
PERFORMANCE EVALUATION OF ELM WITH A-OPTIMIZED DESIGN 

REGULARIZATION FOR REMOTE SENSING IMAGERY CLASSIFICATION 

 

 

Yi Lin1, Tinghui Zhang1, Kun Qian2, Guangshun Xie1, Jianqing Cai2* 

 
1 School of Surveying and Geo-Informatics, Tongji University, (linyi, zhang_th)@tongji.edu.cn, 786174501@qq.com 

2 Institute of Geodesy, University of Stuttgart, kun.qian@dlr.de, cai@gis.uni-stuttgart.de 

 

Commission I, WG I/2 

 

 

KEY WORDS: remote sensing, land use classification, extreme learning machine, regularization 

 

 

ABSTRACT: 

 

The automatic classification technology of remote sensing images is the key technology to extract the rich geo-information in remote 

sensing images and to monitor the dynamic changes of land use and ecological environment. Remote sensing images have the 

characteristics of large amount of information and many dimensions. Therefore, how to classify and extract the information in remote 

sensing images has become a crucial issue in the field of remote sensing science. With the development of neural network theory, 

many scholars have carried out research on the application of neural network models in remote sensing image classification. However, 

there are still some problems to be solved in artificial neural network methods. In this study, considering the problem of large-scale 

land classification for medium resolution and multi-spectral remote sensing imagery, an improved machine learning algorithm based 

on extreme learning machine for remote sensing classification has been developed via regularization theory. The improved algorithm 

is more suitable for the application of post-classification change monitoring of features in large scale imaging. In this study, our main 

job is to evaluate the performance of ELM with A-optimal design regularization (here we call it simply as A-optimal RELM). So the 

accuracy and efficiency of A-optimal RELM algorithm for remote sensing imagery classification, as well as the algorithms of support 

vector machine (SVM) and original ELM are compared in the experiments. The experimental results show that A-optimal RELM 

performs the best on all three different images with overall accuracy of 97.27% and 95.03% respectively. Besides, the A-optimal 

RELM performs better on the details of distinguish similar and confusing terrestrial object pixels. 

 

 

1. INTRODUCTION 

The remote sensing technology has been applied in many fields 

such as environment or urban monitoring. Multi-spectral remote 

sensing imagery has an enormous amount information of many 

types of objects on the earth. The information extraction from RS 

imagery is the basic requirement for the application and pro-

analysis. 

The automatic classification technology of remote sensing 

images is the key technology to extract the rich geo-information 

in remote sensing images and to monitor the dynamic changes of 

land use and ecological environment. Therefore, how to make 

full use of image information to identify and classify surface 

features is an eternal theme in the field of remote sensing 

technology efficiently and accurately.  

For the application of large-scale land cover change detection 

based on post-classification, traditional machine learning method 

is more appropriate.  Over the years, with the development of 

machine learning theory and technology, a variety of neural 

network methods have been proposed and utilized to solve image 

classification problems, including Radial Basis Function Neural 

Network (RBFNN), Multi-layer Perception (MLP)(Iversen et al., 

2005), Self-organization Map Networks (SOM)(Giacco et al., 

2010), Wavelet Neural Networks (WNN)(Angrisani et al., 2001) 

and other neural network classification methods. Various 

optimized algorithms have been developed based on those neural 

network methods to solve classification cases. Wavelet transform 

and WNN methods was used to detect and classify ephemeral 

signals simultaneously and automatically, using wavelet nodes to 

replace nodes in the first layer of the network. The experimental 

results are like those obtained by existing methods. MLP 

classifiers and autocorrelative neural networks (AANN) were 

combined to improve the classification discrimination between 

feature space overlapping data effectively. Gao et al. combine 

SMOTE algorithm and Particle Swarm Optimization (PSO) to 

optimize the RBF model, and propose a classification method 

that can effectively handle the bicategorical imbalance 

problem(Gao et al., 2011). Feng et al. used dynamic BP algorithm 

to train the MLP learning model for mail classification study and 

showed a significant improvement in learning efficiency and 

classification accuracy compared to the traditional MLP 

model(Feng and Daqi, 2013). 

These methods such as neuron network algorithms have gone 

through a process ranging from simple to complex, from specific 

to extensive and from single method to multi-combined.  

However, there are still some problems to be solved in artificial 

neural network. For example, when dealing with a large amount 

of data in high-dimensional feature space, it is easy to fall into 

local minimum for nonlinear optimization problems, training 

efficiency is not high enough, a lot of parameters to be set 

manually, and the activation function should be differentiable. 

Especially when processing large amounts of data in high-

dimensional feature space, the speed of ANN training is severely 

affected if the traditional methods of feedforward propagation 

and backward propagation are used to estimate the power array 

by random gradient descent(Abuelgasim et al., 1996). In order to 

train artificial neural networks, it often takes days or more. In 

addition, gradient descent-based algorithms converge easily to 

local minimum questions, resulting in low prediction accuracy 

relatively. Simultaneous iterative adjustment of parameters leads 

to dependencies between parameters. The algorithm also requires 

many iterative steps in order to obtain better generalization 

performance. In 2004, Huang G.B proposed the method of 

extreme learning machine (ELM) (Huang et al., 2004). The 

improved algorithm based on the ELM method also performs 
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well on large-scale remote sensing classification and can also be 

applied into the following change monitoring experiment and 

analysis (Lin et al., 2018). In this study, an optimal algorithm 

with A-optimized design regularization ELM is proposed and 

applied to real remote sensing classification experiments.  

 

2. METHODS AND MATERIALS 

2.1 Method 

The extreme learning machine (ELM)(Huang et al., 2004) is a 

machine learning method of single-hidden layer of feed-forward 

networks (SLFNs), which assigns the input weights and number 

of hidden layers randomly. A simple learning method for SLFNs 

called extreme learning machine (ELM) can be summarized as 

follows: 

Algorithm ELM. Given a training set 𝑥 = {(𝒙𝑖 , 𝒚𝑖)|𝒙𝑖 ∈
𝑹𝑛，𝒚𝑖 ∈ 𝑹𝑚, 𝑖 = 1, … , 𝑁}, and activation function 𝜑(𝑥), and 

the number of hidden nodes L 

Step 1. Randomly assign input weight wi and bias bi, i=1,…, L. 

Step 2. Calculate the hidden layer output matrix H, which can 

be expressed as 
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Step 3. Calculate the output weight 𝛽 : 𝛽 = 𝐇†𝐘 , where

 
T

1 N= ,...,Y y y
 

where H is feature mapping matrix, or hidden layer matrix of the 

neural network. Y is output vector or matrix. 

And 𝐇†𝐓 is the Moore–Penrose generalized inverse of matrix 

H(Huang et al., 2011), which is generated by  

 

𝐇† = (𝐇T𝐇)−1𝐇T                        (2) 

 
In practical application cases, there is still an important unsolved 

problem of ELM, which is how to obtain the most appropriate 

architecture of SLFNs. And as for the original ELM, there are 

some problems such as overfitting, non-optimal and 

reasonableness problem. The general method to improve the 

generalization ability and avoid over-fitting is regularization. It 

is important to select a proper regularization parameter for ELM. 

So, it is important to select a proper regularization parameter for 

the ELM. However, there is no general method to choose a proper 

or an optimal regularization parameter so far. Deng et al. have 

proposed a numerical heuristic method based on cross validation 

to determine the regularization parameter(Deng et al., 2009). The 

output function of ELM classifier is improved by the 

regularization parameter λ: 
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               (3) 

 

In such equation, we have the output Y as a N × m matrix, when 

there are N distinct training samples and m output neurons. the 

output weight is thus a L × m matrix, where L represents the 

number of hidden neurons. 

In order to acquire an optimal regularization parameter, we apply 

A-optimal design regularization, proposed by Cai (2004), to 

determinate the regularization parameter. To improve 

generalization performance and stability of ELM, in some 

applications regularization is introduced to penalize the weight 

matrix 𝐁̂ . But how to obtain appropriate regularization 

parameters is still a crucial issue worth discussed. In order to 

acquire an optimal regularization parameter, an A-optimal design 

regularization is introduced, which is realized by calculating the 

minimum trace of mean square error (MSE) of 𝐁̂ in this study. 

The A-optimal regularization is applied to determine the 

parameter. The regularization parameter λ follows by A-optimal 

designed regularization in the sense of minimizing the trace of 

MSE matrix: 
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Finally, the solution of 𝐁̂  can be written into the following 

equations: 
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2.2 Experiment 

To examine the practicability, two accuracy comparison 

experiments were conducted by real Landsat remote sensing 

imagery of different region. For the accuracy comparison 

experiment, two Landsat 8 OLI images of different terrain 

features and region area are utilized. The research area of the two 

experiments are shown in Figure 1, which are Wuhan East Lake 

in middle part of China, and Hamburg City in north Germany. In 

the research area of Wuhan East Lake, the land scape mainly 

consists of buildings, bare land, forest land, paddy and lakes of 

different shapes and size. In the study area of Hamburg, the land 

cover types are divided into bare land, building, paddy, forest, 

cement land and water.  

The pre-processing includes radiometric calibration, atmosphere 

correction and feature space construction. The A-optimal RELM 

method proposed in this study is compared with other two 

methods: support vector machine (SVM) and standard ELM 

method.  

In the pre-processing steps, the radiometric calibration and 

atmosphere correction were processed on all RS images in ENVI 

5.1 to remove the influence of atmosphere radiomutation and to 

achieve real surface reflectance. For the feature space 

construction, seven spectral band was directly used as feature 

space in Wuhan imagery, while in the Hamburg imagery the 

principle component analysis (PCA) band and different index 

bands are adopted to build the feature space. For the sample 

dataset construction, the Google Earth high-resolution imagery is 

taken as a reference to pick up the samples. And for the input data 

in the experiment, the training and testing samples are generated 

from the dataset randomly. The main steps of this study are 

shown in Figure 2. 
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(a) Wuhan East Lake 

 

(b) Hamburg 

Figure 1. Research Area presented by Landsat 8 OLI RGB 

imagery 

 

Region Time Sensors Size 

Hamburg 29/08/2018 Landsat 8 

OLI 

705×725 

Wuhan 28/05/2014 598×597 

 

Table 1. Landsat image information 

 

 
 

Figure 2. Main experimental procedure  

 

3. RESULTS 

To examine the accuracy of the A-optimal RELM method, a 

comparison experiment with other two methods: SVM and 

original ELM was generated by two Landsat8 OLI images of 

Wuhan East Lake and Hamburg. The classification results of 

Wuhan East Lake and Hamburg Landsat images are presented in 

Figure 3 and Figure 4 separately.  To demonstrate the difference 

more directly, the confusion matrix of SVM and A-ELM is also 

calculated in this experiment.  

The kappa coefficient calculated by the following equations:  

 

0 =
 kkx

p
N  

e 2



=
 validation classification

k

n n

p
N                      (6) 

0

1

−

−

e

e

p p
kappa =

p
 

 

And N represents the number of sample pixels in each dataset. 

 

3.1 Classification comparison of Wuhan East Lake  

In the classification result of standard ELM, most paddy pixels 

are misclassified into forest. And the boundary between 

watershed and land, especially in area with complex terrain, is 

not clear enough. The accuracy statistics of the three methods are 

shown in Table2.  From the precision statistics table of Wuhan 

image, the A-optimal RELM method reaches the best result with 

the overall accuracy of 97.27% and the kappa coefficient of 

0.9504, meanwhile the standard ELM has the lowest overall 

accuracy of 84.11%. It is obvious that most pixels of paddy are 

misclassified as forest by standard ELM in Figure 3 (b). The 

confusion matrix of the three methods are demonstrated in Table 

3-5 to give a direct comparison. In the confusion matrix of SVM, 

it is obvious that a large amount of water pixels is misclassified 

to building because of the similar reflection feature. And through 

the result of A-optimal RELM, we can see that the phenomenon 

of misclassifying has been corrected effectively. 

 

 

(a)SVM                                   (b) ELM 

          

(c) A-optimal RELM  

Figure 3. classification results based on Wuhan East Lake image 

 

 

 

 

 

 

 

 

Landsat Images

Preprocessing

Feature Space Construction

SVM, ELM, A-ELM

Classification Comparison

Accuracy Comparison
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Method Accuracy 

 Overall precision Kappa coefficient 

ELM 84.11% 0.7596 
SVM 92.64% 0.9069 
A-ELM 97.27% 0.9504 

 

Table 2. Accuracy comparison on Wuhan image experiment 

 

SVM Validation pixels 

 Water Bare Forest Paddy Building 

water  730 0 0 0 0 
Bare 21 952 13 2 1 
Forest 0 6 503 3 0 
Paddy 4 0 8 557 0 
Building 229 8 0 0 513 

 

Table 3. Confusion matrix of SVM on Wuhan image 

experiment 

 

ELM Validation pixels 

 Water Bare Forest Paddy Building 

water  730 0 0 0 0 
Bare 80 890 1 7 11 
Forest 32 2 156 323 0 
Paddy 0 0 0 569 0 
Building 31 7 0 0 712 

Table 4. Confusion matrix of ELM on Wuhan image experiment 

 

 

A-ELM Validation pixels 

 Water Bare Forest Paddy Building 

water  720 0 0 0 0 

Bare 2 946 31 3 7 

Forest 0 2 497 12 1 

Paddy 0 0 4 565 0 

Building 2 18 3 12 715 

 

Table 5. Confusion matrix of A-optimal RELM on Wuhan 

image experiment 

 

3.2 Classification comparison of Hamburg  

From the precision statistics of Hamburg image in Table 6, the 

A-optimal RELM method also performs best with the overall 

accuracy of 95.03% and the kappa coefficient of 0.9399. And 

SVM has the lowest overall accuracy of 90.51%. The confusion 

matrix of the three methods are demonstrated in Table 7-9. In the 

confusion matrix of SVM, misclassification occurs in several 

different landcover types. For example, part of bare land pixels 

is misclassified to building. The pixels of cement floor and 

building also misclassified to each other because of the similar 

spectral feature. And in the result of A-optimal RELM, the 

number of misclassification pixels is significantly reduced. 

Especially, the number of misclassification pixels from bare land 

to building has been reduced from 114 to 19. In the classification 

results in Hamburg, it is obvious that a fraction of water was 

misclassified to cement land by ELM in Figure 5. And the 

classification results of other land cover pixels are similar in 

Hamburg imagery. 

 

  

(a) SVM                           (b) ELM                   

                

(c) A-optimal RELM                

Figure 4. classification results based on Hamburg image 

 

Method Accuracy 

 Overall precision Kappa 

ELM 92.92% 0.8921 

SVM 90.51% 0.8854 

A-ELM 95.03% 0.9399 

 

Table 6. Accuracy comparison on Hamburg image experiment 

 

SVM Validation pixels 

 Bare 
Buildi

ngs 
Forest Paddy Cement Water 

Bareland  525 8 1 0 1 0 
Building 114 495 1 0 33 12 
Forest 2 1 417 9 8 0 
Paddy 0 0 6 316 3 0 
Cement 16 29 15 6 432 2 
Water 1 0 7 0 2 433 

 

Table 7. Confusion matrix of SVM on Hamburg image 

experiment 

 

ELM Validation pixels 

 Bare 
Buildi

ngs 
Forest Paddy Cement Water 

Bareland 527 4 1 0 3 0 

Building 26 543 0 3 72 11 

Forest 1 0 417 14 5 0 

Paddy 0 0 1 323 1 0 

Cement 3 21 15 18 441 2 

Water 0 1 2 0 1 439 

 

Table 8. Confusion matrix of ELM on Hamburg image 

experiment 
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A-ELM Validation pixels 

 Bare 
Buildin

gs 
Forest Paddy Cement Water 

Bareland 531 3 1 0 0 0 

Building 19 581 1 0 43 11 

Forest 1 0 419 11 6 0 

Paddy 1 0 0 324 0 0 

Cement 3 14 11 15 456 1 

Water 0 0 2 0 1 440 

 

Table 9. Confusion matrix of A-optimal RELM on Hamburg 

image experiment 

 

   

(a) SVM                 (b) ELM      (c) A-optimal RELM     

Figure 5. Part of misclassification details of watershed and 

cement land in Hamburg image 

 

The experimental results show that A-optimal RELM performs 

the best on two different images with overall accuracy of 97.27% 

and 95.03% respectively. Overall, compared with SVM and ELM, 

A-optimal RELM can reach the highest precision and it is also 

appropriate for multi-spectral RS imagery classification. Besides, 

the A-optimal RELM performs better on the details of distinguish 

similar and confusing terrestrial object pixels. It indicates that 

based on the classification experiment from the high-precision A-

optimal RELM algorithm, convincing followed-up analysis can 

also be carried out through the accurate classification results. 

 

4. CONCLUSIONS 

In this research, the results of the two comparison experiments 

demonstrate that the A-optimal ELM has a higher classification 

accuracy than SVM and original ELM methods. And the 

classification results on different Landsat remote sensing images 

have shown a better stability. 

In conclusion, the A-optimal ELM is more stable and effective 

than a standard ELM. On the other hand, the experimental results 

demonstrate that the A-ELM has a higher classification accuracy 

than the other two classification methods. Additionally, based on 

the classification results, a simple spatial-temporal analysis about 

the LUCC in the Chaohu Lake basin is carried out.  It can directly 

show the change status in the region spatially and temporally. 

Overall, compared with SVM and ELM, A-optimal RELM can 

reach the highest precision and it is appropriate for multi-spectral 

RS imagery classification. Besides, the A-optimal RELM 

performs better on the details of distinguish similar and confusing 

terrestrial object pixels. It indicates that utilizing the high-

precision A-optimal RELM algorithm, convincing followed-up 

analysis can also be carried out based on the accurate 

classification results. For the future work, performance on other 

remote sensing imagery with different feature space construction 

need to be conducted: high-resolution images such as GF satellite, 

World View-2 or Quickbird, etc. 
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