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ABSTRACT:  
 

Accurate registration of sparse sequential point clouds data frames acquired by a 3D light detection and ranging (LiDAR) sensor like 
VLP-16 is a prerequisite for the back-end optimization of general LiDAR SLAM algorithms to achieve a globally consistent map. This 
process is also called LiDAR odometry. Aiming to achieve lower drift and robust LiDAR odometry in less structured outdoor scene 
using a low-cost wheeled robot-borne laser scanning system, a segment-based sampling strategy for LiDAR odometry is proposed in 
this paper. Proposed method was tested in two typical less structured outdoor scenes and compared with other two state of the art 
methods. The results reveal that the proposed method achieves lower drift and significantly outperform the state of the art. 
 
 

1. INTRODUCTION 

In the last ten years, 3D LiDAR SLAM (Simultaneous 
Localization And Mapping) is an active research topic in 
Robotics and 3D Vision(Zhang and Singh, 2017). On the one 
hand, backpack and handheld mobile mapping system (MMS) 
which generally are equipped with laser scanners, cameras, 
inertial measurement units (IMU) utilizes this technology to 
derive the position and orientation (POSE) of the MMS for 3D 
mapping (Nüchter et al., 2015; Kaarta Stencil 2, 2018; Leica 
BLK2GO, 2019; Karam et al., 2019). On the other hand, taken 

the LiDAR SLAM as the core technology for localizing and 
mapping, flexible unmanned ground vehicles (UGVs) are 
developed for various applications such as autonomous 
driving(Claussmann et al., 2019), building information 
modeling(Blaser et al., 2018), etc. 
 
In general, LiDAR SLAM consists of two modules(Nüchter et 
al., 2007): 1) Front-end (LiDAR odometry) which uses 

sequential LiDAR scans to estimate the sensor’s pose in real-
time. 2) Back-end which detects the loops and applies the global 
optimization to generate the refined poses and map. This paper 
focuses on the former module. 
 
There are various works on SLAM in the literature, but we 
concentrate here on the approaches used 3D LiDAR sensor to 
register point clouds into a common coordinate system. Most 

existing methods are the variants of the traditional Iterative 
Closest Point (ICP) algorithm(Bes and McKay, 1992; Chen and 
Medioni, 1991). Pomerleau et al. (2015) review the different 
solutions of ICP and present a generic scheme for registration 
algorithms. Point-to plane distance is widely used as an error 
metric of ICP because of fast convergence rate. Different from 
the traditional scan matching, LiDAR odometry adopts the 
strategy that aligns current scan to the map instead of the last 

scan to reduce the cumulative error in the consecutive scan 
matching(Wulf et al., 2008). 

 
Nüchter et al. (2007) adopts a stop-scan-go strategy to scan the 

environment and register neighboring scans to a common 
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coordinate system by the ICP algorithm. Bosse and Zlot (2009) 
use a spinning 2D LiDAR sensor to acquire point clouds which 
is registered by matching 3D voxels based on geometric features 
like planar and cylinder features, and a continuous 6DOF sensor 
trajectory is recovered. Zhang and Singh (2014) propose a real-

time lidar odometry and mapping method called LOAM. This 
method consists of two parts, one algorithm performs odometry 
at high frequency to get undistorted sweep and another algorithm 
aligns the sweep to the map at low frequency. LOAM is the best 
LiDAR odometry method on the KITTI odometry 
benchmark(Geiger et al., 2012). Shan and Englot (2018) propose 
a lightweight lidar odometry and mapping method based on 
LOAM. A two step Levenberg-Marquardt optimization is 
proposed to accelerate the computation time. Three Degree of 

Freedom(DOF) transformation which is [𝑡𝑧 , 𝜃𝑟𝑜𝑙𝑙 , 𝜃𝑝𝑖𝑡𝑐ℎ] is 
estimated by matching the planar features first, then another 
three DOF transformation is estimated by matching edge 
features. Deschaud (2018) proposes a scan-to-model matching 
method with the Implicit Moving Least Squares (IMLS) surface 
representation. They use the previous relative transformation to 

unwarp the current frame point cloud data assuming that the 
egomotion is relatively similar between two consecutive scans. 
Behley and Stachniss (2018) propose a method called SuMa 
which constructs a surfel-based map and calculate the pose by 
exploiting the projective data association between current scan 
and a rendered model view from that surfel map. To further 
improve the pose estimation, Chen et al. (2019) add semantic 
constrains derived by deep neural network to the frame-to-model 

ICP problem based on SuMa. 
 
From the above, most methods rely on the feature points 
extracted from the raw point cloud to do the scan matching. 
Those methods work well in structured scene, but can’t be well 
adopted to less structured scenes with feature points hard to 
describe such as tree leaves(Ji et al., 2018; Shan and Englot, 
2018). 

 
To decrease the cumulative matching error in less structured 
scene which is very common in outdoor, we propose a segment- 
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based sampling strategy to filter the point cloud, ensuring a more 

stable feature point extraction to achieve lower drift LiDAR 
odometry in such scenes. 
 

2. SEGMENT-BASED LIDAR ODOMETRY 

A segment-based LiDAR odometry method is proposed to 
register the sequential point cloud data acquired by a sparse 3D 
LiDAR sensor like VLP-16. As illustrated in Figure 3, two key 
modules are considered in the proposed method. The first part is 
the point cloud segmentation in which the raw laser point clouds 
are filtered to generate segments that consists of the ground 
points and specific objects points. Second part is the scan 
matching, aligning the low-level feature points extracted from 
the filtered point cloud segments to the map, to get the pose of 

current frame. Once one frame of laser points has been aligned 
to the map, feature map will be updated and wait for the 
matching of the next frame. 
 
2.1 Point Clouds Segmentation 

The point clouds acquired by a data frame of the 3D LiDAR 
sensor is defined as a scan 𝑷. Both dynamic and static object 

points such as poles, cars, facades, tree trunks and leaves are 
collected in a single scan. Feature points among these static 
objects excluding tree leaves are more stable for matching. 
Therefore, it is necessary to filter the point clouds via object 
segmentation before further processing (i.e. scan matching). The 
fast range image-based segmentation proposed by 

Bogoslavskyi(Bogoslavskyi and Stachniss, 2016) is utilized for 
the ground and non-ground point clouds segmentation. The 
ground points and object points with number of points more than 
20, defined as 𝑺, are added to the segments for the scan matching. 

 

 
(a) Raw laser point clouds rendered in intensity 

 

 
(b) Object segments’ points (random color) 

Figure 1. Illustration of the point cloud segmentation 

2.2 LiDAR Odometry 

Two coordinate systems, namely, local coordinate system 𝑳 and 

world coordinate system 𝑾 , are involved in the proposed 

method. Local coordinate system is a 3D coordinate system with 
its origin at the geometric center of the 3D LiDAR sensor.  The 
initial local coordinate system is defined as the world coordinate 
system 𝑾. The task of this module is estimate the ego-motion of 

the LiDAR sensor using a sequence of point clouds 𝑷𝑚  and 

corresponding segment clouds 𝑺𝑚, 𝑚 = 0,1, … , 𝑁. 𝑁 represents 

the number of LiDAR scans. The ego-motion of the LiDAR 
sensor is represented by the 6 DOF transformation between the 
local coordinate system 𝑳𝑚 and the world coordinate system 𝑾, 

defined as 𝑻𝑊𝐿𝑚
 . 𝑻𝑊𝐿𝑚

  consists of two parts, including the 

rotation matrix 𝑹𝑊𝐿𝑚
  and the translation vector 𝒕𝑊𝐿𝑚

 . 

Therefore, a point in local coordinate system 𝒑𝐿𝑚  can be 

transformed into the world coordinate system by the formula 2. 
 

𝑻𝑊𝐿𝑚
= [

𝑹𝑊𝐿𝑚
 𝒕𝑊𝐿𝑚

0 1
]

4×4

(1) 

 

𝒑𝑊 =  𝑹𝑊𝐿𝑚
∙ 𝒑𝐿𝑚 + 𝒕𝑊𝐿𝒎

(2) 

 

The edge feature points 𝑭𝑒
𝑳𝑚  and planar feature points 𝑭𝑝

𝑳𝑚  are 

extracted from the segment clouds 𝑺𝑚 according to the criterion 

proposed by LOAM(Zhang and Singh, 2014). Then, 𝑻𝑾𝑳𝑚
  is 

estimated through feature points in current frame registering 

with the feature map point clouds by minimizing the point to line 

and point to plane distances iteratively until 𝑻𝑾𝑳𝑚
  converges 

solved by the Levenberg-Marquardt method(Marquardt, 1963) 
which is used to solve the nonlinear least squares problem. 
Distances larger than 1m are regarded as outliers and removed. 

Shown in formula3, the initial transformation of 𝑻𝑊𝐿𝑚
  is 

estimated by the transformation increment with respect to the 
last two frames. 
 

𝑻𝑊𝐿𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙
=  𝑻𝑊𝐿𝑚−1

𝑻𝑊𝐿𝑚−2

−1 𝑻𝑊𝐿𝑚−1
(3) 

 

 
Figure 2. low level feature extraction (edge points in red and 

planar in blue) 
 

After deriving the final 𝑻𝑊𝐿𝑚
, the feature points 𝑭𝑚

𝑊   which are 

extracted from 𝑷𝒎
𝑾  will be added into the feature map point 

clouds for the matching of the next frame. Furthermore, a sliding 
window based “scan to map” matching strategy is used to 
balance the precision and efficiency, as showing in Figure 4. 
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Figure 3. Workflow of the proposed method 
 

 
Figure 4. Sliding window based scan matching 

 

3. EXPERIMENTS AND ANALYSIS 

3.1 Experiment data  

The proposed method was tested using the data collected by our 
robot-borne laser scanning system(Wu et al., 2019). The system 
uses the Clearpath Jackal as the motion platform, and consists of 
a Velodyne VLP-16 laser scanner, a Zed camera, a Mti-300 IMU 
and a NUC on-board processor (as shown in Figure 5). In this 
experiment, we only use the point cloud data collected by the 

VLP-16 which has 16 scanlines evenly distributed in the vertical 
field of view of ±15 degrees. The speed of the UGV is about 

1.5m/s. Algorithm is implemented in C++ and executed in the 
Ubuntu Linux system. 
 
Point clouds collected in two typical sites including a 1.5 km road 
in Wuhan university (Site 1) and another relatively short 
greenway of Donghu Lake in Wuhan, China (Site 2) are used for 
experiments. Table 1 provides the dataset specifications for the 
two sites. Overall point clouds mapping result for the two typical 

sites are as shown in Figure 7.  
 

Table 1. Dataset specifications 

 

 
Figure 5. Our robot-borne laser scanning system  
 

 
 

 Site 1 Site 2 

Number of frames 9657 2104 

Laser frame rate 10hz 10hz 

Number of laser points 253559464 47810532 
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Figure 6. Local mapping quality evaluation according to plane fitting
 

Site 1

0
Meters

50 100

 

Site 2

0
Meters

25 50

 
Figure 7. Mapping result of two typical scenes (trajectory 

represents in red lines) 
 

3.2 Comparison with other methods and analysis 

We benchmark our method against state of the art LiDAR 
odometry method, namely LOAM1 (Zhang and Singh, 2014) and 
LeGO-LOAM(Shan and Englot, 2018).  

 
Due to the lack of ground truth of the pose, we use two criteria to 
assess the accuracy of our method that is the loop closure 
difference showing the drift over the whole trajectory and the root  

                                                             
1 https://github.com/laboshinl/loam_velodyne 

 
mean square error (RMSE) of plane fitting showing the local 
mapping quality. 
 
In Site 1, 1 closed loop is presented. The start position and the 
end position is the same place. From Table 2, our method 

demonstrates 0.5% position drift over 1.5km, outperforming two 
other methods. 
 
10 planes (e.g., planar ground, planar facades) in the map were 
randomly selected in Site 1, and plane fitting RMSE was 
calculated for our method, as shown in Figure 6. The average 
RMSE of the plane fitting for our method is 2.7cm. 
 

 
Our 

algorithm 
LOAM 

LeGO-
LOAM 

Closure 
difference(m) 
Closure 
difference/length of 
trajectory(%) 

7.5 

 
 

0.5 

18.6 

 
 

1.24 

24.3 

 
 

1.62 

Table 2. Closure difference for Site 1 
 
In Site2, there is no loop, so 5 planes (planar ground) in the maps 
were randomly selected and plane fitting RMSE was evaluated 
for three methods, as shown in Table 3. The average RMSE of 
the plane fitting for our method is 3cm. Quantitative result from 
Table 3 shows that our algorithm achieves the best performance. 
 

        start&end position

LOAM

LeGO-LOAM
Our algorithm

 
Figure 8. Trajectory of Site 1 for three methods 
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Table 3. Average plane fitting RMSE for Site 2 

 
It can be found from Figure 8 that LOAM has a significant drift 
in elevation direction. It is not surprising because feature points 
from unstable objects such as leaves have a negative effect on 
registration. LeGO-LOAM also utilize point cloud segmentation 
to filter unstable points, though there are two main differences 
with our method. First, we propose the object segments for the 
stable feature points extraction; Second, feature map point clouds 

are extracted from raw laser data considering the effect of sparse 
point cloud data on segmentation. In the proposed LiDAR 
odometry procedure, we ignore the motion distortion in each 
frame of point clouds due to the slow motion of the platform.  
 

4. CONCLUSIONS 

In this paper, we propose a segment-based LiDAR odometry 
method for sparse sequential point clouds data frames. 
Experiments demonstrate that our method is more robust and 
have lower drift in less structured scene. Future work will be 
focused on global optimization for the purpose of global 
consistently 3D mapping, and using IMU to adjust motion 

distortion. 
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