a helpful tool 
to provide an overview of the situation and can serve as the 
basis for further analyses. Depending on the system setup, i.e. 
processing capabilities of the UAV, data downlink etc., and 
time criticality of the disaster event, either offline or online 
processing comes into play.  
In the case of offline processing, the UAV only collects data 
and needs to land for data transmission and processing. The 
standard photogrammetric workflow or structure from motion 
techniques can be used to reconstruct the scene for ortho image 
generation (Ghosh and Kaabouch, 2016; Saeed Yahyanejad, 
2013; Schönberger and Frahm, 2016). For this kind of 
workflow, various commercial solutions are available1.  
Disaster events, however, usually require information on the 
situation as fast as possible. To this end, the data processing 
chain needs to be (near) real-time. Depth reconstruction, 
however, is a computationally expensive component in the 
orthomosaic generation procedure.  
Bu et al. (2016) circumvent this step by utilising projective 
transformations, i.e. homographies, to warp acquired images 
onto a virtual ground plane. Although this procedure is effective 
in rather flat and consistent terrain, it inevitably leads to 
geometric distortions in the resulting orthomosaic in 
mountainous or urban areas. Alternatively, Hein et al. (2019) 
resort to SRTM data2  with a ground sampling distance of 90 

 
1 Drone Deploy, https://www.dronedeploy.com/,  
Pix4D, https://www.pix4d.com/, particularly Pix4D React, 

https://www.pix4d.com/product/pix4dreact,  
Agisoft, https://www.agisoft.com/  
2 https://www2.jpl.nasa.gov/srtm/ 
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metres to provide height information for the orthorectification 
process of acquired UAV images. Certainly, this rather low 
resolution results in inaccuracies and distortions in the 
orthomosaic similar to the aforementioned procedure if applied 
in areas of uneven terrain.  
Another noteworthy method is to reconstruct the scene using 
stereo cameras mounted on a UAV (Fan et al., 2019). This 
method, however, is only applicable for close-range mapping 
since the base of the cameras is physically limited.  
To achieve a stereo base wide enough for typical flying altitudes 
for large-area UAV mapping (100 m or more), virtual stereo 
pairs can be used (Hinzmann et al., 2018). In this case, using an 
efficient stereo block matching algorithm enables rapid dense 
reconstruction as well as orthomosaic generation.  
The method used in the experiments in this paper is based on 
the works of Kern (2018) and Bobbe et al. (2017). The authors 
utilise ORB-SLAM2 (Mur-Artal and Tardos, 2016) to compute 
a sparse point cloud of the scene which is then densified by 
interpolation or using a plane-sweeping algorithm.   
To understand the content of the images, semantic segmentation 
can be used. It provides an assignment of specific class labels to 
input images on a per-pixel basis. This task has especially 
benefited from recent advances in machine learning and GPU 
parallelisation. Especially the latter facilitated the application of 
Convolutional Neural Networks (CNNs) to complex learning 
problems (Chen et al., 2017; Long et al., 2014). Since semantic 
segmentation requires large amounts of training data, another 
import prerequisite was the increasing development of densely 
label datasets in multiple application domains (Cordts et al., 
2016). 
 

3. CONCEPT AND BACKGROUND 

Various crisis and disaster scenarios, such as natural disasters, 
industrial accidents, searches of persons, leakage of pollutants 
or mass movements, benefit from the use of airborne systems. 
In most cases, critical security situations require immediately 
available and detailed situation information on a large scale.  
From a stakeholder perspective, the system needs to be designed 
fit-for-purpose, i.e. satisfies the requirements of completeness, 
readiness, usability, coherence and reliability. Since various 
disaster scenarios need to be accounted for, different algorithms 
need be used to derive the information required. Consequently, 
the design has to be modular and ideally extendable.  
This is especially true regarding the scene understanding part of 
our system. For instance, the suppression of forest fires requires 
the mapping of hot spot locations with implicit change detection 
mechanics. In this case, thermal imaging is incorporated, and 
the UAV’s flight pattern is adjusted accordingly to map the area 
in constant intervals. Floods on the other hand pose different 
challenges, such as reliable information on the trafficability in 
the area. To this end, semantic segmentation can be helpful to 
understand which areas are affected by flooding and which 
areas are traversable for disaster relief teams.   
Whereas certain data products (i.e. orthomosaic and surface 
model) are always obtained and constitute the fundamental 
basis of this system and further analyses, other processing 
methods or sensors (e.g. thermal) are optional.  
Figure 1 illustrates the design concept of our system. The 
separation into air and ground segment relates to hard- and 
software components. The air segment’s priority is to provide 
information as fast as possible and relay that information and 
raw data to the ground segment where further task-related 
analysis and the respective visualisation takes place.  

 
Figure 1. UAV mapping design scheme 

 
3.1 Communication link 

To connect both parts efficiently, a communication link tightly 
couples both segments. For our system, the microhard 
pDDL2450 Wireless OEM Ethernet & Serial Digital Data Link3 
provides a direct radio link between the air and ground segment. 
Using a ground-based tracking antenna, it provides an ethernet 
interface with a bandwidth of 20 Mbit over up to 10 km. 
Alternatively, a VPN connection between an onboard 
processing unit and a ground processing unit utilising a 
3G/4G/5G connection on both ends can be used. However, 
using mobile network connections requires working mobile 
internet infrastructure in the area of operation. 
 
3.2 Air segment 

The air segment consists of an UAV in combination with a 
sensor package, a processing unit and a communication link. At 
AIT, we develop two different fixed-wing UAVs for long range 
aerial mapping.  
The smaller development platform is based on the commercial 
of-the-shelf product Skywalker EVE-20004 and serves solely as 
a testing platform for interface and algorithm design (see Figure 
2). With a wingspan of 2.24 m and a flight ready weight of 7 kg, 
it reaches a flight time of 30 minutes. It features a single RGB 
camera facing downwards in combination with a single 
processing unit based on a Nvidia Jetson TX25. 
 

 
Figure 2. Skywalker EVE-2000 

 
3 http://www.microhardcorp.com/pDDL.php  
4 http://skywalkermodel.com/en/89.html  
5 https://developer.nvidia.com/embedded/jetson-tx2  
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The second platform is based on an airframe developed in 
conjunction with the Institute of Aviation at the FH Joanneum 
Graz. With a wingspan of 3.8 m and a flight ready weight of up 
to 30 kg, it offers the possibility to carry multiple different 
sensors and one or more onboard processing units based on 
Nvidia Jetson TX2, Nvidia Jetson Xavier or NUC sized mini 
PCs (see Figure 3). The airframe is optimised for stall speeds of 
less than 15 m/s which is desirable for on-board data processing 
since a certain image overlap is required for 3D reconstruction 
of the terrain. The modular payload bay allows for a flexible 
integration of various sensors including RGB/near-
infrared/thermal-infrared cameras, radar-sensors or lidar-
sensors. Depending on the payload, a flight time between 20 
and 50 minutes is achievable. 
 

 
Figure 3. Blueprint of larger UAV 

 
Both platforms are controlled by the onboard flight controller 
Pixhawk 26 running the Arduplane flight control stack7. This 
setup offers either manual control using an RC radio/receiver 
pair, in this case an Fr-Sky Taranis8, manual control over the 
onboard processing unit or autonomous flight controlled by the 
flight controller itself or the onboard processing unit. 
Communication between the flight controller and the onboard 
processing unit is based on the MAVLINK communication 
protocol9 using a serial interface connection. The state 
estimation and sensor fusion are conducted by an Extended 
Kalman Filter.  
All onboard and ground processing units communicate using 
ROS10 utilising a simple network connection. Moreover, ROS 
assigns a timestamp to all sensor readings which simplifies the 
synchronisation of all data inputs for further processing.  
 
3.3 Ground segment 

The ground segment consists of a high-performance processing 
unit and a visualisation unit. Data from the air segment is 
processed by a 24-core Intel Xeon server with 384 GB of RAM 
and four Nvidia Geforce RTX 2080 TI graphic cards. This 
hardware allows for running advanced machine learning 
algorithms in order to provide disaster-specific scene analyses. 
A custom visualisation system offers easy to use inspection of 
generated maps and data in addition to information generated by 
the scene analyses for first responders. 
 

 
6 https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk-2.html 
7 https://ardupilot.org/plane/ 
8 https://www.frsky-rc.com/product/taranis-x9d-plus-2019/ 
9 https://mavlink.io/en/ 
10 https://www.ros.org/ 

3.4 Legal regulations 

In 2008, a regulation was introduced to ensure that drones are 
safely integrated into European airspace. The regulation 
establishes common safety rules for civil aviation and amends 
the mandate of the European Aviation Safety Agency (EASA), 
replacing the regulatory framework of 2008. After 2008, EU 
Member States were responsible for the regulatory approach for 
drones of up to 150 kg, which led to a fragmented regulatory 
framework within the EU Member States. In 2019, the 
European Commission adopted EU-wide rules on technical 
requirements for drones (EASA, 2015a, 2015b). These 
regulations are classified into three categories: open, specific 
and certified with different safety requirements appropriate to 
the risk (The European Commission, 2019). According to the 
EASA roadmap, the EU-wide regulations will be implemented 
in the EU Member States in July 2020 (EASA, 2019).  
For risk assessment, a Specific Risk Operation Assessment 
(SORA) is provided, which is a guideline for the operation of an 
unmanned aerial vehicle system according to a specific 
operational concept (JARUS, 2019). In this context, risk is 
understood to be the combination of the probability of an event 
and its associated severity. Safety is defined as a condition in 
which the risk is considered acceptable. The risk on the ground 
and in the air shall be mitigated to an acceptable level by an 
appropriate combination of design and operational means of 
mitigation. These mitigations have to meet a level of robustness 
corresponding to the established risk classes on the ground and 
in the air.  The level corresponds to an appropriate combination 
of integrity and safety levels. The integrity level is the safety 
gain achieved by the mitigation and the reliability level is the 
method to demonstrate that the integrity level has been 
achieved. 
In previous research projects, a preliminary multi-stage risk 
assessment for beyond-line-of-sight operation was completed 
and our custom platform was certified according to the latest 
harmonised European regulations. 
 

4. METHODOLOGY 

Although the system is currently under development and many 
methods and components are yet to be developed and 
determined, a brief overview of the functionality of the 
orthomosaic generation as well as exemplary scene analysis 
approaches is given.  
 
4.1 Orthomosaic generation 

The orthomosaic generation is an essential part of our system. 
First, it is designed to work in (near) real-time to provide an 
overview of the disaster situation as fast as possible. Second, the 
approach implicitly georeferences all image data and serves as a 
basis for further analysis. Third, the orthomosaic provides a 
base layer for all subsequent data visualisations.  
The underlying framework is based on ROS, where all sensor 
readings, i.e. GNSS/INS, images etc., are synchronised and so-
called sensor messages can be easily fed into an arbitrary 
number of other processes during runtime.  
As mentioned earlier, first experiments with respect to the 
orthomosaic generation have been conducted using the works of 
Kern (2018) and Bobbe et al. (2017). Their method is also based 
on ROS for the communication, i.e. data transfer, 
synchronisation etc. between the different steps of the 
orthomosaic generation. Starting from geotagged images with 
respective EXIF-headers or ROS messages containing the 
images and corresponding metadata, a visual SLAM process 
using ORB-SLAM2 is triggered. ORB-SLAM creates a sparse 
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point cloud using ORB detection and description. In parallel, 
the platform’s attitude with respect to its relative orientation is 
determined.  
By introducing the absolute position of each image from either 
the EXIF-header or the ROS message, the sparse point cloud as 
well as the platform’s attitude determined by ORB-SLAM is 
transformed into a global reference frame. Currently, the 
process does not rely on IMU information for attitude 
determination and a visual-inertial pose determination is 
labelled future work.  
The sparse point cloud is then either densified by simple 
interpolation or plane sweeping. Although the plane sweeping 
approach generally returns more details, the result is noisier 
than the interpolation approach (see Figure 4). Especially in the 
context of applications in mountainous or vegetated areas, the 
reconstruction quality is crucial. Moreover, height information 
is a valuable feature for semantic labelling tasks. In order to 
achieve good reconstruction quality in these cases while 
maintaining (near) real-time processing capability, future 
endeavours will focus on the integration of more powerful yet 
robust densification methods (e.g. Knöbelreiter et al. (2019); 
Tonioni et al. (2018)). 
 

 
Figure 4. Densification approach: input image (left), plane 

sweeping (centre), interpolation (right). Image courtesy Kern 
(2018) 

 
The actual orthorectification is conducted by retrieving the 
images’ RGB information by pixelwise backprojection of the 
height information into the respective image frame.  
Finally, the orthomosaic is composed using a region blending 
approach. The cells constituting the mosaic are selected by a 
probabilistic method based on elevation variance, elevation 
hypothesis and the number of observations.  
The process is able to output all intermediary results, such as 
point clouds, densified tiles, orthorectified images as well as a 
complete orthomosaic or surface model as a final result.  
 
4.2 Semantic segmentation 

As a preliminary model architecture for our initial Semantic 
Segmentation experiments, Deep Layer Aggregation introduced 
by (Yu et al., 2017) was integrated into our learning and 
inference pipeline. The main advantage of this architecture is its 
elegant integration of scale levels and compact model size, 
which facilitate the run-time performance required for our 
application scenarios.  
While an increasing number of datasets is available tailored to 
certain applications, such as surveillance and autonomous 
driving, only a small fraction of them is applicable to our 
setting, which requires pixel-wise annotations from non-
canonical viewpoints in highly unstructured environments. One 
widely known example is DOTA (Xia et al., 2017), a large-
scale dataset for object detection in aerial images. However, the 
image data is captured from large distances and no annotations 
are provided for background classes such as trees or roads, 
which renders the adaption for a fine-grained scene analysis in 
Search & Rescue operations difficult. 
A more suitable data basis is provided by the Semantic Drone 
Dataset (TU Graz (ICG), 2019), which consists of densely 
labelled images captured from a UAV perspective. In order to 

specialise the training data to flooding and forest fires, we 
aggregated the 24 source labels of this dataset to our target 
classes of vegetation, grass, building, person, vehicle, water and 
traversable, the latter containing regions such as paved-area, dirt 
or gravel. This approach allows for a continuous and seamless 
integration of further datasets, as well as a specialisation to the 
domains of flooding and forest fires, individually. 
 

5. PRELIMINARY RESULTS 

In this section, we present early results of the orthomosaic 
generation as well as the semantic labelling method. The data 
has been acquired by a Skywalker EVE-2000 in a rural area 
south of Vienna, Austria. The area is predominantly flat and 
comprises fields, regular as well as farm roads and a recycling 
yard with a few buildings and vehicles.  
In total, 650 images were captured (without a gimble) at an 
average altitude of 100 metres with five frames per second and 
a resolution of 1920 x 1080. The UAV flew 1.5 circles over the 
area following the farm and paved roads leaving a gap in the 
centre (see Figure 6).  
 
5.1 Orthomosaic generation 

Since the orthomosaic generation is not fully optimised yet and 
the images were not resampled before processing, the procedure 
had to be locked at two frames per second. Although most of 
the steps in the orthomosaic generation process potentially 
allow for buffering and caching the data and do not require 
absolute real-time computation, feature tracking during the 
visual SLAM pipeline is prone to interruption using higher 
framerates.  
The orthomosaic (see Figure 6) has been computed with a 
ground sampling distance of 5 cm. The overall quality is 
acceptable given the fact that a (near) real-time situation has 
been simulated. Some areas could not be properly reconstructed 
(see red circle in Figure 5). This is possibly due to the higher 
acquisition altitude during the second circle. The visual SLAM 
procedure could not close the loop and respective gaps 
propagated to later steps causing a clear break in the resulting 
orthomosaic.  
Moreover, some blending issues are visible in the orthomosaic 
(green circle in Figure 6). In general, poorly textured areas with 
repeated patterns are difficult to reconstruct. Integrating inertial 
measurements will likely allow for a more robust model and 
hence reconstruction.  
Interestingly, a shadow cast by a wind turbine is properly 
projected into the orthomosaic (orange circle in Figure 6) 
ascertaining a good reconstruction result in this region. 
 

 
Figure 5. Computed DSM of the test area 
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Figure 6. Orthomosaic of test area 

 
5.2 Semantic segmentation 

We conducted our semantic labelling experiments based on the 
Deep Layer Aggregation model variant dla-34. The 400 
publicly available images were split using a ratio of 80:20 for 
training and validation, respectively.  

Standard data augmentation techniques were applied, including 
random resizing, horizontal/vertical mirroring and cropping to a 
size of 640 pixels. With a batch size of 24, we achieve a mean-
intersection-over-union (mIoU) of 55.4% on the validation set 
after 60 training epochs on a test bench with three NVIDIA 
2080 RTX GPUs. Tests conducted on a single GPU resulted in 
a frame rate of 11.2 frames per second for inferring the labelled 
images. Optionally, pixel-level confidences can be generated, 
which can serve as an essential map-making cue for our SLAM-
based approach in combination with the provided distinction 
between static and dynamic objects.  
As visible in Figure 7, the model is able to sufficiently identify 
traversable regions and distinguish them from classes such as 
water, tree or building. Although there is a tendency to confuse 
labels in visually similar image regions, most difficult cases can 
be resolved correctly, such as water and persons in non-
canonical perspectives. 
Compared to the validation examples, the test dataset is more 
challenging regarding flight altitude and the unusual appearance 
of most classes, as depicted in Figure 8. Besides some minor 
issues in distinguishing between grass and vegetation, some 
image regions resemble different classes in the training dataset 
(e.g. similarities in texture and colour between regions of fields 
and concrete areas). However, ambiguous regions can be 
identified using the confidence map, which clearly shows higher 
confidence values in correctly labelled regions. While the initial 
results are already promising, we plan to further improve the 
reliability of our scene analysis module with additional training 
and test images to overcome the domain gap and increase data 
variability. 
Evidently, further improving the semantic segmentation 
requires the acquisition and annotation of image data specialised 
on flooding and forest fires. While a higher variability and more 
thorough coverage of underrepresented classes is generally 
important to mitigate data gaps, especially the latter scenario 
will furthermore benefit from including IR-images as an 
additional modality. Based on the preliminary results, an 
ablation study will be conducted to identify and evaluate other 
model architectures regarding their applicability for on-board 
real-time processing. 

 

 

 
Figure 7. Results on validation images of SemanticDroneDataset (left to right: input image, segmentation results, confidence map) 
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Figure 8. Initial results on test dataset (from left to right: input image, segmentation results, confidence map)

 
6. CONCLUSION AND OUTLOOK 

This paper presented the concept, the design and a brief 
experimental study of a modular UAV-based near real-time 
mapping system for disaster purposes. We outlined our 
hardware and software architecture, summarised the legal 
framework in The European Union and discussed two essential 
parts of our pipeline, orthomosaic generation and semantic 
segmentation, in the methodology and experimental section.  
In the future, we conduct task-related campaigns, i.e. mapping 
water bodies and mountainous terrain as well as acquire thermal 
imagery. The orthomosaic generation will be further optimised 
with respect to speed and reconstruction quality as well as be 
ported to an embedded system to be executed directly on the 
UAV hardware. Special emphasis will be placed on finding the 
right balance between quality and performance with running on 
an embedded system. The semantic segmentation will highly 
benefit from training data ideally fit for our special purpose. 
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