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ABSTRACT:

Wind energy is a critical part of overcoming the use of fossil or nuclear energy usage. The price pressure on the renewable industry
sector demands to cut the costs for costly regular inspections carried out by industrial climbers. Drone-based video-inspection
reduces costs as well as increases the safety of inspection personal. To further increase the throughput, automatic or semi-automatic
solutions to analyze these videos are needed. However, modern machine learning architectures need a lot of data to work reliably.
This is by design a problem, as structural damage is rather rare in industrial infrastructure. Our proposed approach uses Generative
Adversarial Networks to generate synthetic unmanned aerial vehicle imagery. This allows us to create a large enough training
dataset (> 103) from a dataset, which is at least an order of magnitude smaller (approx. 102). We show that we can increase the
classification accuracy of up to 6 percentage points.

1. INTRODUCTION

Onshore and especially offshore wind energy farms are crucial
to overcome the use of fossil fuels or nuclear energy to generate
electricity. Due to high price pressure on the energy market, on-
going costs have to be reduced. Regular inspection carried out
by professional industrial climbers is essential to prevent struc-
tural damage and to assure optimal performance of the turbines.
New technological approaches are needed to lower the costs of
this labor-intensive and thus costly method. This applies to a
wide range of other industries running hard-to-reach infrastruc-
ture as well. Our research project is using unmanned aerial
vehicle-based video inspection to avoid highly trained and thus
costly climbers. Furthermore, unmanned aerial vehicle (UAV)
inspection improves the security of the inspection task as an
error will not be fatal. UAV-based inspection is already used
for a multitude of scenarios, e.g. inspection of bridges (Metni,
Hamel, 2007, Hallermann, Morgenthal, 2014), industrial facil-
ities (Nikolic et al., 2013), power lines (Jones, 2005, Deng et
al., 2014), poles (Sa et al., 2015), buildings (Phung et al., 2017)
and power facilities (Jordan et al., 2017). For a more in depth
overview on possibilties and limitations of UAV-based inspec-
tion have a look at (Morgenthal, Hallermann, 2014) and for an
extensive review of applications of UAV inspection at (Jordan
et al., 2017). Although the process of acquiring the images
or video can be now done by UAV operators, experts are still
needed to review the UAV videos, especially concerning that
the large majority (> 99%) of the frames contain no damage
at all. Thus semi- or fully automatic inspection is required in
order to cope with the huge amounts of video data. A problem
by design with machine learning-based structural-damage de-
tection is that damage observations are quite rare, thus there is
not much training data available. In computer vision this prob-
lem is called one-shot or low-shot learning, depending on the
scarcity of data. Object detection, here damage detection, using
modern deep learning architectures such as Mask R-CNN (He
et al., 2017) or YOLO (Redmon, Farhadi, 2018) are quite ad-
vanced and show state of the art detection performance. How-
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ever, these need a large amount of data samples to learn from
(approx. > 103). Due to the very small number of damage ob-
servations in UAV-based inspections, these networks cannot be
applied in this domain in a straightforward manner. To tackle
this problem, algorithmic solutions, e.g. low-shot transfer de-
tector (LSTD) (Chen et al., 2018) exchanging these classifiers
exist. In most cases, an increase in training data and the use of
these established state of the art detectors is favored. In addi-
tion, objects to learn from should not morphologically be too
different from the objects to be detected in these approaches.
Yet, damage patterns such as rust can morphologically be quite
diverse, as it can form arbitrary shapes, thus a new solution is
needed. Here we propose an alternative solution using Gener-
ative Adversarial Networks(GANs), based on the pix2pix ar-
chitecture (Isola et al., 2017), to generate synthetic samples.
The pix2pix network transfers the style of one image to that
of another one. In their paper Isola et al. show the transfer
from segmentation masks to a street scene or a facade image,
from aerial imagery to a map, from a photo taken at day to one
taken at night, from an edge image to a photo and they use it to
colorize images. The basis for the generation of our synthetic
samples is a segmentation mask of the image to be generated.
The mask can either be created by altering the segmentation
mask of an existing image, or by manually creating a new one.
Altering means to introduce or remove features, such as rust,
contaminations or oil spills, to be added or removed in the syn-
thetic image. This process allows us to introduce damage into
any image of an intact structure, which can be used as training
data afterward. In addition, we can remove unwanted features
like contaminations on the lens.

2. METHOD

For an overview of the methodology used please have a look at
Figure 1.

a) Image acquisition We trained and evaluated our approach
on 310 images shot by a UAV, each showing a part of a wind tur-
bine. The wind turbine is an on-shore model located in Bremer-
haven on the German North-Sea coast.
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(a) Image acquisition (b) Train/Test split (c) Image annotation (d) Training of pix2pix (e) Mask/image generation

(f) Extraction of (synthentic) rust (g) Training of CNN (h) Patch generation (i) Classification of patches

Figure 1. Experiment overview: We show the different steps of our experimental setup. The upper row a)-e) shows the generation of
synthentic data samples using GANs. The lower row f)-i) shows the patch classification experiment used for validation of our method.
More information concernig each step is provided in the text (cmp. section 2). Training data and derived data and models are colored

blue, test data are colored red and synthetic data are colored purple.

b) Train/Test split The images were split into 290 training
images and 20 test images to avoid data leakage.

c) Image annotation The annotations were marked by hand,
i.e. labeled polygon annotations marking the most important
features, such as tower, oil, rust, or contamination on the lens.
Of the 290 training images, 145 showed rust of different sizes
and qualities. The annotations were automatically analyzed and
the largest connected annotations were selected as area of in-
terest, i.e. the wind turbine, whereas the rest was considered
background. A segmentation mask for the labeled polygon an-
notations was created (without background).

d) Training of pix2pix With the segmentation masks a net-
work based on the pix2pix architecture (Isola et al., 2017) was
trained. This network learns to transfer from one representation
of a scene to another. In our case, this is from the segmentation
mask of an image to the actual color image. To our knowledge,
we are the first to propose the use of pix2pix in the context of
inspection and monitoring. The pix2pix network was trained
for 7500 epochs.

e) Mask/image generation Segmentation mask images of the
test set were altered in a way that the masks for contaminations
on the lens were removed and additional masks for rust were
introduced by hand. Furthermore, for each segmentation mask
6 copies were created using shifts of [-300, -150, -50, 50, 150,
300] on the image is x direction and an additional 6 copies by
random cropping and resizing to the original size, i.e. zooming
in on the image. The pix2pix network can now be applied to
the masks to generate synthetic images of wind turbines. As
the background is not important to create training data and it
is quite hard to generate a realistic-looking environment, we
omitted the generation of it and replaced it by an excerpt of an
image showing background. The resulting images are 512×768
px in size.

f) Extraction of (synthentic) rust For training a classifier,
we need training data. Thus a grid is overlaid over the syn-
thetic images and all patches of size 64× 64 containing rust are
extracted. For the wind turbine photographs the same grid is

used, however, this time all patches are extracted, but divided
into containing either rust or background.

g) Training of CNN A convolutional neural network (CNN)
is trained with the said patches to classify patches to either con-
tain rust or belong to the background. For more details on the
CNN have a look at the text below. We trained two classifiers
with either the GAN generated rust patches added or without
them. In the case without the GAN samples we trained the clas-
sifier with 7344 background and 498 rust patches. When adding
the GAN generated rust samples there are 2874 rust patches and
still 7344 background samples.

h) Patch generation The test images are annotated com-
pletely, thus marking all the rust spots. All images of the test set
are cut into patches using the grid approach described above.

i) Classification of patches These patches are classified using
the trained CNN. Using the annotations we can evaluate the im-
ages using precision, recall and (macro) F1-score. There were
140 test patches containing rust and 5236 test patches contain-
ing background.

2.1 CNN

We tested different recent classifier architectures with this prob-
lem. These are Alexnet (Krizhevsky, 2014), VGG (Simonyan,
Zisserman, 2014), Squeezenet (Iandola et al., 2016), Inception
V3 (Szegedy et al., 2016), GoogLeNet (Szegedy et al., 2015),
Shufflenet (Ma et al., 2018), Resnet (He et al., 2016), Resnext
(Xie et al., 2017), Densenet (Huang et al., 2017), Mobilenet v2
(Sandler et al., 2018). If not stated otherwise the networks were
trained from scratch, however, some networks performed better
using pretraining with ImageNet data. The number of epochs
was 64 and a batch size of 32 was used. PyTorch (Paszke et
al., 2019) was used for the patch classification experiment. For
the pix2pix network the Tensorflow implementation was used
(Abadi et al., 2016).

2.2 Evaluation metrics

For evaluation precision P , recall R and the F1-score F1 are
computed.
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P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

F1 = 2 ∗ P ×RP +R (3)

where TP are the true positives, e.g. the samples containing
rust and being classified as rust, FP are the false positives,
e.g. the samples which are classified to contain rust, but there
is no rust on the patch and FN are the false negatives, e.g. the
samples which contain rust but are classified to not contain rust.
These are per class measures. To yield one value for an experi-
ment, one can compute the measure for each class and average
it. Thus yielding the macro scores. The macro scores are in-
variant to class abundance, thus are quite relevant for our case
as patches showing background are much more abundant than
patches showing rust. For completeness we also provide the
weighted scores, which are more commononly used. Here the
class-wise scores are averaged using a weighting scheme pro-
portional to the abundance of classes.

3. RESULTS

A resulting synthetic image is shown in Figure 2 a) alongside
the original image 2 b), the original segmentation mask 2 c)
and the altered segmentation mask 2 d). We show that rust can
be successfully added, which looks realistic and that the lens
contamination was removed. The whole images, along with the
segmentation masks, can be used to train an object detection al-
gorithm, such as Mask R-CNN or YOLO. In addition, the rust
spots can be extracted to train a convolutional neural network
(CNN), such as ResNet (He et al., 2016), to classify rust in im-
ages showing wind turbines. In addition, the generation of rust
training samples for classification, i.e. images showing only
rust, can directly be generated to train classification networks.
Although pix2pix works deterministically, thus resulting in one
output per segmentation mask, differently looking segmenta-
tion masks and thus resulting images can be generated by ma-
nipulating the masks with random flips of background pixels to
rust pixels at the border of the already existing segmentation
masks for rust. In addition, by moving either all segmentations,
i.e. moving the tower including the rust annotations or the rust
annotations alone, differently looking results can be achieved,
thus introducing more training samples. In Table 1 the results
of the patch classification experiment are shown. If multiple
parametrizations of the algorithm have been tested only the best
performing ones, i.e. the ones with the highest macro F1-score
is chosen. The corresponding result (with or without added
GAN samples) with the same network parametrization is then
presented as well, even though there might be other configura-
tions where the corresponding exeriment performed better. All
tested networks, except resnext50 32x4d and squeezenet1 1,
provide better results with the GAN generated test samples ad-
ded. However, the decrase in performance for resnext50 32x4d
and squeezenet1 1 is not that big. The biggest increase is that
of vgg16 bn. However, for this network as well as for Alexnet
the increases are a bit misleading as the version without added
GAN samples performed very poorly by every time predict-
ing background, thus achieving a classification performance of

49.34. With added GAN samples vgg16 bn performed rather
competitively with the other networks. Apart from these trivial
improvements resnet101 with 4.42 percentage points improve-
ments has the biggest gain. The best overall accuracy and the
only example above 90% is shufflenet v2 x0 5, which also fea-
tures the second biggest improvement. More detailed results
are shown in the Appendix.

CNN F1 FGAN
1 ∆

shufflenet v2 x0 5 88.67 91.52 2.85
resnext50 32x4d 89.73 88.88 -0.85
resnet101* 85.16 89.58 4.42
densenet121* 87.99 89.51 1.52
squeezenet1 1* 86.07 85.27 -0.80
googlenet 84.75 86.00 1.25
vgg16 bn* 49.34 84.24 34.9
mobilenet v2 83.16 83.91 0.75
inception v3 83.22 83.46 0.24
Alexnet 49.34 57.34 8.00

Table 1. Results of the patch classification experiment sorted by
highest score. All F1-scores are macro averaged (cmp. section
2.2). F1 are the results using the classifier trained only on the

training data. For FGAN
1 the GAN generated samples are added

to the training set additionally. ∆ is the difference
(FGAN

1 − F1) between the two. Networks with an * have been
pretrained on ImageNet. All others were trained from scratch.

4. CONCLUSION

We have shown that our approach is able to create arbitrar-
ily large training data sets for deep learning-based detection or
classification based on few training samples. This approach al-
lows another solution to the low-shot learning problem in in-
spection based projects. We achieved improvements of up to
4.42 percentage points and could increase the absolute macro
F1-score to over 90% only with our methodology. With 91.52%
shufflenet with added GAN samples is the best performing net-
work. Except of two examples adding GAN samples improved
the classification performance of all networks (cmp. Table 1).
Our approach allows to compensate for the scarcity of image
samples of damaged structures. The overall results allow for a
semi-automatic inspection process where attention is guided by
the classification algorithm. This allows the inspection teams to
check huge amounts of data acquired by drones today.
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APPENDIX

The appendix contains additional results of the patch classific-
ation experiment (see Table 2), which are not directly relevant
but might be of interest to the reader.
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