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ABSTRACT: 

 

Peoples land rights are secure if they are registered in a formal cadastral system. More than 70% of global land rights are not registered 

in any formal cadastral system. The contemporary efforts are on accelerating the cadastral mapping process as a basis of defining land 

rights boundaries. Proposed surveying techniques are indirect ones – delineation of visible parcel boundaries from remote sensing 

imagery. This research aims at automizing the procedure of visible boundary delineation from Unmanned Aerial Vehicle (UAV) 

imagery through deep learning. U-Net architecture was selected to train the model and predict visible boundaries. The model was 

trained on an available edge detection dataset, which was the closest to our domain problem. The model was tested on a tiled UAV 

images. The U-Net architecture was implemented in Keras and written in Python, running on top of the TensorFlow library. The 

training was done through Google Colaboratory. The evaluation metrics of the trained model indicated 0.95 overall accuracy. The 

average percentage of correctly detected visible boundaries was almost 80% for the tiled UAV images. This percentage is very 

satisfying since the model was trained on everyday imagery which is very different from UAV ones. The automatic boundary detection 

by using U-Net is applicable mostly for rural areas where the visibility of the boundaries is continuous. In cases where the boundaries 

are not visible, manual delineations are still required. 

 

1. INTRODUCTION 

Registering land rights in a formal cadastral system substantially 

contributes to increasing landowners tenure security. On a global 

scale, more than 70% of land rights are not part of any land 

administration or cadastral system (Enemark et al., 2014). The 

contemporary challenge is to accelerate and complete cadastral 

mapping, particularly in developing countries with low cadastral 

coverage. Cadastral mapping is considered the initial step when 

establishing a cadastral system, and it serves as a basis for 

defining the land units, i.e., the boundaries that the land rights 

concern. To accelerate cadastral mapping, the indirect surveying 

techniques are proposed – delineation of cadastral boundaries 

from high-resolution remote sensing imagery (Williamson, 

2010). The direct or ground-based surveying techniques are 

considered as slow and expensive (Enemark, 2009; Williamson, 

2010).  

 

The application of image-based cadastral mapping holds on 

findings that many cadastral boundaries coincide with visible 

natural or human-made objects and can be easily detectable from 

remote sensing imagery (Luo et al., 2017). Especially, detection 

of visible boundaries from data acquired with sensors on 

Unmanned Aerial Vehicles (UAVs), have gained increasing 

popularity in cadastral applications. This is due to the high 

boundary delineation potential in urban and rural areas 

(Colomina, Molina, 2014; Crommelinck et al., 2016). 

Furthermore, UAVs can be used for both creation and updating 

of cadastral maps (Manyoky et al., 2012; Ramadhani et al., 2018; 

Koeva et al., 2018). Even though most of the visible cadastral 

boundaries can be detected from remote sensing imagery, many 

case studies reported manual delineation of cadastral boundaries 

(Crommelinck et al., 2016). The contemporary boundary 

delineation approach aims to simplify and accelerate image-

based cadastral mapping through semi-automatic or automatic 
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detection and extraction of visible boundaries from images 

acquired with a high-resolution optical sensor.  

 

Only a limited number of studies have investigated the automatic 

approach for cadastral boundary delineation. Mainly, tailored 

object-based workflows using detection algorithms were applied 

to automize the cadastral mapping procedure. Investigating the 

technical transferability of object-based workflows is a 

continuing trend, especially within UAV-based cadastral 

mapping. For instance, both the gPb contour detection and Envi 

Feature Extraction (FX) module and have proven almost 80% 

correctness of automatically extracted visible cadastral 

boundaries (Crommelinck et al., 2017; Fetai et al., 2019). 

Considering state-of-the-art methods for automatic boundary 

detection in cadastral mapping, deep learning is becoming highly 

prominent in cadastral applications (Ma et al., 2019).  

 

Recent evidence indicates that deep learning ensures higher 

accuracy on delineating visible boundaries rather than a few of 

object-based methods (Xia et al., 2019). The study from 

Crommelinck et al. (2019) reported that Convolutional Neural 

Network (CNN), namely VGG19 architecture, provides a more 

automated and more accurate approach for visible boundary 

delineation compared to Random Forest (RF) machine learning 

approach. Also, the model base bd on VGG19 architecture 

provided more promising loss and accuracy metrics compared to 

other CNN architectures - ResNet, Inception, Xception, 

MobileNet, and DenseNet. In line with this, improving the 

accuracy of automatic visible boundary detection remains a 

major challenge in a contemporary cadastral mapping. Another 

CNN architecture that has not been sufficiently explored for such 

a purpose in cadastral applications is U-Net.  

 

U-Net was initially developed for biomedical image 

segmentation. The architecture is designed to work with fewer 
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training images and still provide precise segmentations 

(Ronneberger et al., 2015). In general, it is claimed that the main 

challenge with CNN architectures is a large amount of training 

data preparation and computational requirements. Thus, 

providing thousands of UAV training data can be seen as a 

limitation for the detection of visible boundaries with CNNs. 

Considering this, the main objective of this study is to explore the 

potential of U-Net, based on online available training samples, as 

a deep learning-based detector for visible boundaries. 

 

2. MATERIALS AND METHODS 

2.1 U-Net 

The network is symmetric and contains two main parts, which 

gives it the U-shaped architecture (Figure 1). The left part, 

contracting path, is a typical convolutional network that consists 

of repetitive usage of convolutions (3x3 convolutions), each 

followed by a Rectified Linear Unit (ReLU) and a max-pooling 

operation (2x2 convolutions). During the contraction path, 

contextual information, i.e., the depth of the images is increased 

while the spatial information, i.e., the extent of images is reduced. 

The purpose of the contraction path is to capture the context of 

the input image. The right part, expansive path merges the 

contextual information and spatial information through a 

sequence of up-convolutions (2x2 transposed convolution) and 

concatenations the information with the corresponding cropped 

contextual map from the contracting path. During the expansion 

path, the extent of the image is going to be upsized to its original 

size. The expanding path aims to enable precise localization 

combined with the contextual information from the contracting 

path (Ronneberger et al., 2015).  

 

 

Figure 1. The original architecture of U-Net  

 

2.2 Training approach and dataset 

In this research, U-Net was implemented in high-level neural 

network API Keras (François et al., 2015) written in Python, 

running on top of the TensorFlow library. The implementation of 

U-Net in Keras was done by modifying and referencing to  

Cieslik (2017) repository. The training of the model was done 

through Google Colaboratory, which provided a stronger GPU, 

more memory, and efficient calculations.  

 

The generalized workflow of the training approach, which aims 

to detect visible boundaries or edges from tiled UAV images, is 

presented in Figure 2. 

 

 
Figure 2. The generalized workflow of the trained model based 

on U-Net architecture 

 

In deep learning, CNN models can be trained in two approaches: 

from scratch or via transfer learning (Wani et al., 2020). The 

model was trained from scratch based on BSDS500 - dataset. 

Later, the trained model was applied to the tiled UAV images -    

testing dataset. The tiled UAV images represent rural areas - as it 

is assumed that the number of visible parcel boundaries relevant 

for cadastral mapping is higher compared to the dense urban ones 

(Luo et al., 2017). 

 

The BSDS500 is one of the few accessible datasets for edge or 

contour detection which can be used for training CNNs, and at 

the same time fit our domain problem. Contours are usually 

defined as object boundaries, which are derived from connecting 

edges. It consists of 500 everyday images. The images and 

corresponding contours/boundaries are organized in three 

subsets, namely, Train (200 images), Validation (100 images), 

and Testing (200 images). Each image has hand-labelled 

boundaries (on average 5 annotators), i.e., ~2500 samples if each 

annotator is considered separately. The BSDS500 dataset is 

available in (Berkeley, 2011). In this study, the focus was only 

on Training and Validation images. To increase the number of 

training samples and at the same time to increase the flexibility 

in the validation split, the images from training and validation 

subsets were concatenated. Besides, the target image size was set 

to 256 pixels in a row and height. The tiled UAV images, with 

the same image size as training images, were used as testing data.   

 

The UAV images were captured on October 19th, 2018 in the 

noontime (good weather conditions, clear sky) using DJI 

Phantom 4 Pro, at 80 m flight altitude. The UAV images were 

captured with digital camera 1” CMOS 20mp with a focal length 

of 24mm. The selected rural area included roads, agricultural 

fields, hedges, and tree groups, which are assumed to indicate 

cadastral boundaries. The planimetric accuracy assessment of the 

UAV orthoimage was based on the comparison between 

surveyed Ground Control Points (GCPs) and the coordinates of 

GCPs on the UAV orthoimage. The estimated root-mean-square-

error (RMSE) was 2.5 cm.  

 

In order, to fit the size of testing images with the training ones 

the UAV orthoimage was cropped to 256x256 pixel tiles. To 

increase the field of view it was necessary the original spatial 

resolution of the UAV orthoimage to be resampled to a larger 

Ground Sample Distance (GSD), namely from 2 cm to 25 cm. 

For each tiled UAV image, manually were digitized the ground-

truth boundaries. The ground-truth data were buffered to 0.50 cm 

and converted from vector to raster. The labels contained two 

classes, namely, ‘boundary (1)’ and ‘no-boundary (0)’. The 

ground-truth boundaries, i.e., labels for the tiled UAV images 

were needed to perform the accuracy assessment for the testing 

dataset.  
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2.3 Accuracy Assessment  

The accuracy assessment in this study mainly investigates two 

aspects: the evaluation of the U-Net model, and the evaluation of 

the detection quality for the testing data, i.e., tiled UAV images. 

 

The model was evaluated by monitoring the loss and accuracy of 

training and validation data. The loss is defined as the sum of 

errors for each example in training between labels and 

predictions. To maximize the model's efficiency, the error or loss 

should be minimized. In this study, binary cross-entropy was 

used as a loss function and is expressed with the following 

equation (Alshaikhli et al., 2019): 

 

L(𝑦, 𝑝(𝑦)) = 

−
1

N
∑ (𝑦 ∗ log𝑝(𝑦)) + (1 − 𝑦) ∗ log(1 − 𝑝(𝑦))n

i=0               (1) 

 

where p(y) – predicted value 

            y – the true label 

           N – number of samples  

 

To assess the performance of the model based on U-Net, overall 

accuracy was used as an evaluation metric. The overall accuracy 

is expressed with the following equation:  

 
 

                          OA =
TP+TN

TP+FP+FN+TN
                                (2) 

 

 

where the definitions of TP, FP, FN, and TN are shown in Table 

1, which represents the confusion matrix. 

 

 Predicted 

True label Boundary  

(1) 

No-boundary 

 (0) 

Boundary (1) True Positive 

(TP) 

False positive 

(FP) 

No-boundary (0) False negative 

(FN) 

True Negative 

(TN) 

Table 1. Confusion matrix 

 

The same confusion matrix was used to assess the detection 

quality of visible boundaries on tiled UAV images. The quality 

of detection was expressed with the error of omission, 

commission, and kappa coefficient. All predictions with a value 

< 0.5 were defined as 0 – ‘no-boundary’, and predictions with 

value ≥ 0.5, were defined as 1 – ‘boundary’. The calculation of 

errors was done by using GRASS GIS (version 7.4.2) 

functionalities.  

 

3. RESULTS AND DISCUSSION 

The model was trained based on the original architecture of U-

Net, considering the same layer depth and same convolutional 

layers. The input image size was set to 256x256 pixels. To avoid 

the resizing of the output image from the max-pooling operation, 

the padding was set to ‘same’. Also, as an optional function, the 

dropout rate of 0.5 was used. The Sigmoid was applied as a final 

activation layer to retrieve the predictions as it is well suited for 

a problem of binary classification. During the training ‘Adam’ 

was set as the optimizer, and the learning rate was set to 0.0001.  

 

The model was trained with a batch size of 32 for 100 epochs. In 

addition, the Early Stopping function was set. This function aims 

to avoid overfitting or underfitting of the trained model, i.e., stops 

the training once the model performance stops improving on a 

hold out validation dataset. The number of steps per epoch was 

calculated by dividing the total number of training samples with 

the batch size. The validation split was set to 0.1. The 

concatenated training data and validation data from BSDS500 

resulted in 1469 samples for training and 164 samples for 

validation. The training duration with Google Collaboratory, for 

100 Epochs lasted 82 minutes. This amount of training sample is 

considered a small dataset, especially for deep learning. 

However, the loss and accuracy metrics provided interesting 

results. The results from the training of the model are shown in 

Figure 3. 

 

 
 

 

Figure 3. Evaluation of the model trained on U-Net architecture. 

(a) The Loss. b) The overall accuracy. 

 

Model train 

 
Accuracy Loss 

at 50 Epochs 0.939 0.142 

at 100 Epochs 0.945 0.125 

Table 2. The results of the evaluation metrics  

 

The model loss was constantly decreasing from the very first 

epoch until the end. This is an indicator that the model still is 

learning on training samples. However, the validation loss until 

epoch 35, initially was decreasing, and later mostly constant. This 

was a good sign that the model is not losing the ability to 

generalize predictions for datasets that were not seen by the 

model during the training. After epoch 35, the validation loss 

started very slowly to increase its value, which was an indicator 

that our model is slightly getting overfitted. Besides, in this study 

the model is trained on data very different from the testing data 

by its nature and content. If the network overfitted  it would have 

been a problem to perform well on the data that was not in the 

training set. In such a case, the model can make accurate 

predictions for a certain dataset but fails to generalize its learning 

capacity for another dataset (Wani et al., 2020).  

a) 

b) 
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The evaluation metric indicated relatively high accuracy 0.87 

from the first epoch and resulting in 0.95 in the last epoch. It is 

important to point out that from epoch 50 to 100, the accuracy 

was improving very slightly (Table 2). The relatively high 

accuracy, from the very first epoch, is mainly due to the 

imbalanced dataset. The boundaries take up a minimal area of the 

images compared to the background pixels, and the addressed 

problem is a single, not multiple class. Furthermore, considering 

that this study aims to use U-Net architecture to detect visible 

boundaries, based on the BSDS500 contours, it can be expected 

that the distribution of pixels per class is highly imbalanced.  

The predictions for the tested data, i.e., tiled UAV images were 

in the range [0-1]. To perform the accuracy assessment, it was 

required a post-processing step. The prediction maps with a range 

[0-1] were reclassified. With the re-classification, the predictions 

< 0.5 were classified as 0 or ‘no-boundary’, whereas the 

predictions ≥ 0.5 were classified as 1 or ‘boundary’. This was 

done to match the class values from ground truth data with the 

predicted class values. The post-processing step can serve as a 

filtering approach by customizing the class value, which is 

supposed to be reclassified to 0 or ‘no-boundary’. Examples of 

predictions for UAV tiles are presented in Figures 4, 5, and 6. 

The results of the accuracy assessment are presented for each 

example of the tested image in Tables 3, 4, and 5. 

      

     

Figure 4. Predictions of the trained model based on U-Net. (a) 

Example 1 of tiled UAV image. (b) ground truth boundaries. (c) 

prediction map [0-1]. (d) re-classified prediction map [0,1]. 

 

Class 

 
Error of 

omission 

[%] 

Error of 

commission 

[%] 

Kappa 

Boundary 16.89 39.96 0.68 

NoBoundary  2.84 0.88 

Table 3. Accuracy Assessment for Example 1. 

 

 

     
 

    
 

Figure 5. Predictions of the trained model based on U-Net. (a) 

Example 2 of tiled UAV image. (b) ground truth boundaries. (c) 

prediction map [0-1]. (d) re-classified prediction map [0,1]. 

 

Class 

 
Error of 

omission 

[%] 

Error of 

commission 

[%] 

Kappa 

Boundary 15.91 27.40 0.76 

NoBoundary  1.82 0.92 

Table 4. Accuracy Assessment for Example 2. 

 

    
 

   
 

Figure 6. Predictions of the trained model based on U-Net. (a) 

Example 3 of tiled UAV image. (b) ground truth boundaries. (c) 

prediction map [0-1]. (d) re-classified prediction map [0,1]. 

 

 

 

 

a) b) 

c) d) 

c) d) 

a) b) 

c) d) 

a) b) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-437-2020 | © Authors 2020. CC BY 4.0 License.

 
440



 

Class 

 
Error of 

omission 

[%] 

Error of 

commission 

[%] 

Kappa 

Boundary 38.95 36.39 0.59 

NoBoundary  2.79 3.10 

Table 5. Accuracy Assessment for Example 3. 

 

From the predictions retrieved on testing data it can be seen that 

the error of omission and commission differs for three different 

examples. Also, the errors per ‘boundary’ class should be 

considered as relevant despite the ‘no-boundary’ class, which 

represents the background. Due to the imbalanced distribution of 

pixels per class, the tables of accuracy assessment indicate a very 

low error of omission and commission for the ‘no-boundary’ 

class. The average error of omission and commission for 10 tiled 

UAV images for the class ‘boundary’ is 21.7% and 44.3%, 

respectively. These values relate to the correctness of 78.3% and 

completeness of 55.7%. From the provided examples above, it is 

obvious that the reclassification contributed to decreasing the 

percentage of completeness. 

 

4. CONCLUSION 

This research aims at exploring the potential of original U-Net 

architecture as a deep learning-based detector for visual land 

boundaries. The training of the model was based on an available 

edge dataset. The results show that deep learning-based edge or 

boundary detection usually are faced with the imbalanced 

distribution of pixels per class (‘boundary’, ‘no-boundary’). This 

also influences the overall accuracy of the trained model – which 

provides relatively high accuracy in the first epochs of the 

training due to a large number of pixels per tile as ‘no-boundary’. 

This would be more sensitive when a model is trained from 

scratch based on remote sensing data for boundary detection 

problems - rather than when training a model by transfer learning. 

Training the model in Google Colaboratory was efficient and 

sustainable for the amount of the data used in this research.  

 

The trained model for the testing data provided very satisfying 

predictions taking into account that the model was trained on data 

that are quite different in nature and content from the testing data. 

The predictions for the testing UAV images resulted in almost 

80% of correctly detected visible boundaries. However, the 

quality of detection is in close relation with the selection of the 

case study (degree of visible boundaries) and images used for 

training the network. The automatic boundary detection by using 

U-Net is applicable mostly for rural areas where the visibility of 

the boundaries is continuous. In cases where the boundaries are 

not visible, manual delineations are still required. In general, for 

developing countries, the automatic detection of visible 

boundaries might be seen as a promising approach to accelerate 

cadastral mapping. In countries, with complete cadastral 

coverage, the same approach might use for automatic revision of 

existing cadastral maps and automatically define the areas where 

the updating is needed. Here it has to be emphasized that not all 

visible boundaries coincide with the real property, i.e., parcels’ 

boundaries to which rights, restrictions, and responsibilities refer. 

Therefore the detected visible boundaries have to be verified in 

the field. Anyhow, the approach can accelerate cadastral mapping 

by providing the initial dataset on parcel boundaries that are later 

on verified by the local people. 

 

The research findings have been based on the BSDS500 dataset 

applied to the original architecture of U-Net. One of the aims of 

the authors’ further research is to optimize the U-Net model by 

transfer learning or train from scratch based on remote sensing 

imagery. Moreover, the sensitivity of different hyper-parameter 

settings on the learning optimizer and rate, the depth of the 

connected layers, and the dropout rate have to be analyzed.  
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