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ABSTRACT: 
 
Indoor localization, navigation and mapping systems highly rely on the initial sensor pose information to achieve a high accuracy. 
Most existing indoor mapping and navigation systems cannot initialize the sensor poses automatically and consequently these systems 
cannot perform relocalization and recover from a pose estimation failure. For most indoor environments, a map or a 3D model is often 
available, and can provide useful information for relocalization. This paper presents a novel relocalization method for lidar sensors in 
indoor environments to estimate the initial lidar pose using a CNN pose regression network trained using a 3D model. A set of synthetic 
lidar frames are generated from the 3D model with known poses. Each lidar range image is a one-channel range image, used to train 
the CNN pose regression network from scratch to predict the initial sensor location and orientation. The CNN regression network 
trained by synthetic range images is used to estimate the poses of the lidar using real range images captured in the indoor environment. 
The results show that the proposed CNN regression network can learn from synthetic lidar data and estimate the pose of real lidar data 
with an accuracy of 1.9 m and 8.7 degrees. 
 
 

1. INTRODUCTION 

Lidar SLAM (Simultaneous Localization and Mapping) has 
been widely studied in recent decades for data collection and 
mapping in indoor environments. Lidar sensors provide rich 
distance measurements which can be converted to a point cloud 
providing an accurate representation of indoor structural features 
(Cheng et al., 2018). Existing SLAM algorithms highly rely on 
the initial pose of the sensor to be able to recover from possible 
pose estimation failures. If the localization and orientation 
estimation algorithm performs poorly, it will be necessary for the 
algorithms to relocalize the sensor and recover the location and 
orientation from the failure. 
 
SLAM algorithms localize the sensor and map the environment 
incrementally by estimating the sensor pose with respect to a 
previous pose. If this incremental localization fails, the 
algorithm needs to re-estimate the sensor pose with respect to the 
map without using previous pose estimates. This is referred to as 
relocalization. 
 
Relocalization algorithms initialize the sensor pose by using an 
existing map such as a point cloud captured previously by the 
sensor, or an existing 3D model or a floor plan (Caron et al., 
2014). The existing map can provide useful information to help 
estimate the sensor pose. When the sensor used to acquire data 
needs to be relocalized automatically, the collected data can be 
matched with the existing map to estimate the location and 
orientation of the sensor (Wang et al., 2017).   
 
The relocalization methods can be mainly divided into two 
categories: vision-based methods and lidar-based methods 
(Shotton et al., 2013; Kendall et al., 2015; Wang et al., 2017). 
Cameras provide rich visual information in indoor 
environments, which can help estimate the camera pose (Kendall 
et al., 2015; Acharya et al., 2019a). However, cameras are 
susceptible to texture and lighting conditions, and the acquired 
images may be blurred due to the camera motion or lack 
sufficient texture or brightness because of poor texture and 
                                                                 
*  Corresponding author 

lighting conditions. Compared with vision-based relocalization 
methods, lidar relocalization takes advantage of accurate range 
data, long range, and in wide field of view of 360 degrees, 
without artefacts such as image blur. Another advantage of lidar 
is that it is independent of light conditions and performs well in 
poorly textured environments (Saeedi et al., 2016).  
 
Conventional lidar relocalization methods estimate the pose by 
using a map previously captured by the sensor (Wang et al., 
2017; Tian et al., 2019). This poses a practical challenge since 
the map generation in the first place depends on the relocalization 
ability to recover from possible failures.  
 
In this paper, we propose a new lidar relocalization method based 
on an existing 3D model of the indoor environment which is 
often available or can be easily created from a floor plan. The 
contributions of this paper are the followings: 
 
(1) We present a novel pose estimation method using lidar data 
and a 3D model. We generate a set of synthetic range images 
using the 3D model. These synthetic range images are used to 
train a CNN regression network. Each synthetic range image is 
associated with a position and an orientation in the real building 
provided that the 3D model represents the building accurately. 
 
(2) We show that the CNN regression network trained by 
synthetic range images generated from the 3D model can 
accurately estimate the pose of real range images captured by the 
lidar sensor in the indoor environment. 
 
 

2. RELATED WORK 

If an existing map of the environment is available, the pose 
estimation system can rely on the existing maps to achieve a 
higher accuracy. With an existing map, localizing the robot 
problem is called relocalization.  
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Relocalizing the robot by matching the current frame image with 
previous images has been proposed by Reitmayr and 
Drummond. (2006). If the matching was successful, the pose of 
the camera could be recovered. If the current frame could not 
match well with previous images, the next image frame would 
be used for recovering. Tracking the interest objectives to 
relocalize the sensor has been proposed by Özuysal et al. (2006). 
They used classification instead of feature extraction and feature 
matching to track the objective. They trained a classifier to 
classify the input image as similar to one of the previously seen 
images, so the system could detect the re-occurrence even if the 
input image was blurred or noisy. Özuysal’s system was 
improved by considering each class’s score independently and 
the classifier returned all classes scoring higher than a threshold 
(Williams et al., 2007). To relocalize the robot from a failure 
with the training set of images, they implemented an off-the-
shelf method: using three feature correspondences and their 
three-point pose algorithm was provided by Fischler and Bolles 
(1981). Willianms’s system provided the distribution and 
uncertainty of the pose, so feature correspondences were filtered 
by potential visibility. Thus, this system could implement 
relocalization immediately when the tracking algorithm was lost. 
The established map could be used to detect the re-occurrence of 
a place to reduce the drift of the trajectory (Mur-Artal and 
Tardós, 2017). 
 
Matching RGB-D and depth information of an input image with 
an existing database could provide the pose estimate of the 
camera and compute the coordinates in the scene coordinate 
system (Shotton et al., 2013). The existing database was a 
trained regression forest consisting of labeled pixels by 
calibrating depth information of pixels. The current image was 
input into the well-trained forest and an estimated camera pose 
would be outputted. Convolutional networks (CNN) also 
provided a powerful tool to perform the regression task by using 
images (Kendall et al., 2015). In Kendall’s system, the acquired 
real images were input into a convolutional network for training 
and the current image was input into the well-trained 
convolutional network for a real time 6-DOF camera pose 
estimation. 
 
Model based approaches have also been explored by researchers 
in recent years. In model based approaches, the pose of a given 
image is computed by minimizing the error between 
measurements in the image and the projection of a 3D model of 
the scene (Caron et al., 2014). A real-time SLAM algorithm has 
also been provided by Caron et al. (2014). Caron’s approach 
combined the vision information with a 3D model. This system 
will extract the segment features of the image and match these 
segment features with the 3D model to estimate the pose of the 
robot and the pose estimation and optimization are obtained by 
implementing UKF. A camera pose estimation approach using a 
3D model and deep learning networks has been proposed by 
Acharya et al. (2019a). A Bayesian and a recurrent network were 
used to train generated synthetic images using a 3D model, and 
the pose of the current image frame was estimated with the well-
trained network (Acharya et al., 2019b). 
 
An relocalization algorithm with an existing 3D map has been 
proposed by Wang et al. (2017). With an established 3D map, 
2D maps were sampled from this 3D map and the 2D observation 
was matched with these 2D maps to initialize the robot by 
implementing a particle filter. After estimating the initial pose of 
the robot, the extracted 2D point cloud from the current frame 
was matched with the extracted 2D maps from the existing 3D 
map to estimate the trajectory of the robot. A probabilistically 
sound method for relocalization is proposed by using scan-based 

maps for autonomous navigation (Schiotka et al., 2017). They 
built a regular map with a known pose and known measurement 
scenario and then the Bayes filter theory was used for localization 
with the existing map by finding the best match by finding the 
minimal distance between the end point of the beam and the 
points in one scan. For establishing the map, they considered 
three strategies: selecting scans equidistantly along the 
trajectory, grouping poses with similar observations and finding 
the set of scans with the maximal observation probability. A 
relocalization algorithm has provided by Tian et al. (2019). 
Tian’s system subdivided a 3D scene map into three parts evenly 
and vertically, and extracted the most informative point cloud 
layer for localization estimation. The current input lidar point 
cloud would be matched with the three parts of the existing 3D 
map independently using Normal Distributions Transform 
(NDT) algorithm (Zhang et al., 2014). For pose estimation, the 
consistency detection of three poses were evaluated and 
barycenter or midpoint of the three results would be calculated 
with three weights computed by considering NDT score. To deal 
with the sparse gradient problem of the occupancy grid map, a 
relocalization method has been designed to covert the original 
occupancy grid map into ESDF (Euclidean SDF) and TSDF 
(Truncated SDF) (Zhang et al., 2019). The distance difference of 
scan-scan constraints (difference between the current scan and 
previous scans) and the distance difference of scan-map 
constraints (difference between current scan and the existing 
map) were considered by implementing a sliding window 
algorithm. For mapping, each lidar point was projected to its 
corresponding grid cell and all the points were grouped to update 
the map. A data-driven descriptor training method was designed 
for relocalization and map reconstration (Dubé et al., 2018). In 
Dubé’s system, the current input lidar point segment features 
were extracted and this meant each frame of lidar point cloud 
corresponded to one set of segment features. The global map was 
established by accumulating centroids and descriptors of these 
extracted features and then this global map was used for 
relocalization: the local segments would be matched with the 
global map by KNN to find the best corresponds and this means 
the relocalization could be achieved by verifying the 
correspondences between the current point cloud and the 
geometric consistency. 
 
 

3. LIDAR POSE ESTIMATION  

3.1 Framework of the Lidar Pose Estimation 

Trained 
Network

Generation of 
Synthetic Images 3D Model

Estimated 
Lidar Pose

CNN
Regressor

Trained
Network

Current Lidar Data

Off-line Stage

Online Stage

 
 

Figure 1. Workflow of our relocalization method 
 

The proposed relocalization method can be divided into two 
stages: an online stage and an off-line stage, as shown in Figure 
1. In the off-line stage, we simulate a lidar sensor placed in the 
3D model to generate synthetic lidar range images with known 
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poses. These synthetic range images are then used to train a CNN 
regression network to train it. In the online stage, the current 
frame of lidar, i.e. a real range image, is input into the trained 
CNN regression network to estimate the real-time sensor pose 
with respect to the coordinate system of the 3D model.  
 
3.2 Generation of Synthetic Images  

 
 

Figure 2. A real lidar point cloud (top) and the corresponding 
synthetic point cloud (bottom) 

 
To achieve high pose estimation accuracy, the generated 
synthetic images should be similar to real lidar range images. In 
the paper, we implement a ray-tracing algorithm to generate 
synthetic range images from the 3D model. The real lidar dataset 
is acquired by a 32-channel Velodyne lidar, which can acquire 
range data in 32 certain vertical angles. For each channel, range 
data are acquired in approximate 2170 horizontal angles, for one 
complete rotation. To generate synthetic range images similar to 
real range images, a simulated lidar is placed in the 3D model 
and it fires rays in 32 vertical angels and 2170 horizontal angles. 
Each ray intersects with planes in the 3D model providing range 
values between each intersection and the origin point. The 
minimum range value is selected and stored in the corresponding 
location in the synthetic range image. Figure 2 shows a real lidar 
point cloud and a synthetic point cloud generated at the same 
location. 
 
The generated synthetic range images are similar to the real 
range image but there are still some differences, such as missing 
points in the real images, caused by the transparent or specular 
surfaces. Compared with the real images, the synthetic images 
contain less details as the 3D model is by defining a simplified 
representation of the real environment. 

3.3 CNN Regression Network Architecture  

The generated synthetic images with known poses will be input 
into a CNN regression network for training and testing and thus, 
the architecture of the network used for training and testing has 
an impact on the levels of accuracy that can be achieved. 
Classical architectures can achieve high accuracy for image 
classification task (He et al., 2016; Szegedy et al., 2017). 
However, the synthetic range image is in the 32 x 2170 shape. In 
this paper, synthetic images are trained with a VGG-based CNN 
architecture and a ResNet-based architecture. Figure 3 shows the 
structure of ResNet-based architecture: 
 

Input layer

64 x 7 x 7 Convolutional layer

2 x 2 Maxpooling layer

64 x 3 x 3 Convolutional layer

64 x 3 x 3 Convolutional layer

F(Im)+Im

64 x 3 x 3 Convolutional layer

64 x 3 x 3 Convolutional layer

F(Im)+Im

64 x 3 x 3 Convolutional layer

64 x 3 x 3 Convolutional layer

F(Im)+Im

128 x 3 x 3 Convolutional layer/2

128 x 3 x 3 Convolutional layer

F(Im)+Im

128 x 3 x 3 Convolutional layer

128 x 3 x 3 Convolutional layer

F(Im)+Im

128 x 3 x 3 Convolutional layer

128 x 3 x 3 Convolutional layer

F(Im)+Im

128 x 3 x 3 Convolutional layer

128 x 3 x 3 Convolutional layer

F(Im)+Im

256 Dense layer

256 x 3 x 3 Convolutional layer/2

256 x 3 x 3 Convolutional layer

F(Im)+Im

256 x 3 x 3 Convolutional layer

256 x 3 x 3 Convolutional layer

F(Im)+Im

256 x 3 x 3 Convolutional layer

256 x 3 x 3 Convolutional layer

F(Im)+Im

256 x 3 x 3 Convolutional layer

256 x 3 x 3 Convolutional layer

F(Im)+Im

256 x 3 x 3 Convolutional layer

256 x 3 x 3 Convolutional layer

F(Im)+Im

256 x 3 x 3 Convolutional layer

256 x 3 x 3 Convolutional layer

F(Im)+Im

7 Dense layer

 
 

Figure 3. The structure of ResNet-based CNN architecture 
 
As figure 3 shows, we replaced the average pooling and the 
following full connection layer with two full connection layers 
to perform the regression task. 
 
3.4 Loss Function 

To train the CNN regression network, we define the loss function 
as the pose estimation error. A 6-DOF pose describes the sensor 
location and sensor orientation. The sensor orientation is 
represented by quaternions. Expressing the sensor orientation 
using quaternions can achieve a higher accuracy, and training 
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location and orientation together performs better than training 
them separately (Kendall et al., 2015; Kendall and Cipolla, 
2017). The loss function is defined as follows: 
 

𝐿𝐿 =  ‖(p-p�)‖2 + 𝛽𝛽‖(q-q�)‖2                                 (1) 
 
Where  L = loss  
 p = location 
 q = quaternion 
 β = a weight parameter 
 
p and q are the ground truth position and quaternion vector 
respectively. 𝑝̂𝑝 and 𝑞𝑞� are estimated position and quaternion 
vector respectively and ‖. ‖2 denotes the 𝐿𝐿2 norm. 
 
In the equation above, the weight parameter β is used to balance 
the location loss and orientation loss. A unit quaternion ranges 
from 0 to 1 but the location can range from 0 to tens of meters 
(depending on the environment and the maximum range of the 
sensor), and this will let the training process focus more on 
location loss. With the weight parameter β, the training process 
will balance between the location loss and the quaternion loss. 
 
 

4. EXPERIMENTS AND RESULTS 

4.1 Training Set and Test Set Generation 

The experiments were carried out by simulating a 32-channel 
Velodyne lidar scanner in a 3D model of a university building 
obtained from a public dataset (Khoshelham et al., 2017). We 
placed a simulated lidar sensor at 0.35-meter distance intervals 
and 10-degree orientation intervals resulting in 231 positions and 
36 orientations for each position. Each simulated lidar frame is 
a synthetic range image registered with a known pose. The whole 
set of synthetic ranges was used to train the CNN regression 
network. A test dataset was generated by placing the simulated 
lidar in random positions and random orientations in the 3D 
model. A set of real range images was also acquired by a 32-
channel Velodyne lidar mounted on an unmanned ground 
vehicle in the real indoor environment.  The vehicle Husky with 
the Velodyne lidar on it is shown in figure 4. 
 

 
 

Figure 4. The Husky vehicle and Velodyne lidar 

Figure 5 shows the generation of the training dataset and the test 
dataset using the 3D model. The map in yellow is top view of the 
3D model of the test environment. The red arrows are the training 
lidar frames, with origin points representing the locations and the 
arrows representing the directions. We selected 231 locations 
uniformly distributed in the corridor and at each location, we 
generated 36 lidar frames in 36 directions at 10-degree intervals. 
In order to avoid using 231 fixed locations to estimate the sensor 
pose in the whole building, we added a Gaussian noise to the 
locations and orientations for each lidar frame in the training set. 
The blue arrows are the test lidar frames. We generated in total 
8316 synthetic images for training and 924 synthetic range 
images for testing with random locations and random directions. 
832 real lidar range images were acquired using the velodyne 
lidar for testing the trained CNN regression network. 
 

 
Figure 5. The generated training and test synthetic lidar frames 

 
4.2 Training and Testing with Two CNN Regression 
Architectures 

The generated synthetic training lidar frames with known poses 
are input into the VGG-based CNN regression architecture and 
the ResNet-based architecture for training and validation. Then 
the synthetic test dataset is used to evaluate the trained 
architectures. 
 
Selecting a suitable β value is important to the training and 
validation process. If a large β value is selected, the training 
process will focus more on the quaternion loss. This means the 
location loss will decrease very slow while the quaternion loss 
will reach a low value and keep stable, and vice versa.  

 
An appropriate value for the weight parameter β value is found 
empirically by conducting experiments until the trained 
architecture can achieve a satisfied accuracy.  
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Figure 6. Median Positioning error with different β values 
 

 
 

Figure 7. Median orientation error with different β values 
 
Figure 6 and figure 7 show that selecting different β values 
achieves different level accuracy by testing the trained VGG-
based CNN architecture and the ResNet-based architecture.  
 
we find that a suitable β value for the weight parameter is 105 
for the VGG-based regression architecture and 85 for the 
ResNet-based regression architecture. With the well-trained 
CNN regression architectures, a set of real lidar dataset acquired 
by the 32-channel Velodyne lidar will be input into this well-
trained architecture to estimate the sensor pose. Table 1 shows 
the best median location accuracy and median orientation 
accuracy we have achieved and the corresponding β value with 
synthetic range images. The results in table 1 show that the 
VGG-based CNN regression network and the ResNet-based 
CNN regression network can learn from synthetic lidar data and 
estimate the pose of synthetic lidar data with the accuracy of 1.65 
m and 15.6 degrees, and 0.39 m and 3.6 degrees respectively. 
 

Architecture Median Error β value 
VGG-Based  (1.65/m, 15.6/degree) 105 

ResNet-Based (0.39/m, 3.6/degree) 85 
 

Table 1. Test results with synthetic range images 
 

Now we have taken the networks trained on synthetic range 
images and the achieved a satisfied test accuracy. Then we apply 
the trained CNN regression networks to real range images. 

 
Table 2 shows the best median location accuracy and median 
orientation accuracy we have achieved and the corresponding β 
value with real range images. The results in table 2 show that the 
VGG-based CNN regression network and the ResNet-based 
CNN regression network estimate the pose of real lidar data with 
the accuracy of 3.1 m and 18.6 degrees, and 1.9 m and 8.7 
degrees respectively. 
 

Architecture Median Error β value 
VGG-Based  (3.1/m, 18.6/degree) 105 

ResNet-Based (1.9/m, 8.7/degree) 85 
 

Table 2. Test results with real range frames 
 
As shown in table 1 and table 2, the trained networks can achieve 
higher accuracy with synthetic test frames than with real lidar 
frames. The factor causing the higher error is the difference 
between the real lidar data and the generated synthetic image. 
Figure 8 shows a pair of real lidar range image and a synthetic 
range image generated with the same pose as the real lidar range 
image. We reshaped the 32×2160 range images to a 256×270 
range images for easier observation. The differences come from 
the following three resources: (1).  Noises and missing points are 
in real lidar data due to low laser intensity and transparent 
surfaces; (2). The real environment is more complex and contains 
more geometric details than the 3D model; (3). The 3D model is 
incomplete and might contain structural differences with respect 
to the actual indoor environment. 
 

Figure 8. Reshaped real range image and synthetic range image 
 
As figure 8 shows, most pixels in the real range image and the 
synthetic images are similar but there are still some points are 
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quite different. These large differences are caused by the 
complex real environment and the incomplete parts of the 3D 
model. The yellow points, representing large values, in the real 
range image are caused by windows. The laser fired by the 
Velodyne lidar goes through the window and hit a further wall, 
and then a large distance value is returned. The black points, 
representing zero values, in the synthetic range image is caused 
by the missing planes in the 3D model. The simulated lidar fires 
a ray in a certain direction, but it cannot hit any wall and returns 
a zero value. 
 

 
 

Figure 9. CDF of positioning errors tested with the ResNet-
based CNN regression network 

 

  
 

Figure 10. CDF of Orientation errors tested with the ResNet-
based CNN regression network 

 
Figure 9 and figure 10 show the CDF curves of the positioning 
errors and orientation errors tested with the ResNet-based CNN 
regression network.  
 
 

5. CONCLUSION 

This paper proposed a lidar relocalization method based on a 
CNN regression network using a 3D model. Synthetic training 
and test range images are generated from the 3D model. 
Experiments are conducted to select a CNN architecture and a 
suitable β value that can perform well with the input synthetic 
training and test range frames. Real lidar range images are input 
into the trained CNN regression network to evaluate the 
accuracy of the estimated pose vectors. Finally, we compared the 

results with synthetic test range images and real lidar range 
images, and analysed the reason why testing with real lidar 
images achieves a lower accuracy than testing with synthetic 
range images. Future works include training and testing the CNN 
regression networks in more complex indoor scenes. 
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