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ABSTRACT:

The increasing demand for reliable indoor navigation systems is leading the research community to investigate various approaches to
obtain effective solutions usable with mobile devices. Among the recently proposed strategies, Ultra-Wide Band (UWB) positioning
systems are worth to be mentioned because of their good performance in a wide range of operating conditions. However, such
performance can be significantly degraded by large UWB range errors; mostly, due to non-line-of-sight (NLOS) measurements.
This paper considers the integration of UWB with vision to support navigation and mapping applications. In particular, this work
compares positioning results obtained with a simultaneous localization and mapping (SLAM) algorithm, exploiting a standard and
a Time-of-Flight (ToF) camera, with those obtained with UWB, and then with the integration of UWB and vision. For the latter,
a deep learning-based recognition approach was developed to detect UWB devices in camera frames. Such information is both
introduced in the navigation algorithm and used to detect NLOS UWB measurements. The integration of this information allowed
a 20% positioning error reduction in this case study.

1. INTRODUCTION

The development of GNSS (Global Navigation Satellite Sys-
tems) allowed any person with a proper receiver to assess his/her
own position in real time at almost any outdoor location world-
wide. Since nowadays GNSS receivers are embedded in most
of the smart mobile devices (such as smartphones) available on
the market, billions of users can easily access this technology.
The availability of the above-mentioned technologies and the
huge base of potential users have motivated the development
of many civilian applications, and in particular, many location
based services (LBS), which take advantage of the worldwide
use of mobile devices with GNSS receivers to provide services
based on the knowledge of user’s position. The global LBS
market quickly increased its size in the last decade, and it is
still expected to grow at 36% compound annual growth rate till
2023 (Market Reports World, 2019).

Despite an unequaled importance of GNSS in outdoor position-
ing, it is quite unreliable in certain operating conditions, such as
indoors and in city centers, close to skyscrapers. Actually, re-
liable and accurate positioning in GNSS-denied environments
is a rather challenging task, which is attracting a lot of atten-
tion from the research community. Clearly, such interest is also
motivated by the LBS market Furthermore, on average, people
∗ Corresponding author.

spend approximately 90 percent of their time indoors (Scrib-
ner, 2018), and thus, a significant increase of the LBS market is
expected to come from an extension of LBS to indoors, which
is obviously possible only if an effective ubiquitous navigation
strategy is developed; e.g., able to properly deal with indoor
navigation and with the transition between outdoors and indoors
positioning.

A commonly accepted approach to such aim is the integration
od information provided by several sensors in order to improve
the overall positioning ability of the considered mobile device.
Sensors typically considered for such sensor fusion often in-
clude: inertial sensors, radio signals (e.g. WiFi, Bluetooth,
UWB), and cameras.

Since MEMS (micro-electromechanical system) based inertial
sensors are extremely cheap, e.g. tens of dollars, they are em-
bedded in almost all smart mobile devices currently on the mar-
ket. Furthermore, they can be used in practically all the possible
working conditions in a dead reckoning positioning strategy, in-
dependently from any other sensor. Such characteristics make
them an essential component of any integrated positioning sys-
tem. However, any kind of dead reckoning strategy implemen-
ted by using only such cheap sensors rapidly leads to a drift
of the position estimates with respect to the ground truth, hence
any reliable navigation strategy should use them in combination
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with other sensors (Davidson, Piché, 2016).

Visual odometry is a widely investigated research field concern-
ing the use of vision (e.g. cameras) to determine user’s device
relative movements. Furthermore, vision can also be used to
produce 3D information: the approach combining positioning
with producing spatial information, simultaneous localization
and mapping (SLAM), is also widely used, for both such pur-
poses. Despite the good performance potential of such vision-
based approaches, it is well known (IPIN, 2019, Wang et al.,
2019) that real-time image processing can be a quite computa-
tional power demanding task, hence it can lead to a relatively
fast draining of the battery of mobile devices.

The use of radio signals is also very often considered for indoor
positioning; in particular, WiFi has been widely considered in
the literature (Casari et al., 2009, Sakr, El-Sheimy, 2017, Retscher
et al., 2019), mostly because of its frequent availability in most
of the buildings. Among the radio signals, Ultra-Wide Band
(UWB) has recently attracted the attention of several research-
ers working on indoor positioning thanks to its better multipath
resilience with respect to other radio signal positioning techno-
logies, its low interference with other existing system, and low
power requirements. UWB systems based on two-way time of
flight (TW-ToF) typically provide quite accurate ranging meas-
urements; the accuracy of the ranging measurements obtained
in direct line of sight (LOS) is typically at decimeter level,
whereas obstructions (i.e. non-line-of-sight (NLOS) measure-
ments) can lead to a significant degradation of the range meas-
urement accuracy (Dabove et al., 2018).

Furthermore, most of the commercial UWB positioning sys-
tems are based just on the use of a set of UWB devices fixed
at known positions, typically named anchors, but it is clear that
communication and relative range measurements between mov-
ing devices can also be exploited for improving users’ position
estimates in a cooperative positioning strategy (Seco, Jiménez,
2018, Kealy et al., 2015, Gabela et al., 2019).

Given the low cost of certain UWB transceivers, e.g. Decawave,
the next generation of smartphones might be provided with such
technology, opening the possibility to the development of a po-
sitioning strategy based on UWB relative range measurements
between moving devices, reducing the need for an external UWB
infrastructure (Sakr et al., 2020).

Motivated by the previously mentioned considerations on the
relevance of NLOS measurements in UWB systems, this work
aims at investigating a suitable strategy for improving UWB
performance in realistic indoor working conditions. In particu-
lar, this work aims at assessing the performance obtained by de-
tecting and partially compensating NLOS UWB measurements
by means of an integrated UWB and vision positioning sys-
tem. Given the high power consumption related to the use of
vision algorithms, the vision system is used only to periodic-
ally correct the estimated device position. The correction is
based on the deep-learning recognition of UWB anchors in the
camera images, and then applying the corresponding positional
information in the navigation algorithm. Obtained results are
compared with those of a SLAM algorithm, which is used for
providing both a reference trajectory and a 3D reconstruction of
the test area.

Experimental results are based on tests carried out in a 4-storey
University building at Ohio State University, by using 30 UWB
anchors (Time Domain and Pozyx) and 4 moving users, and

on a 3-storey building of the University of Padua (Italy), by
using 12 anchors (Pozyx) and a moving user, collecting data
simultaneously also with a standard (RGB) and Time-of-Flight
(ToF) camera.

2. EFFECT OF NLOS UWB RANGE
MEASUREMENTS ON POSITIONING

UWB positioning is based on the use of a set of anchors, fixed
at known positions and rovers, moving in the area of interest.
The aim of this kind of systems is typically to provide reliable
estimates of the rovers’ movement, the computation is based on
the anchor-rover range measurements acquired by the rovers by
periodically communicating with the anchors.

UWB systems typically allow to obtain accurate positioning
with error at decimeter level when LOS measurements are avail-
able, whereas the system performance usually degrades in pres-
ence of NLOS measurements.

Motivated by the above consideration, a number of methods
have been formulated in the literature for NLOS measurement
detection (Marano et al., 2010), mostly related either to the ana-
lysis of the characteristics of the received signal (Yu et al., 2018,
Yang, 2018) or the geometric consistency of the position es-
timate. Dynamically adapting the measurement variance in the
tracking algorithm has also been considered to reduce the effect
of unreliable measurements (Pointon et al., 2019).

A number of NLOS issues are caused by objects which are part
of the static environment in the area, such as walls, furniture.
The impact of static, spatially inhomogeneous structures on RF
signal propagation can be assessed by means of a calibration
procedure, which typically ensures also a positioning perform-
ance improvement in the areas where NLOS issues are more
apparent (Retscher et al., 2020).

Fig. 1 shows the UWB ranging error reduction in terms of cu-
mulative distribution function, obtained after calibration of a
14-anchor Pozyx system in a 4-storey University building at
Ohio State University.

Figure 1. Example of distribution of uncalibrated and calibrated
Pozyx UWB ranges.

3. INTEGRATION OF UWB WITH VISION

Despite of proper calibration of the UWB system used to im-
prove the positioning results, such calibration should be up-
dated any time when a change occurs in the environment. As
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a different approach to calibration, here we propose the integ-
ration of UWB with vision to improve the UWB system per-
formance, while reducing the need for calibration and thus the
update of the UWB system.

Furthermore, since the execution of vision algorithms on a mo-
bile device may quickly drain off the battery, in the proposed
approach, vision algorithms are not continuously running; they
are called periodically at certain time instants, aiming at assess-
ing and compensating the UWB positioning error.

The rationale for using an RGB-ToF camera to determine the
presence of UWB anchors in the acquired frames is that if de-
tected, use them as additional information to aid the navigation
algorithm.

The anchor detection strategy is as follows. First, the depth
frame acquired by the ToF camera is converted to a point cloud
in a local reference system. Then, horizontal planes are detec-
ted in the obtained point cloud (e.g., detecting ground and/or
ceiling) and thus the point cloud is vertically leveled accord-
ingly. Next, a set of candidate anchors is determined by search-
ing small connected regions of points close to the ground, where
anchors are assumed to be positioned in this case study . It is
worth to notice that such method can clearly be extended to
more general anchor positions, provided that they are well dis-
tinguishable in the point clouds. The set of candidate anchor
points are backprojected on the RGB image, and their neigh-
borhood is used as input for a deep learning-based classifier,
which aims at distinguishing anchors from other objects. Then,
the detected anchors are associated to real ones based on the
similarity between measured UWB ranges and distances meas-
ured by the ToF camera. Finally, detected anchors can be used
as control points in the navigation algorithm.For example, if
two or more anchors are detected in a frame, a 2D/3D position
fix can be obtained, otherwise a just a range measurement is
provided by the vision system. In the results reported in the fol-
lowing, this approach will be shortly named “uwb+rec”, where
“rec” stands for anchor recognition.

Fig. 2 shows an example of detected anchor (green box), and
candidates not classified as anchors (red boxes). Such candid-
ates are sometimes associated to outlier 3D points, found in the
point cloud.

Figure 2. Example of Pozyx UWB anchor recognition: correctly
classified anchor (green box), examples of candidates not

classified as anchors (red boxes).

It is worth to notice that when an anchor provides an obser-
vation in NLOS, its successive measurements are also often in
NLOS as well. Furthermore, the associated error may vary in
such set of measurements, depending on the user movements

and on the environment and anchor geometric configuration. In
practice, modeling such error without a proper calibration pro-
cess might be quite challenging. Nevertheless, detecting and
discarding NLOS observations can often be sufficient for reach-
ing a notable positioning performance improvement.

Given the above consideration, in the approach named hereafter
“uwb+rec+NLOS” NLOS observation detection is performed
when a position fix from the vision system is available. Note
that position fix uncertainty is usually very small, hence detect-
ing large differences between measured UWB ranges and dis-
tances from the estimated position to the corresponding anchors
can be considered as a reliable way to identify NLOS observa-
tions. Once a measurement is detected in NLOS, its corres-
ponding anchor is discarded by the navigation algorithm in a
spatial neighborhood (circular, with diameter 4 meters in our
tests) of the position where NLOS condition has been detected.

4. SLAM FOR POSITIONING AND MAPPING

The presence of a vision system in the navigation device en-
ables the use of such system for both navigation and mapping
purposes. More specifically, a simultaneous localization and
mapping (SLAM, (Leonard, Durrant-Whyte, 1991)) algorithm
can be conveniently used to reliably determine both the current
position of the device and to build a map of the area around the
vision acquisition system under normal conditions.

In this paper a SLAM algorithm was developed to exploit both
the information provided by the RGB and ToF cameras. To be
more specific, the last available frame is just compared with
the previous one in order to determine the relative movement
between them. Clearly, such approach is suboptimal, however
it reduces the computational time (limiting the information to
be extracted and compared) and the quantity of information.

Hence, despite being suboptimal, such approach is quite reas-
onable in navigation applications, where keeping all the previ-
ously acquired spatial information about the environment is not
required. Alternatively, other approaches might also be con-
sidered to ease the use of spatial information collected in previ-
ous frames (Forstner, Khoshelham, 2017, Nguyen et al., 2007).

If UWB anchors are present in the area of interest, their location
data can be exploited to support the SLAM reconstruction and
localization information in the UWB reference system. The an-
chor detection algorithm can be executed in parallel to SLAM,
on the overall point cloud generated with the SLAM algorithm,
to determine the anchor positions. Then, the detected anchors
can be used as ground control to change the reference system of
the SLAM point cloud from local to that of the UWB system.
The fitting error between the measured (ground truth) anchor
positions and those obtained with the SLAM can be used to
assess the level of reliability of the SLAM positioning system
(and, partially, for the mapping).

5. RESULTS

SLAM is used for localization and 3D reconstruction of a cor-
ridor of a building of the University of Padua, Italy. UWB an-
chors were distributed over the area of interest (Fig. 3), hence
the SLAM results can be expressed in the UWB reference sys-
tem, as described in the previous section. The fitting error res-
ulting from the conversion of the mapping reference system to
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that of the UWB system is about 4.4 cm, which is acceptable,
given the typical error associated to ToF measurements (Lachat
et al., 2015, Masiero et al., 2019) and the distance traveled
(approximately 45 m). As previously mentioned, such results
provide a rough assessment of the SLAM positioning accuracy.
The top view of the 3D reconstruction of the considered cor-
ridor is shown in Fig. 4.

Figure 3. UWB anchor distribution.

Given the fairly high SLAM reliability in this case study, its
navigation (and mapping) solution is used as reference to valid-
ate the other positioning approaches in the following.

More specifically, the results of three positioning methods are
compared:

• UWB positioning, alone (see Fig. 5).

• “uwb+rec”: UWB positioning combined with the previ-
ously described UWB anchors recognition, used to correct
the UWB error (Fig. 6)

• “uwb+rec+NLOS”: UWB positioning combined with UWB
anchor recognition, and with the detection of NLOS meas-
urements when a position fix is available. Anchors provid-
ing NLOS observation are temporarily discarded in the
navigation algorithm (Fig. 7).

Numerical positioning results of the considered approaches are
reported in Table 1. Such positioning errors were evaluated on
a set of 41 locations, using SLAM estimated positions as ref-
erence (shown as red circular marks in Fig. 5, 6 and 7). To
be more precise, “uwb+rec” and “uwb+rec+NLOS” errors are
evaluated before applying any correction provided by the vision
system, whereas “uwb+rec (post)” “uwb+rec+NLOS (post)” are
evaluated in the tracking step just after such corrections.

Figure 4. Top view of the 3D reconstruction of the considered
corridor.

Figure 5. UWB positioning.

6. DISCUSSION

Fig. 5 shows that UWB positioning is very effective for y ≥ 7
and it is also working fine for y ≤ 2 and x ≤ 3. However, two
critical areas can be identified (a) for x ≥ 3 (visible in Fig. 8(a))
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Figure 6. UWB+anchor recognition positioning.

Figure 7. UWB+anchor recognition+NLOS detection
positioning.

and (b) for 2 ≤ y ≤ 3 (visible in Fig. 8(b)). COMMENT: you
may put in circles to better show areas (a) and (b) in the figure.

Bad performance of the UWB system in such areas is mostly
due to the presence of large range errors due to NLOS meas-
urements provided by anchors 7 and 9 (see Fig. 3 for the anchor

Table 1. 2D positioning performance comparison to SLAM

Approach RMSE [cm] max [cm]

uwb 65 154
uwb+rec 65 153

uwb+rec (post) 33 119
uwb+rec+NLOS 52 154

uwb+rec+NLOS (post) 33 76

positions).

The use of vision-based corrections, approach “uwb+rec” al-
lows to effectively reduce the position estimation error in area
(a). However, the presence of large range errors quite quickly
degrade the positioning performance after such corrections. In
contrast, determining and temporarily disabling NLOS obser-
vations ensures better performance in such areas with the ap-
proach “uwb+rec+NLOS”.

The performance of the three approaches is quite similar in area
(b), because no vision-based position fix was available in this
area.

The obtained numerical results confirm the effectiveness of the
vision-based corrections (“post” results in Table 1). It is worth
to notice that since position fix corrections were available only
in part of the considered points of the track, the overall “post”
errors were larger than the expected.

Furthermore, the numerical results of the “uwb+rec” approach
are very similar to those of the “uwb” one, showing that, since
NLOS measurements are typically present in several consecut-
ive measurements, the battery-saving infrequent use of vision
corrections does not allow to properly compensate the presence
of such NLOS observations. Obviously, it is a tradeoff, and
ignoring the battery consideration, the performance can be sig-
nificantly increased, depending on local circumstances.

In summary, exploiting vision information to determine NLOS
observations also led to a notable performance improvement
where position fix corrections are available.

7. CONCLUSIONS

This paper investigated the integration of UWB with vision to
improve navigation accuracy. Given the high power consump-
tion typically associated to vision data processing, vision pro-
cess was periodically executed to reduce the UWB positioning
error.

The error reduction was based on detecting UWB anchors in
the RGB-ToF camera frames, and then introducing the corres-
ponding positional information in the navigation solution. Fur-
thermore, due to the availability of this information, NLOS ob-
servations were also detected, and consequently removed from
the solution.

According to our experimental results, the aiding of UWB by
vision can improve the positioning performance; in our case
study, a 20% improvement was achieved, which is a conservat-
ive number, as the vision system was not continuously used.
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(a)

(b)

Figure 8. Critical areas: presence of large UWB range errors due
to NLOS measurements.
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