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ABSTRACT:

Three-dimensional LiDAR rangefinders are increasingly integrated into unmanned aerial vehicles (UAV), due to their direct access
to 3D information, their high accuracy and high refresh rate, and their tendency to be lightweight and cheaper. However, all
commercial LiDARs can only offer a limited vertical resolution. To cope with this problem, a solution can be to rotate the LiDAR
on an axis passing through its center, adding an additional degree of freedom and allowing more overlap, which significantly
enlarges the sensor scope and allows having a complete spherical field of view (FOV). In this paper, we explore this solution in
detail for drone’s context, while making comparisons between the rotating and fixed configurations for a Multi-Layers LiDAR
(MLL) of type Velodyne Puck Lite. We investigate its impact on the LiDAR Odometry (LO) process by comparing the resulting
trajectories with the data of the two configurations, as well as, qualitative comparisons, of the resulting maps.

1. INTRODUCTION

Unmanned Aerial Vehicles (UAV) surveys require accurate pos-
itioning. For years, Global Navigation Satellite System (GNSS)
has been a widespread complementary solution. However, this
system remains sensitive to signal masking and multiple reflec-
tions that may occur in dense areas, or in general, anywhere
the sky is blocked by obstructions like skyscrapers, dense tree
regions, tunnels, or in underground locations.

A prevailing alternative is to use simultaneous localization and
mapping (SLAM) algorithms (Cadena et al., 2016), as it is
based solely on the information delivered by the drone’s own
sensors. In this research, and for reasons of compatibility with
real-time applications, we will interest in the SLAM front-end
part, and only focus on laser technology as it provides direct
3D data, and more precisely, in Multi-layer LiDARs (MLL).
These latter allow direct scanning of the environment with a
360◦horizontal field of view (FOV), and a vertical opening of
several degrees different depending on the model and the num-
ber of layers. These LiDARs have experienced a boom in re-
cent decades thanks to their high accuracy and high refresh rate.
However, a problem persists with this type of sensor which is
their sparsity (Tazir et al., 2018). In other words, the more dis-
tant the scanned object is, the greater the spacing between the
points reflected by this object. This problem leads to the loss
of environment details, and more seriously, can cause LiDAR
odometry (LO) crash if there is not enough overlap between
scans (Velas et al., 2016). Moreover, depending on the layout of
the MLL in the drone (vertical or horizontal), parts of the envir-
onment can be omitted. Decisively, their main disadvantage lies
in their limited vertical FOV (Zhen, Scherer, 2018). A solution
can be to rotate the MLL on an axis passing through its cen-
ter, adding an additional degree of freedom and allowing more
overlap. Indeed, the rotation significantly enlarges the sensor
scope and allows having a complete spherical FOV but a more
complicated scanning pattern. In this paper, we explore this
solution in detail while making comparisons between the rotat-
ing and fixed configurations for an MLL (Velodyne Puck Lite).
We investigate its impact on the LO process by comparing the
resulting trajectories with the data of the two configurations, as

well as, qualitative comparisons, of the resulting maps.

2. RELATED WORKS

SLAM is a very broad field and results of more than 30 years
of research activity. However, in the drone industry, the interest
in this solution, to improve/replace mapping with GPS geore-
ferencing, is relatively recent; it is very novel when it comes
to the SLAM applied to the drone’s flight in GNSS denied en-
vironment using a rotating LiDAR. Indeed, an Australian re-
search team has begun this research area by producing a 1.8 kg
payload specially designed for drone platforms (Jones et al.,
2019). This payload consists of a rotating MLL, an inertial
measurement unit (IMU), and an onboard computer. It uses
mainly Velodyne VLP-16 rotating at a 0.5 Hz rate, in conjunc-
tion with a proprietary SLAM solution to generate 3D point
clouds without the need for GNSS. In mobile robotics, in 2016,
Neumann and his colleagues present in (Neumann et al., 2016)
a platform for a mobile robot that continuously rotates a Velo-
dyne VLP-16 PUCK together with a Hokuyo UTM-30LX-EW.
They claim that they obtain more uniformly distributed point
clouds than with a fixed sensor while achieving almost com-
plete sphere coverage of the environment, only a cone of about
71◦ towards the base of the sensor cannot be acquired with the
Velodyne, the Hokuyo’s occlusion is even lower. In (Zhen,
Scherer, 2018) a rotating VLP-16 with a motor speed of 30
rpm is tested. Their goal was focused on improving SLAM al-
gorithms to manage different types of LiDAR payload, includ-
ing rotating 3D LiDAR. They conclude that the use of rotat-
ing LiDAR provides wider FOV, which could significantly im-
prove the mapping performance. (Pfrunder et al., 2017) uses a
Dynamixel MX-106R servomotor to oscillate a Velodyne Puck
between -30 and +30 degrees with a frequency of 70 degrees
per second. This system is used for the real-time localization
of an autonomous ground vehicle. With this configuration, the
FOV is expanded, which leads to more robustness and precision
in the localization process. The results show that more than 60
km were carried out in completely autonomous driving. All this
research addresses the case of the rotary MLL payload partially
with different objectives. Our study differs from what was pre-
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viously mentioned in the fact that it interests to the impact of
the addition of the rotation mechanism on the lidar odometry
process for UAV applications. It highlights the impact of the
different parameters on the drone’s trajectory and the final ob-
tained map.

3. GENERAL FORMULATION

3.1 Rotation mechanism

Figure 1. The sensor configuration with reference frames

In our application, the Velodyne rotates around an axis that
passes through its center. let us define the LiDAR frame (bs)
(Xbs,Ybs,Zbs), centered at its optical center as it is shown in
Figure 1. For a given LiDAR point, it is referenced in Cartesian
coordinates by (xbs, ybs,zbs) and in spherical coordinates by
(rbs, α, β) with rbs is the radius and α and β are the two angles
following the axes Xbs and rbs respectively. Let us also define
the frame (bI) (XbI , YbI , ZbI ) attached to the drone and called
body frame. If an IMU is used, this frame coincides with the
IMU frame (in this work, we do not use an IMU). For this
frame, its XbI axis is directed towards the front of the drone
and its ZbI axis is pointed upwards.

In the case where the Velodyne is in fixed mode (does not ro-
tate), the Xbs axis coincides with the ZbI axis, but is directed
downwards, the Ybs is parallel to theXbI , and theZbs is parallel
to the YbI . This configuration is denoted by (Xbs

∗, Ybs
∗,Zbs

∗).
In this case, the Cartesian coordinates of a LiDAR point in the
drone’s frame will be:

xbI = rbs sin(β) (1)

ybI = rbs cos(β) sin(α) (2)

zbI = −rbs cos(β) cos(α)− abI (3)

In the case where the Velodyne rotates around an axis passing
through its center (Xbs, Ybs), the situation gets more complic-
ated. It should be noted that the rotation around the Zbs axis
is unnecessary, as it coincides with the rotation of the LiDAR’s
beams. In our use case, the Velodyne rotates around the Xbs

axis with a constant rotational speed. Let us concede θ the ro-
tation angle. The Cartesian coordinates of the LiDAR point in
this case will be:

xbI = rbs[cos(β) sin(α) cos(θ)− sin(β) sin(θ] (4)

ybI = rbs[sin(β) cos(θ) + cos(β) sin(α) sin(θ)] (5)

zbI = −rbs cos(β) cos(α)− abI (6)

3.2 LiDAR odometry and mapping

The LiDAR odometry and mapping process (Tazir, 2018) aims
to estimate the pose of the drone and the map of the environ-
ment at the same time by adjusting the point clouds of its on-
board LiDAR sensor. From the received scans, a registration
process (Tazir, 2018) is performed between every two success-
ive scans. Commonly, registration is based on two main steps:
a correspondence between the points of the two scans to ob-
tain a list of matches. Then a pose computing from the ob-
tained matches. This pose represented by its six parameters
(three translation and three rotation parameters) represents the
local position of the Velodyne sensor. The transformation of
this pose into the global coordinate frame gives the absolute
position. The map is built from a set of the aligned scans.

3.2.1 Poses optimization We use a mapping and localiza-
tion technique that is based only on LiDAR data. We follow
the framework proposed in the “LOAM” paper (Zhang, Singh,
2014), which is for years has been considered as the state-of-
the-art LiDAR estimation method. The drone estimates its pos-
ition by aligning the received point clouds. For this, a registra-
tion process is performed using the Normal Distribution Trans-
form (NDT) algorithm (Magnusson et al., 2007). In order to
reduce the drift, a keyframe strategy (Pomerleau et al., n.d.)
was implemented. This solution consists in fixing a reference
scan and aligning all the incoming scans to this one. We use
distance-based criterion to generate the keyframes.

More formally, let consider Ci
i+1 be the transformation

between to consequent scans Si and Si+1acquired at time i
and i + 1 by the Velodyne sensor, and Cc is the transforma-
tion between the current scan and the previous keyframe. The
displacement between these two scans can be represented by
the 6 DoF vector: [tx ty tz rr rp ry]T

As shown in Figure 2, the new scan Si+1 is registered against
the previous keyframe using the transformation Cc which is
calculated from the previous transformations Ci+1

i , Ci
i−1,. . . ,

Ci−3
i−4 as:

Cc = (Ci−3
i−4 )

−1 ∗(Ci−2
i−3 )

−1 ∗(Ci−1
i−2 )

−1 ∗(Ci
i−1)

−1 ∗(Ci+1
i )

−1

(7)

Sref

Si−4
Si−3 Si−2 Si−1 Si Si+1

Ci−3
i−4 Ci−2

i−3 Ci−1
i−2 Ci

i−1 Ci+1
i

Cc =?

Figure 2. Every incoming scan Si+1 is registered against the
previous keyframe Sref , and the multiples transformations

Ci
c, C

i+1
c , . . . , Ci+n

c (red edges) transforming these scans in the
coordinate frame of Si

ref , Si+1
ref , . . . , S

i+n
ref are estimated.

3.2.2 Map construction The map consists only of key-
frames. This technique allows both to reduce the error drift and
to prevent the creation of keyframes (adding new data to the
map) if the drone remains in the same position. This reduces
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the information contained in the built-in map by not overload-
ing it with unnecessary information. The map-building process
consists of two main steps:

• selection of keyframes from the stream of current clouds,

• update the map from the selected keyframes,

3.2.3 Arrangement with rotational constraint For the
case with the LiDAR rotation, a module that retrieves the en-
gine’s rotation angle equivalent to each LiDAR scan is imple-
mented. This angle is used to transfer each point cloud from the
rotating frame (bs) to the body frame (bI) using the equations
( 4, 5 , and 6).

Algorithm 1: LiDAR odometry and mapping
Input: scan S1, . . . , Sn

Output: map, currentPosition
1 Initialize: SRef , Si, C

n
bI = Cbs

bI = CIdentity

2 begin
3 //Retrieve the initial position and orientation of the

drone
4 Cn

bI = getInitialposition()
5 currentPosition = Cn

bI
6 // Create the initial transformation matrix
7 Cn

bs = Cn
bIC

bs
bI

8 //Transform the first scan from the LiDAR frame to the
world frame

9 Si = transformePointCloud(S1, C
n
bs)

10 // Add Initial point cloud to the map
11 map = SRef = Si

12 for i = 2 to N do
13 Si = transformPointCloud(Si−1, C

n
bs)

14 // Registration: Align the current cloud to the
reference cloud

15 Cref
i = register(Si, SRef , C

bs
bI )

16 // Calculate the sensor pose in the world-based
frame

17 Cbs
i = Cbs

bIC
ref
i

18 Cn
bs = Cbs

i × Cn
bI

19 // Update the position and the orientation of the
drone

20 currentPosition = getXY Z RPY (Cn
bs)

21 // Calculate the traveled distance between the
current position and the reference position

22 dist = getDistance()
23 if (dist >= Distthre) then
24 S̄i = transformPointCloud(Si, C

n
bs)

25 // Insert the Keyframe in the map
26 map+ = S̄i ;
27 // Change the reference cloud by the current

cloud
28 referenceCloud = currentCloud ;
29 SRef = Si

30 else
31 // Stay holding the previous reference cloud

and match every incoming cloud against it.
32 end
33 end
34 return map, currentPosition
35 end

4. COMPARISON METHODOLOGY

In this section, we will expose the experiments that we want
to perform in order to compare the rotating and fixed config-
urations for an MLL of type Velodyne Puck Lite attached to
an md4-1000 drone (Microdrones, 2020). A simulation-based

methodology is used to analyze the impact of the rotation on the
LO process by comparing the resulting trajectories with the data
of the two configurations, as well as, qualitative comparisons,
of the resulting maps.

4.1 Tests protocols

For our work, we choose to use Gazebo simulator (Koenig,
Howard, 2004) with the Robot Operating System
(ROS) (Quigley et al., 2009). These tools allow a high-
fidelity simulation, with physical models very close to reality
and therefore robust. The drone md4-1000 from the company
Microdrones (Microdrones, 2020) was simulated with charac-
teristics very close to the real drone. Then we simulated the
Velodyne sensor with the rotation mechanism. Figure 3 shows
the simulated drone as well as an urban-like environment that
we created for our tests.

Figure 3. The Microdrones md4-1000 drone simulated in the
gazebo simulator with the test environment

The testing protocol consists of flying the drone with the two
payloads (fixed Velodyne and rotating Velodyne) and used our
LOAM technique to compute drone’s trajectories and create the
resulting maps. For each test, we vary one of the parameters
that influences the LOAM process:

• Experiment 1: trajectories comparison: for this experi-
ment, the drone flies at a height of 30 meters and for a dis-
tance of 100 m. The drone’s trajectory is shown by the red
line on figure 4. Regarding the rotating payload, the Ve-
lodyne rotates around the (Xbs) axis as shown in figure 1,
with a rotation speed of 0.5 rad/s. We quantitatively com-
pare the two resulting trajectories against a ground truth
trajectory given by perfect IMU and GPS.

• Experiment 2: resulting maps comparison: we qualitat-
ively compare the rendered maps of the two payloads

• Experiment 3: rotation speed variation: in this test, we
vary the Velodyne’s rotational speed, and we compare the
impact of this variation on the LO results.

• Experiment 4: we test both payloads on other types of en-
vironment. This test is performed on real data collected by
a real drone.

5. OBTAINED RESULTS

This section presents the obtained results on each of the exper-
iments presented in the previous section.
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5.1 Results with rotating Velodyne

The mapping result given by LiDAR Odometry with the rotat-
ing payload is shown in the figure 4. In this experiment, the
drone flies at a height of 30 meters with a speed of 1 m/s. Its
trajectory is shown by the red line on this figure. The total num-
ber of points in the resulting map is 2 243 685 points.

(a) The resulting LiDAR Odometry map with the rotating payload

(b) (c) (d)

Figure 4. Mapping results given by LiDAR Odometry with the
rotating payload. (b), (c) and (d) are exploded views of the

rendered map

These results show:

• patterns due to the combination of the beams are visible.

• walls are well recovered as well as the horizontal surfaces.
with a dense overlap for the horizontal walls.

• density (isotropy) increases notably around the intersec-
tion with the rotation axis. This appears on the ground
points below the drone.

In order to investigate these results precisely, we placed the
drone in front of two walls at a distance of 10 m each. The drone
is static (does not move) and the Velodyne is in horizontal mode
and rotates around the axis (Xbs). One of the walls is perpen-
dicular to the Velodyne’s rotation axis and the other is parallel
to this axis. This is shown in figure 5. In this figure, the (Xbs)
axis is shown in red, (Ybs) in green and (Zbs) in blue.

This experiment is used to measure the impact of the rotation
on perpendicular and parallel walls. The results of this test are
shown in figure 6.

The results of this experience are:

For the Fixed payload, we notice:

• sparse information about the ground

(a) (b)

Figure 5. Experiment to measure the impact of the rotation on
perpendicular and parallel walls

(a) Fixed payload (b) rotating payload with 0.5 rad/s

Figure 6. Comparison between fixed and rotation payload on
perpendicular and parallel walls

• restricted vertical resolution

For the rotating payload:

• denser data for both ground and walls

• wider FOV

• point patterns on the perpendicular planes depend on the
sensor orientation: i.e. the wall perpendicular to the ro-
tation axis (the wall on the right of the figure) is scanned
with a higher density in the center. While the wall parallel
to the rotation axis (the wall in front) is sampled with a
slightly higher density on the sides.

• density increases notably around the intersection with the
rotation axis

5.2 Results with fixed Velodyne

The LO module fails to build the map properly. This appears
clearly on the trajectories comparison where we see the error
drift diverges very quickly after a few meters.

5.3 Trajectories comparisons

This experiment consists of comparing the two trajectories
given by the LO with the ground truth trajectory computed from
the data of perfect simulated GPS and IMU. This consists of
comparing the three translations (positions X, Y, and Z over
time) and the three rotations (roll, pitch, and yaw). In addition,
two metrics are used for the evaluation, the relative translational
error (RTE), and the relative rotational error (RRE). The former
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describes the translation gap between the ground truth (tGT )
and the estimated (tE) translation vectors.

RTE = ‖tGT − tE‖2 (8)

The second metric is the Relative Rotational Error (RRE), we
use the metric defined on the tangent space of SO(3):

RRE = ‖ logm(RT
ERGT )‖F (9)

where logm(.) is the matrix logarithm, RE is the estimated ro-
tation matrix, RGT is the ground truth rotation matrix and ‖.‖F
is the Frobenious norm. In the ideal case when the rotation mat-
rix RE is exactly equal to RGT , the multiplication RT

ERGT

would be the identity matrix, and thus the rotational error equal
to zero.

(a) rotating payload with 0.5 rad/s (b) Fixed payload

Figure 7. Comparison between fixed and rotation payload on
LiDAR odometry positions

Figures 7 and 8 show the comparison between the pose estima-
tion of the LiDAR odometry with the rotating payload and with
the fixed payload (blue line). The ground truth is given in red
line. These figures present the localization accuracy in terms of
x, y, and z positions relative to the ground truth, as well as the
relative translational error (RTE) and the roll, pitch, and yaw
orientations with the relative rotational error (RRE).

Results of the LIDAR Odometry on the rotation payload data:

• Despite a small spike at the time of trajectory change
(drone imbalance), around 45 m, we have a good align-
ment for the three positions x, y, and z, throughout the
trajectory.

• A drift of 1m over all the three positions (more visible on
the RTE graph) begins to appear around of 100 m of tra-
jectory.

For the Fixed payload, we notice that:

• The LOAM module fails to build the map properly. It spits
after 20 meters, because of a large cumulative drift on the
three positions that reaches the 10 m.

(a) rotating payload with 0.5 rad/s (b) Fixed payload

Figure 8. Comparison between fixed and rotation payload on
LiDAR odometry orientations

• The drift is greater on the two horizontal components (X
and Y). This is due to the restricted FOV (as the Velodyne
is in a fixed vertical configuration (directed downwards)
and with a flight height of 30 m).

Regarding the orientations, for the rotating payload, the RRE
remains little ready steady. Unlike the fixed payload which di-
verges very quickly.

These results show that the performance achieved by the LO
on the rotation payload data is greater than that with the fixed
payload.

5.4 Resulting maps comparisons

The purpose of this test is to compare the LOAM resulting map
of the rotating payload data shown in figure 4, with the map cre-
ated by geo-referencing the LiDAR data of the Velodyne Puck
in fixed mode using the perfect simulated GPS and IMU data.
Similar as we compared the LO trajectory with the ground truth
trajectory, we compare the resulting map with a supposedly per-
fect map. This last map is shown in the figure 9.

Figure 9. Map produced by georeferencing the LiDAR data of
the fixed Velodyne Puck

In order to compare the two maps, we have superimposed them
in CloudCompare (CloudCompare, 2020) (Figure 10). In this
figure, the georeferenced map is shown in blue, while the map
created by our LOAM technique using rotating payload data is
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in red. Both maps are the results of the same trajectory executed
by the drone equipped each time by one of the two payloads.

Figure 10. Comparison between the two rendered maps: fixed
(bleu)and rotating payload (red). Images surrounded by colors
show zooming parts shown by squares of the same color on the

main figure

This experience reveals the following observations:

• good overlap between the two maps

• very good recovery (isotropy) in the case of rotating pay-
load

• glaring spaces on the horizontal part of the environment
for the case of the fixed payload

• lack of overlap on vertical walls for the fixed payload

• more scope for the rotating payload

5.5 Varying the rotation speed

We started by testing the speed variation in a static mode where
the drone does not move, with the environment of the two walls.
Then we performed the test on the urban environment with the
moving drone. The results of the first test are given by the fig-
ure 11.

(a) rotating payload with 0.5 rad/s (b) rotating payload with 1 rad/s

Figure 11. Varying the payload rotation speed in a static drone
mode

by varying the rotation speed, we note:

• The slower scan offers more density (isotropy): i.e. the
band on the ground is wider for the rotation speed of
0.5 rad/s ( 30 degrees) indicates a higher density for this
slower speed compared to the scan of 1 rad/s ( 60 de-
grees/s).

For the second experiment (moving drone in urban environ-
ment), we keep all the parameters unchanged, we only change
the payload rotation speed. Figure 12 shows the results of this
experiment.

(a) Payload rotation speed 0.5 rad/s (b) Payload rotation speed 1 rad/s

Figure 12. Experience of varying the payload rotation speed in a
moving drone mode

In accordance with the static drone mode, the results of this ex-
periment show that the slower rotational speed is better for the
LO. Because with slower rotation payload, we get more overlap
than with a fast rotation speed, which contributes to more dens-
ity (isotropy) leading to precise registrations processes between
successive scans (figure 13). This implies an accurate LO.
These results appear well on RTE graphs, with an average of
0.4666 m along the full trajectory for the payload rotation speed
of 0.5 rad/s versus 0.8009 m for the rotational speed of 1 rad/s.

(a) Payload rotation speed 0.5 rad/s (b) Payload rotation speed 1 rad/s

Figure 13. Registration error between successive scans by
varying the payload rotation speed

Figure 13 shows the root-mean-square-error evolution of the
registration process for both 0.5 rad/s and 1 rad/s speeds. The
average is given by the blue line on this figure. This average is
0.1353692 m for the 0.5 rad/s rotation speed and 0.2231537 m
for the 1 rad/s.
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5.6 Tests on other types of environments

5.6.1 Guerledan dam environment For this test, we have
used the data taken during a real survey on the Guerledan dam,
carried out by md4-1000 drone and the mdLiDAR1000 sensor.
This data was used to generate its surface model. The latter
was adapted and imported into the Gazebo simulator. Figure 14
shows the results of this simulation. In this test, the drone per-
forms the same mission executed by the real drone (same tra-
jectory, flight height of 70 m and speed of 4 m/s), except the
used payload. The latter is the Velodyne Puck Lite.

(a) (b)

Figure 14. simulation with real data from Guerledan dam

The result of the LOAM process on this environment with the
rotating payload is given by figure 15. Whereas for the fixed
payload and with the same characteristics (speed of 4 m/s, flight
height 70 m) the LOAM is unable to create a correct map of the
environment.

Figure 15. Map of the Guerledan dam generated by LOAM
process on rotation payload data

6. CONCLUSION

In this research, we investigate the impact of the payload rota-
tion on LiDAR Odometry and Mapping process by comparing
it with the results of the fixed payload. We chose a Velodyne
Puck Lite LiDAR, for its lightweight, its affordable price, and
its symmetrical FOV. We compared the results of the two pay-
loads, qualitatively and quantitatively, on the drone’s trajectory
and the final obtained map.

Different conclusions are drawn:

• the rotation significantly enlarges the sensor scope and al-
lows having a complete spherical FOV.

• LiDAR rotation benefits the LiDAR Odometry and Map-
ping process and offers greater performances than the fixed
payload.

• good coverage for the rotating payload, whether for ver-
tical or horizontal surfaces.

• density (isotropy) on the perpendicular surfaces depend on
the sensor orientation.

• slower rotation speed offers more density(isotropy), and
therefore it is better for LO.

All these points must be taken into account when deciding on
the orientation and the rotation axis of the sensor attached to
the drone in relation to the target surfaces in a particular applic-
ation.
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