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ABSTRACT: 

 

This paper aims to define a pipeline architecture for near real-time identification of bushfire impact areas using Geoscience Australia 

Data Cube (AGDC). A series of catastrophic bushfires from late 2019 to early 2020 have captured international attention with their 

scale of devastation across four of the most populous states across Australia; New South Wales, Queensland, Victoria and South 

Australia. The extraction of burned areas using multispectral Sentinel-2 observations are straightforward when no cloud or haze 

obstruction are present. Without clear-sky observations, precisely locating the bushfire affected regions are difficult to achieve. 

Sentinel-1 C-band dual-polarized (VH/VV) Synthetic Aperture Radar (SAR) data is introduced to effectively elicit and analyse useful 

information based on backscattering coefficients, unaffected by adverse weather conditions and lack of sunlight. Burned vegetation 

results in significant volume scattering; co-/cross-polarised response decreases due to leafless trees, as well as coherence change over 

fire-disturbed areas; two sensors acquired images in a shortened revisit time over the same effected areas; all of which provided 

discriminative features for identifying burnt areas. Moreover, applying U-Net deep learning framework to train the recent and historical 

satellite data leads to an effective pre-trained segmentation model of burnt and non-burnt areas, enabling more timely emergency 

response, more efficient hazard reduction activities and evacuation planning during severe bushfire events. The advantages of this 

approach could have profound significance for a more robust, timely and accurate method of bushfire detection, utilising a scalable 

big data processing framework, to predict the bushfire footprint and fire spread model development.  

 

 

1. INTRODUCTION 

 

Bushfires, also known as wildfires, are a common event with 

seasonal occurrence worldwide, and considered as a major 

indicator of climatic change in the past decades. The devastating 

intensity of fire events can be exacerbated by lengthy droughts, 

creating ample fuel due to dry vegetation, as well as high 

temperature with minimal to no rainfall. Intense bushfires can 

reduce the vegetation coverage, but also give rise to property 

damage, impact on agriculture, livestock and loss of human life. 

Accurate and timely burn area identification plays a key role in 

burnt area mapping and monitoring, thus supporting time critical 

demand for situational awareness, informed decision making and 

tactical planning for all emergency services teams.   

 

The Australian bushfires from November 2019 to April 2020 

have reported an estimated AUD $2.26 billion, approximately 

US$900 million dollars, of property loss and destruction and high 

loss of human life over an estimated affected area of 187,360 

km2. There was an urgent need at the time to effectively integrate 

accurate, timely and relevant data to support emergency services 

and government organisations. The Geoscience Australia Data 

Cube (AGDC) (Lewis et al. 2017) has provided an open source 

portal to facilitate the growing demand to analyse earth 

observation data, including Landsat, Sentinel, MODIS etc. The 

AGDC provides a good degree of scalability, including the option 

to deploy on high performance computing environments 

supported by National Computational Institution (NCI). The 

underlying core of AGDC is a suite of Python libraries and 

PostgreSQL databases, providing an intuitive spatial analysis 

environment for its users. 

                                                                 
*  Corresponding author 
 

 

The aim of this study was to design and implement a fast data 

processing framework based on deep learning algorithms, and 

then assess the suitability of utilising Sentinel-1 and Sentinel-2 

imagery data for bushfire hotspot extraction and segmentation. 

The paper is organized as follows. In Section 2, basic SAR 

physical mechanisms and phenomenology will be presented. In 

Section 3 an overview of the study area and experimental data 

collected during the aforementioned bushfire events are 

provided. Assessing the roles of SAR derived coherent change 

detection for different polarizations (VV and VH) will be 

illustrated in Section 4. The U-net model and segmented results 

will be discussed in Section 5, lastly concluding remarks are 

given in Section 6. 

 

2. BACKGROUND 

In contrast to passive remote sensing systems, such as optical 

multispectral imagery, SAR data (Curlander and McDonough 

1991) (Moreira 2013) are active microwave systems with the 

ability to sense the surfaces of both Earth and other planets. A 

SAR system is normally used to map the characteristics and 

dimensions of terrain and ground features, for a variety of 

applications in forestry, hydrology, oceanography and 

agriculture. 

 

In this research, SAR imagery of Sentinel-1 satellites 

(Malenovský et al. 2012) will be used because the observations 

are potentially collected over land cover worldwide as well as 

with priority for coastal areas. Sentinel 1 is a dual polarised 

(PolSAR) system, where polarisation refers to the locus of the 

electric field vector in the plane perpendicular to the direction of 
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propagation for a plane electromagnetic (EM) wave (Oliver and 

Quegan 2004). With distinctive polarisation signatures that 

reflect different intensities, the diversity of ground targets is more 

uniquely interpreted by the backscattering coefficient, which is a 

physical quantity converted from pixel intensity values. PolSAR 

sensors can transmit microwave radiation in either linear 

horizontal (H) or linear vertical (V) direction, and then receive 

signals in either H and V polarisations (Oliver and Quegan 2004).  

 

The main signatures of transmit-receive polarisation products 

enable maximising the ratio of backscatter strength that is utilised 

to improve the detectability of targets, while dedicated dual-

PolSAR classification techniques (Hänsch and Hellwich 2010) 

enable feature classification and other advanced analysis in 

applications of fire scar mapping (Imperatore et al. 2017), 

biomass estimation, crop type and condition identification.   

 

A series of deep learning algorithms (Schmidhuber 2015, Zhang, 

Zhang and Du 2016) have attracted unprecedented research 

interest due to their inherent capabilities to overcome drawbacks 

of traditional machine learning algorithms (e.g. Random Forest) 

(Ramo and Chuvieco 2017), demonstrating notable performance 

improvements in comparison to traditional machine learning 

algorithms. U-net (Ronneberger, Fischer and Brox 2015, Flood, 

Watson and Collett 2019) was originally developed for image 

segmentation in the field of diagnostic imaging; it is a fully 

convolutional network, the key feature of the model being its 

replacement of the pooling layer by upsampling operators. A 

large number of feature channels sit in the upsampling layer, 

enabling the network to propagate context information to higher 

resolution layers. The expansive path is more or less symmetric 

to the contracting layer, while visually it yields a U- shaped 

model architecture. To predict the pixels in the border regions of 

the image, missing context is extrapolated by mirroring the input 

image. The U-net model has revealed excellent performance 

pixel-level accuracy even when dealing with insufficient 

trainable datasets. U-net architecture’s characteristic of 

propagating more weights to the area of interest or labelled pixels 

allows the network to learn its edge and feature information. In 

this work, U-net is utilised for its segmentation capability. 

 

3. STUDY AREAS AND DATA SOURCES 

 

3.1 Study area and relevant bushfire event  

From early October to late November 2019, over 900 km2 of land 

at Myrtle Creek (see Figure 1.) and surrounding suburbs, 

including Rappville, Wyan and The Island in the state of New 

South Wales, Australia were affected by bushfires, presenting an 

out of control firefront of more than 20km. The rationale for 

choosing this event and its locale as the study area was because 

there were multiple nearby blazes that would merge over a period 

of a few days. This provides a good opportunity to examine the 

effectiveness of a deep learning algorithm across time series data. 

The study area provides a rich composition of ground features 

resulting in different types of scattering, e.g. residential areas, 

vegetation and hilly forests etc.  

 

 

Figure 1. Location of study area in Myrtle Creek, NSW, 

Australia overlapped Fire Extent and Severity Mapping (FESM) 

(NSW Rural Fire Service 2020), and Google Earth Engine 

Burnt Area Map (GEEBAM) (Department of Planning 2020).  

 

 

Table 1. Sentiel-2 multispectral properties 

 

3.2 Sentinel-2 optical image processing over burned 

areas   

Sentinel-2 (S2) MSI datasets includes a wide range of spectral 

bands. In this study Level-2A products were choosen to avoid  

atmospheric effects such as bottom of atmosphere (BOA) 

reflectance, and product application of resampling of cloud and 

water mask computations.  

 

In this section, spectral index equations were employed to 

generate the fire impacted areas based on S2 images acquired on 

18 Nov 2019 as the ground truth for labelled image that will be 

part of the training samples for the U-net model in Section 4.  

 

Various fire-related spectral indexes have been widely analysed 

to detect the burn scars. Use of cloud and water body masking 

algorithms can reduce the disturbance for later steps of  
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classification based indices, e.g. normalized burn ratio (NBR), 

and relativized burn ratio (RBR) (Parks, Dillon and Miller 2014). 

The S2 internal scene classification (SCL) image is used for 

atmosperic correction, providing cloud quality probabilities 

(Gascon et al. 2017). The SCL probabilities of thin cirrus, 

medium and high cloud are then summed up, and if the resulting 

sum is lower than 255 then the resulting probabilities are used for 

a cloud mask layer. Simularly, normalized difference water index 

(NDWI) (Gao 1996) are also required to be computed and then 

subtracted from the initial NBR layer in conjunction with the 

cloud mask layer.    

 

The formulas used in this study and implemented in S2 

multispectral images refer to NDWI Equation (1), NBR and RBR 

Equation (2) (3) (4) as follows: 

 

𝑁𝐷𝑊𝐼 =
Band3 − Band8

Band3 + Band8
=  

GREEN−NIR 

GREEN−NIR 
           (1)       

 

𝑁𝐵𝑅 =
Band8 − Band12 

Band8 + Band12
=  

NIR −SWIR2

NIR +SWIR2
             (2)  

 

 

𝑑𝑁𝐵𝑅 =  𝑁𝐵𝑅𝑝𝑟𝑒−𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡−𝑓𝑖𝑟𝑒        (3)   

 

𝑅𝐵𝑅 = (
𝑑𝑁𝐵𝑅

𝑁𝐵𝑅𝑝𝑟𝑒−𝑓𝑖𝑟𝑒+1.001
)                                (4)  

 

Due to the large scale and coverage of the full S2 image, this 

paper only shows a patch of bushfire burn scar with a close-up of 

the  area of interest (AOI). The original true colour image is 

illustrated in Figure 5(a) with very thick smoke and cloud cover. 

The AOI burn scars can be clearly observed in brown in Figure 

6(b) with associated near infrared and short wave infrared band 

composition. The outcome of the binarized threholding RBR 

image is shown in Figure 6(c) in white with black background.  

 

3.3 Sentinel-1 polarimetric coherence estimation 

This section outlines the processes to compute and analyse the 

coherent phase difference for applicable adjacent dates based on 

AOI ignition timeline in Figure 4 to select the most significant 

coherent variation for the U-net model in Section 4.  

 

For Sentinel-1 (S1) polarized SAR data, pixel size is resampled 

to obtain regular square pixels with 10 m spatial resolution, 

instead of pixel spacing with 5 m in range by 20 m in azimuth in 

the original products. The purpose is to preserve the maximum 

polarimetric coherence for fusing with the S2 derived RBR result 

with 10 m resolution. According to the Bureau of Meteorology 

(BOM) weather records there was no rainfall during the S1 

imagery acquisition period, ensuring minimal radar signal 

disturbance by soil moisture and wet vegetation over the study 

areas. Single look complex (SLC) PolSAR images were selected 

in interferometric wide swath mode (IW) with phase information, 

allowing further investigation of the interferometric SAR 

(InSAR) coherent changes and its characteristics. 

 

Time series SAR images were chosen to generate a coherence 

magnitude estimation map from complex magnitude and phase 

information (Touzi et al. 1999), commonly used to discriminate 

small fractions of surface variation by computing the two 

complex radar signals 𝑠1  and 𝑠2  based on the following 

Equation(5): 

 

𝛾 =  
|𝐸〈𝑠1𝑠2

∗〉|

√𝐸〈𝑠1𝑠1
∗〉𝐸〈𝑠2𝑠2

∗〉
 , 0 ≤ 𝛾 ≤ 1           (5) 

where 𝛾 denotes the interferometric coherence, referring to the 

amplitude of the complex correlation coefficient between two 

SAR images, 𝐸〈 〉 denotes the statistical expectation (Lu et al. 

2018). 

A summary of the SLC based coherent map step-by-step 

procedures is presented in the flowchart in Figure 2. To derive 

pairs of processed PolSAR coherence images, firstly the 

corresponding band swath needs to be a subset from all original 

SLC images with the same orbit (satellite’s line of sight). Then 

the precise orbit file and back geocoding on the paired images is 

applied. In order to minimize the discontinuous phase 

information across a series of bursts, enhanced spectral diversity 

method (ESD) was used to estimate the azimuth shift between the 

two SAR images (Wang, Xu and Fialko 2017). Phase information 

for both VH and VV images were also computed. The strips 

between different sub-swath images were removed by de-burst 

functionality. Next, multi-looking for pixel size regularization 

was used, and then speckle noise was eliminated by Refined Lee 

speckle filter with a 5×5 window size. The last step is to correct 

the terrain effect on the output images with Geocentric Datum of 

Australia 2020 (GDA20) projection system.  

 

 

Figure 2. Workflow of InSAR coherence processing 

 

The SAR coherence calculation is completed using the SNAP 

Sentinel-1/-2 Toolbox software, provided by the European Space 

Agency (ESA).  

 

 
Figure 3. S1 paired coherence change maps with a red outline 

reference polygon between any sequential two acquisitions as 

first row: 𝑉𝐻𝛾1025_1106  ,  𝑉𝐻𝛾1106_1118 , 𝑉𝐻𝛾1118_1130  and 

𝑉𝐻𝛾1130_1212 ; second row: 𝑉𝑉𝛾1025_1106  ,  𝑉𝑉𝛾1106_1118 , 

𝑉𝑉𝛾1118_1130 and 𝑉𝑉𝛾1130_1212. 

 

3.4 InSAR coherence differences analysis 

Since the coherence images of all adjacent dates are estimated, 

the current results are overlapped with FESM fire extent map, 

mentioned in Section 1, for significant global change beyond the 

AOI. According to P. Zhang et al.’s study (Zhang et al. 2019), 

extending the temporary baseline from one sequential interval to 

two and subtracting the two coherence differences would provide 

a continuous change globally.  

 

Thus, Zhang’s approach is utilized to compute coherent map 

𝛾1025_1118  and 𝛾1118_1212  based on 24 days interval, and then 

subtract 𝛾1025_1118   from 𝛾1118_1212  to derive the coherence 

difference  ∆𝛾1025_1212 for both VH and VV polarization as the 
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final input from S1.  The processed images are listed in Figure 

6(e) 𝑉𝐻∆𝛾1025_1212 and (f) 𝑉𝑉∆𝛾1025_1212.  

 

 
Figure 4. AOI-targeted ignition timeline of SAR imagery 

acquizitions 

 

In Figure 5, overall VV co-polarized 𝛾1025_1118  has lower 

coherence value compared to 𝛾1118_1212, highlighting the ground 

changes due the fire burn. As the fire over AOI still burned for a 

couple of weeks, it resulted in relatively higher coherence 

distribution on 𝛾1118_1212 image.  

 

 
Figure 5. Coherent 𝛾1025_1118  and 𝛾1118_1212 between 25Oct 

(pre-event) and 18Nov (during event), 18Nov and 12Dec (post-

event) are demonstrated on the two columns by different 

polarizations.  

 

 
 

Figure 6. (a) True colour S2 image, composited by B4-B3-B2 

acquired by 18 Nov 2019; (b) false colour S2 image to highlight 

the bushfire burn areas, composited by B12-B8A-B4; (c) RBR 

threshold indexed binarization map; (d) resampled SWIR1; (e) 

Coherence difference 𝑉𝐻∆𝛾1025_1212; (f) Coherence difference 

𝑉𝑉∆𝛾1025_1212. 

 

4. METHODOLOGY 

4.1 Sentinel-1 and Sentinel-2 data fusion 

Since the processed S1 and S2 images are resampled to the same 

spatial resolution, stacking two products is necessary to collocate 

based on their geocoding pixel by pixel. SAR coherent and 

optical derived RBR maps deliver extensive information, 

therefore data fusion for both products is able to increase the 

image classification accuracy (Clerici, Valbuena Calderón and 

Posada 2017, He and Yokoya 2018) as well as standardize the 

pixel matrix as a part of deep U-net model input.   

 

4.2 Deep U-Net architecture  

To train the U-net model, we utilized S1 derived coherence 

difference 𝑉𝐻/𝑉𝑉∆𝛾1025_1212, and S2 RBR images as input. The 

model was trained with a Python library TensorFlow, and the first 

step is to utilise a pre-defined network and then perform 

hyperparameter tuning, limited training samples are available. 

This will ensure we retain the high-level semantic information in 

the subsequent processing steps. In the second step, data 

augmentation is required to enlarge the training sample datasets, 

leading to a channel creation for feature propagation. The signal 

broadcast between low-level and high-level details becomes 

much easier, and it also facilitates the backpropagation during 

training (Ronneberger et al. 2015, Flood et al. 2019). In our case 

study, the input are tiles of 256×256 pixels with three channels, 

RBR, 𝑉𝐻∆𝛾1025_1212and  𝑉𝑉∆𝛾1025_1212, respectively. The tiled 

images are 2058 in total, including 1234 images for training 

dataset, 412 images for validation.  

 

 
  

Figure 7. Detailed U-net architecture 

 

 

4.3 Morphological operation as post-processing on U-

net result  

According to the definition of mathematical morphology, 

morphological closing creates a disk-shaped structuring element 

to preserve the main object shape while eliminating the 

surrounding noise pixels, closing and filling the small holes or 

gaps on the object (Haralick, Sternberg and Zhuang 1987, Lee et 

al. 2016, Ajadi, Meyer and Webley 2016). This operation is 

employed as a post processing step on the U-net output. 

 

 
 

Figure 8. An example of morphological closing operation 

(right) on original image (left) 
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5. EXPERIEMENTAL RESULTS AND DISCUSSION 

The accuracy of the segmentation results is usually evaluated 

with different metrics, e.g. Sørensen-Dice coefficient (SDC) 

(Ivanovsky et al. 2019, Ulku et al. 2020, Chhor, Aramburu and 

Bougdal-Lambert 2017). SDC (also known as F1 score) 

algorithm is a statistic to assess the area of overlap or intersection 

over the total number of pixels in both images. It can be 

represented in Equation (6). 

 

 

𝑆𝐷𝐶 =  
2|𝐴 ∩ 𝐵|

|𝐴| +  |𝐵|
= 2 ×  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
           (6) 

 

S2 spectral data derived RBR with clear sky are used to validate 

the effectiveness of U-net training outcomes. According to the 

findings, cross-polarised (VH) phase difference has shown 

greater contribution in U-net training progress in the light of 

delineating burn areas, compared to co-polarised (VV). In this 

case, HV and VV intensity images have shown limited 

effectiveness in contributing to the training model, whilst RBR 

index data have demonstrated its significance on segmenting the 

target burn areas. Our work has resulted in a training and 

validation mean dice coefficient of 0.90 and 0.89 for fire burned 

extents. 

 

 
Figure 9. The images in first row are the S1 and S2 fused and 

tiled images as model input data, the second row demonstrates 

the tiles mask/labelled image based on processed RBR image (as 

ground truth), and the last row represents the U-net semantic 

segmentation maps.  

 

To achieve the maximum training accuracy, loss rate is required 

to be minimized with Adam optimizer to constantly compute and 

update the weights and bias for an optimal solution before 

overfitting.  Training and validation accuracy are demonstrated 

over each training epoch during U-net modelling in Figure 10 

below.  

 

 
Figure 10. U-net model training and validation accuracy of each 

epoch. 

 

Training and validation curve throughout 40 epochs is shown in 

Figure 10, an early stopper was applied to terminate the training 

operation to avoid overfitting. The model performance on a 

holdout validation dataset is slight lower than the training dataset. 

 

 
 

Figure 11. Morphological post-processed U-net model 

prediction in light red overlapped with the proposed RBR map. 

 

Figure 11 shows the morphological post-processed U-net 

segmentation has precisely described the bushfire burned areas, 

smoothened the burned front edge whilst excluding the small 

segments might have misclassified due to coarse pixel resolution. 

 

6. CONCLUSION 

In this paper, a deep learning U-net model has been trained to 

process both multispectral optical and microwave dual-polarised 

(HV, VV) InSAR data to identify and segment fire affected areas. 

A satisfactory result is achieved with mean dice coefficient 0.89 

for validation data. Moreover, for the InSAR coherence 

difference, compared with VV, VH has occupied the majority of 

lower coherence values over the new burnt areas. The processed 

SAR images have demonstrated great utilisation potential given 

heavy smoke or cloud shadow over the fire hotspots. It is worth 

knowing that, in the absence of optical data availability, we can 

rely upon SAR signal to penetrate visual obstacles and accurately 

locate fire effected areas.  
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