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ABSTRACT: 

 

Multiple-Input-Multiple Output (MIMO) Synthetic Aperture Radar (SAR) along-track formations can be used to fraction the power 

resources into compact, lightweight and cost-effective satellites, or to extend the swath coverage beyond the limit provided by a small 

antenna. In this second case, the Pulse Repetition Frequency (PRF) is kept low by implementing an inversion that solves up to N-1 

ambiguities, given N observations. The simultaneous illumination – that allows for the N² gain due to the coherent combination of the 

N transmitters and the N receivers, is analyzed and shown not to be critical, as the more than N=2 sensors are assumed. Performance 

is evaluated for the N=2 and N=3 cases and compared with the Single Input Multiple Output formations, where one sensor is 

transmitting, and all are receiving. Finally, the impact of the across-track deviation from the orbit is modeled and evaluated. 

 

1. INTRODUCTION 

Loose formations of mini SAR satellites have been studied in the 

SIMO case (Aguttes, 2003; Cheng et al., 2017; Gebert et al., 

2010; Guccione et al., 2020; Mittermayer et al., 2016). Such 

SIMO formation allows multi-sensor coherent imaging achieving 

a power gain proportional to the number of N sensors, thanks to 

the fractioning of the antenna while keeping the advantages in 

terms of flexibility, scalability, and robustness of a constellation. 

Furthermore, using N satellites along-track, the PRF can be 

reduced Nr times to expand the swath. Then, Nr≤N ambiguities 

can be mitigated using an adaptive PRF and twin antennas, while 

keeping the formation loose but much shorter than the antennas 

footprint. 

 
Here we address a MIMO case (Giudici, 2019), an evolution of 

the concept where N satellites transmit simultaneously the same 

code at the same frequency bands, the geometry is shown in 

Figure 1 for the MIMO-3 configuration. 

The resultant from the combination of the N transmissions with 

random phases causes fluctuations in the illumination of a target, 

that change within the synthetic aperture. The total contribution 

to the target P is the coherent combination of the signals from the 

N active satellites:  
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(1) 

where  s0 = signal amplitude, assumed identical for all sensors 

 xp, xn = along track coordinates of target and satellites 

 λ = wavelength 

 ψn = squint angle of the n-th satellite 

 

The summation in (1) involves random phases that, for each 

target, change with the position of the sensors: 

𝜙𝑛 =
2𝜋

𝜆
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cos 𝜓𝑛
≃
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𝜆
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2
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 (2) 

This term changes many tens of cycles over the synthetic 

aperture, which is λRp/La for a typical LEO mission, like 

Sentinel-1, where Rp=850 km, λ=5.6 cm, and the antenna length 

is La=12 m. Therefore, the instantaneous power on each target P 

is the sum of random phasors, proportional to: 

𝑃 = |∑ exp(𝑗𝜙𝑛)

𝑛

|

2

 (3) 

The power P changes randomly with the along-track positions of 

the sensors, xn, resulting in a fluctuation of the target amplitude 

along the synthetic aperture. These fluctuations can be 

compensated by a proper inversely weighted average of the N 

received signal, that we discuss in the next section, provided that 

the amplitude is high enough to counteract for thermal noise. 

To evaluate such occurrence, we have plotted in Figure 2 the 

Cumulative Distribution Function (CDF) of the random variable 

P in (3), that is the probability that the power exceeds a certain 

threshold, for the cases N=2…5. The CDF has been normalized 

to the mean power: 

 

Figure 1. Geometry of a MIMO-N formation. 
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𝐸[𝑃] = 𝐸 [∑ exp(𝑗(𝜙𝑛 − 𝜙𝑚))

𝑛,𝑚

] = 𝑁 (4) 

The behaviour of the distribution for small values of P – the most 

critical, is evidenced in the zoom on the right of the figure. This 

shows a worst-case for N=2, with the highest probability of very 

small values, a best one, for N=3, whereas for large N, the 

normalized power converges to an exponential distribution 

whose CDF is:  

𝑝 (
𝑃

𝑁
≥ 𝑥) = 1 − exp(𝑥)  𝑓𝑜𝑟 𝑥 ≥ 0 (5) 

 

2. HIGH-RESOLUTION MIMO IMAGING 

The time-variable illumination causes unwanted distortion in the 

image. These distortions can be studied by considering that SAR 

acquisition is linear, and then approximating the Impulse 

Response Function (IRF) of the signal transmitted by the m-th 

sensor and received by the n-th one, by a pure monodimensional 

phase term (Gebert et al., 2009; Richard Bamler, 1992): 

ℎ𝑛𝑚(𝑥) = 𝐴(𝑥 − 𝑥0) ⋅ exp (𝑗
2𝜋

𝜆
𝑅𝑛𝑚(𝑥))  

𝑅𝑛𝑚(𝑥) = √(𝑥 − 𝑥𝑛)2 + 𝑅𝑝
2 + √(𝑥 − 𝑥𝑚)2 + 𝑅𝑝

2 

(6) 

where  𝐴(𝑥 − 𝑥0) is the antenna pattern, that we assume 

identical for all satellites and centered in the same position x0 

 𝑅𝑛𝑚 is the overall path from the m-th transmitter to the 

target (assumed in x=0) and the n-th receiver. 

The bistatic path Rnm can be approximated for Rp large by 

linearizing (6):  

𝑅𝑛𝑚(𝑥) ≈ 2𝑅𝑝 +
(𝑥 − 𝑥𝑛𝑚)2

2𝑅𝑝
+

𝑥𝑛𝑚

2𝑅𝑝
  

𝑥𝑛𝑚 = 0.5 ⋅ (𝑥𝑛 + 𝑥𝑚)  

(7) 

The IRF from the target to the generic receiver, the n-th 

observation, can be derived by summing the N transmissions: 

ℎ𝑛(𝑥) = ∑ exp (𝑗
2𝜋

𝜆

(𝑥 − 𝑥𝑛𝑚)2

2𝑅𝑝
)

𝑚

  (8) 

where we have ignored – for simplicity – a phase offset that 

depends on n,m and we assumed constant antenna pattern. 

The summation in (8) is responsible for the amplitude 

fluctuations, discussed after (1). However such fluctuation can be 

mitigated by combining the N different observations of the same 

target modeled by (8), for n=1…N. The simplest approach is to 

handle the reconstruction in the frequency domain since the 

convolution by the IRF becomes a frequency-varying weight. 

The Fourier Transform of (8) is: 

𝐻𝑛(𝑓𝑥) = ∑ exp (−𝑗𝜋𝑅𝑝

𝑓𝑥
2

𝑓0
)

𝑚

 exp(−𝑗2𝜋𝑥𝑛𝑚𝑓𝑥) (9) 

Where f0 is the carrier frequency. The Fourier Transform of each 

observation, Yn(fx), under the simplifications here introduced is 

the summation of the spectrum of the scene D(fx) within all the 

bistatic channels: 

𝑌𝑛(𝑓𝑥) = H0(fx) ∑ 𝐻1,𝑛𝑚(𝑓𝑥)

𝑚

 ⋅ 𝐷(𝑓𝑥) (10) 

where  H0 , the first in (9), is responsible for the quadratic phase 

 H1,nm is the second term in (9) that accounts for the along-

track shift of the equivalent monostatic phase center, xnm. 

 

The forward model of the observed SAR spectrum (10) can be 

written in matrix format: 

 

𝐘(𝑓𝑥) = H0(fx) ⋅ 𝐇1(𝑓𝑥) ⋅ 𝐷(𝑓𝑥) (11) 

where  Y is the [N,1] column vector with the observations Yn 

 H1 the [N,1] column vector with the shifts H1,nm 

and inverted in LS to derive the best guess for the SAR 

reflectivity: 

D̂ = H0
−1 ⋅ (𝐇1

∗ ⋅ 𝐇1)−1 ⋅ 𝐇1
∗ ⋅ 𝐘 (12) 

 
 

The MIMO recombination can be expressed as follows:  

 

�̂� = H0
−1

∑ (∑ exp(−𝑗2𝜋𝑥𝑛𝑚𝑓𝑥)𝑚 ) ⋅ 𝑌𝑛
∗

𝑛

∑ |∑ exp(−𝑗2𝜋𝑥𝑛𝑚𝑓𝑥)𝑚 |2
𝑛

 (13) 

The interpretation of the MIMO reconstruction is given in Figure 

3 for the case N=2. On the left, one finds the Doppler phase 

history of the same target, as seen by the N=2 sensors. The 

amplitudes, for each frequency, are different and random due to 

(3). For each frequency, the along-track contribution is also 

shifted: for example, the zero Doppler for the two sensors are 

respectively at x1 and x2. However, the MIMO recombination in 

(12), (13) performs a summation – with a proper spectral 

equalization (in the denominator) and time-domain shift aimed to 

reconstruct a unique Doppler phase that will then be focused by 

the inverse operator H0
−1.  

In the real world, one has to compensate further for the phase 

terms in (7), and for the range migration and secondary range 

migration, as discussed in (Cheng et al., 2017; Gebert et al., 2009; 

Guccione et al., 2020; Mittermayer et al., 2016) for the SIMO 

cases. 

 

 
Figure 2. Cumulative Probability Distribution of power of the 

sum of random phasors, normalized to the mean. 

 

 

 

Figure 3. Interpretation of the MIMO-2 reconstruction in the time 

frequency diagram, representing: on the left, the contribution of a 

target in x=0, observed by the N=2 sensors, located in x1, x2 and on 

the right the MIMO recombination. 
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2.1 Power gain 

The role of an additional noise can be evaluated by applying the 

inversion (12) to the forward model (11), corrected with additional 

noise: 

D̂ = H0
−1 ⋅ (𝐇1

∗ ⋅ 𝐇1)−1 ⋅ 𝐇1
∗ ⋅ (H0 ⋅ 𝐇1 ⋅ 𝐷 + 𝑊) 

= 𝐷 + 𝑊 

 

(14) 

where D and W are respectively the SAR signal and the noise. 

The estimated reflectivity is then unbiased, but the noise adds a 

variance that can be computed from (12):  

𝜎𝐷
2  = 𝐸[H0

−1(𝐇1
∗𝐇1)−1𝐇1

∗𝐇1(𝐇1
∗𝐇1)−1H0

−1∗]𝜎𝑤
2  

= (𝐇1
∗𝐇1)−1𝜎𝑤

2  

 

(15) 

We define the Recombination Gain (RG) as: 

𝑅𝐺 =
𝜎𝐷

2

𝜎𝑤
2

=
1

(𝐇1
∗𝐇1)−1

 
 

(16) 

That is to be evaluated as a figure of quality, together with the 

impulse response function. Notice that by inserting (8) into (16) 

we get that the mean value of the RG is: 

E[𝑅𝐺] = 𝐸 [
1

(𝐇1
∗ 𝐇1)−1

] = 𝐸[𝐇1
∗𝐇1] = 𝐸[∑ |ℎ𝑛|2

𝑛 ] =

𝐸 [∑ |∑ exp (𝑗
2𝜋

𝜆

(𝑥−𝑥𝑛𝑚)2

2𝑅𝑝
)𝑚 |

2

𝑛 ] = 𝑁2 

 

(17) 

 

that accounts for the gain due to fractioning the power and 

antenna resources into the N transmitters and receivers. 

 

2.2 Examples from simulations 

To appreciate the capabilities of reconstructing the full resolution 

reflectivity, we have performed a full 2D (range, azimuth) 

simulation and focusing of the two cases of interest: the MIMO-

2 and the MIMO-3 combinations. The selection of the two cases 

was driven by the fact that represents the worst and best cases. 

 
The parameters for the simulation are listed in Table 1. The aim 

was to resemble Sentinel-1 geometry, but the orbit height has 

been reduced and, consequently, the synthetic aperture, to speed 

up the numerical simulations. In the simulations, an additional 

noise has been introduced to represent a realistic case.  

The IRF before and after the MIMO reconstruction, together with 

its spectrum, are represented in Figure 4 and Figure 5 

respectively for the cases of MIMO-2 and MIMO-3. The 

simulations were fully 2D, yet only the azimuth cut of the IRF is 

shown, as in the range direction no distortion is found. 

One can notice that the reconstruction of the MIMO-3 is far 

better, due to the presence of less spectral notches. This is due to 

the high occurrence, in the MIMO-2 configuration, of the two 

transmitted signals to combine with the opposite phase, that is 

also clear in Figure 2. To mitigate this effect one could transmit 

a different power between the two systems. An example of a 

MIMO-2 reconstruction with 30%-70% power unbalance is 

shown in Figure 6. The frequency-domain nulls are less evident, 

showing the effectiveness of the approach. However, one has to 

account for a reduced fractioned MIMO gain. 

A full evaluation of performance is reported in Table 2. The 

results are in the range expected and provide evidence of a good 

SAR system. The MIMO-3 has little worse performance in terms 

of azimuth sidelobes, which is due to the lower oversampling, the 

ratio between the PRF and the antenna bandwidth, in Table 1. 

 

 

 
Performance parameters MIMO-2 MIMO-3 

Recombination Gain 4.0 9.0 

SNR formation [dB] 19.0 22.5 

Peak height (1x1 res cell) 1.5 3 

Azimuth resolution [m] 3.4 2.7 

Slant range resolution [m] 2.2 2.2 

Az PSLR [dB] -16.8 -15.5 

Rg PSLR [dB] -13.4 -13.4 

Az ISLR (10 res cells) [dB] -13.8 -12.5 

Rg ISLR (10 res cells) [dB] -10.7 -10.7 

Table 2. Performance of the MIMO reconstruction 

 

3. WIDE SWATH HIGH RESOLUTION 

The availability of N observations for each target spectral 

contribute can be efficiently exploited to solve for N ambiguities, 

similarly to the SIMO case, (Aguttes, 2003; Cheng et al., 2017; 

Gebert et al., 2010; Guccione et al., 2020; Mittermayer et al., 

2016). The idea is shown in the time-frequency diagram of Figure 

7, that draws the instantaneous contribution of one target, located 

in xp, and other two, located in xa1 and xa2 whose spectrum is 

Parameter MIMO-2 MIMO-3 

Orbit altitude 500 km 

Sensors velocity 7.6 km/s 

Incidence angle 29° 

Frequency 5.4 GHz 

Bandwidth 52 MHz 

SNR (peak to average) 13 dB 

Antenna Length  6 m 4 m 

Antenna bandwidth 2530 Hz 3800 Hz 

PRF 2940 Hz 3810 Hz 

Azimuth resolution 3.5 m 2.9 m  

Table 1. Parameters of the MIMO formation tested 

 

 

Figure 4. Simulation of the IRF of a MIMO-2 recombination in 

presence of noise. Left: in the spectral domain, right: in the 

time domain. Observations are in red, reconstruction in blue. 

 

 

 

Figure 5. Simulation of the IRF of a MIMO-3 recombination. 

 

 

 

Figure 6. Simulation of the IRF of a MIMO-2 recombination 

with 30% - 70% power unbalance between the two sensors. 
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folded by the N undersampling. This occurs since the PRF is kept 

N times lower that the antenna bandwidth, shaded in grey.  

Here, the N observations allow to reconstruct the full spectrum 

by solving the N unknowns, and while the low PRF allows 

extending the coverage to multiple swaths (Gebert et al., 2010; 

Krieger et al., 2004). 

 
  

The formulation of the forward model is an extension of the one 

in (11): 

𝐘(𝑓𝑥) = H0(fx) ⋅ 𝐇1(𝑓𝑥) ⋅ 𝐃(𝑓𝑥) (18) 

where: 

1) 𝐃 is the [Nr,1] column vector with the scene spectral samples 

of the scene taken at multiple of the PRF: 

𝐃

= [𝐷 (𝑓𝑥 + 0 ⋅
𝑃𝑅𝐹

𝑣
) … 𝐷 (𝑓𝑥 + (𝑁𝑟 − 1) ⋅

𝑃𝑅𝐹

𝑣
)]

𝑇

 
 

2) H1 [N,1] is a [N,Nr] matrix whose generic element is:   

𝐻𝑛,𝑟(𝑓𝑥) = ∑ exp (−𝑗2𝜋𝜆𝑅𝑝 (𝑓𝑥 + 𝑟

𝑚

⋅
𝑃𝑅𝐹

𝑣
)) exp (−𝑗2𝜋𝑥𝑛𝑚 (𝑓𝑥 + 𝑟 ⋅

𝑃𝑅𝐹

𝑣
)) 

 

The inversion is formally identical to (12) but involves matrixes 

in place of vectors. Therefore, in the estimation of the SNR in 

(17) the total noise power involves the evaluation of the trace: 

𝑆𝑁𝑅 =
𝜎𝐷

2

𝜎𝑤
2

=
1

𝑇𝑟((𝐇1
∗𝐇1)−1)

 
 

(19) 

Finally, we remark that a full MIMO should account also for the 

phase terms that have been dropped in (8), and then implement 

the proper range migration correction, as detailed in the SIMO 

processing in (Guccione et al., 2020). 

 

3.1 Performance comparison with the SIMO case 

The MIMO formation with ambiguity cancellation is here 

compared with the corresponding SIMO, where only one sensor 

transmits, and all the others receive.  

As a MIMO-N can solve up to N-1 ambiguities, that are however 

symmetric, as shown in Figure 7, the interest is here for odd 

formations. In Figure 7 we compare the result of MIMO-3 

recombination with the corresponding SIMO-3. The parameters 

are the same assumed in Table 1, but for the PRF that has been 

reduced to 1270 Hz to allow for scanning three swaths, getting a 

coverage quite similar to Sentinel-1 in IW mode. 

One can observe from the figure that the IRF is quite good, and 

also the spectra, where the fluctuations are due to the contribution 

of added noise. The evaluation of performance, in Table 3, show 

minimal differences between the two cases, apart from the SNR 

gain computed according to (19), which is practically N=3 for the 

SIMO and N²=9 for the MIMO. 

In performing the simulations we have placed the sensors in the 

optimal along-track positions. For the SIMO these are:  

𝑥𝑛 =
𝑣

𝑃𝑅𝐹
⋅ (𝑘 +

𝑛

𝑁
) (20) 

where k is an integer. For the MIMO case, the locations have 

been found numerically. 

 
 

Performance parameter SIMO-3 MIMO-3 

Recombination Gain 3.0 8.97 

SNR formation [dB] 17.7 22.5 

SNR monostatic [dB] 13.0 13.0 

Peak height (1x1 res cell) 3 3 

Point to target ambiguity ratio 

[dB] 

29.4 32.2 

Azimuth resolution [m] 2.7 2.7 

Peak to Sidelobe Ratio – azimuth 

[dB] 

-15.5 -15.3 

Table 3. Performance of the MIMO reconstruction 

To evaluate the sensitivity respect to the relative positioning of 

the sensors,  a Monte Carlo analysis has been run to evaluate the 

average Recombination Gain (RG) and PTAR (including only the 

first ambiguities or all) as a function of the fine positioning of the 

sensors. The mean values are reported in Figure 8: notice that the 

sensitivity is small respect to the reconstructed image sampling, 

𝑣/(𝑁 ⋅ 𝑃𝑅𝐹), that is in the order of a couple of meters. 

 
 

3.2 Impact of the Baseline 

So far, we assumed the sensors in the formation to follow one 

another on the same rectilinear orbit. Errors in the across-track 

positioning introduce additional phases that are dependent on the 

precise position of the target, which differs from the ambiguities. 

This makes the compensation of the consequent error quite 

difficult or even impossible. The case has already been 

 

Figure 7. The MIMO-N (N=3 here) allows to solve for the N-1 

ambiguous targets, placed at xa1 and xa2 in the time-frequency 

diagram, whose spectra overlap with the target in xp.  

 

 

 

Figure 7. The MIMO-N (N=3 here) allows to solve for the N-1 

ambiguous targets, placed at xa1 and xa2 in the time-frequency 

diagram, whose spectra overlap with the target in xp.  

 

 

 

 

Figure 8. Evaluation of the average Recombination Gain (RG) 

and of the PTAR (by assuming just one or all the ambiguities) 

as function of the fine positioning of the sensors, for the cases 

of a formation SIMO-3, left, and the MIMO-3, right. 
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approached in the SIMO case, (Guccione et al., 2020). The 

reference geometry is shown in Figure 9, the across-track, range 

space. In the figure, Bn the baseline error of the generic sensor, 

respect to a reference master, that, for the SIMO case, is assumed 

to be the transmitter. The figure shows that two targets at 

approximately the same distance from the satellite, contribute 

with am interferometric phase shift (Rosen et al., 2000): 

𝜙𝑛𝑚 =
2𝜋𝑞

𝑅𝑃𝜆 sin 𝜃
(𝐵𝑛 − 𝐵𝑚) (21) 

where  θ = local in incidence angle 

 q = target elevation 

 
The difference between the SIMO and the MIMO acquisition is 

implied in the forward matrix H1 in (18), whose elements, in the 

SIMO case are the single bistatic phase from the sole transmitter 

to the generic receiver, whereas for the MIMO is the sum 

extended to all the N transmitters. The resulting error has been 

computed under the assumption of small baselines in (Guccione 

et al., 2020) in the SIMO case. In the MIMO case the 

uncompensated ambiguity leads to an error is:  

 

𝑦 = 𝑑𝑎 ∑ exp (
2𝜋

𝑅𝑃𝜆 sin 𝜃
(𝐵𝑛 − 𝐵𝑚))

𝑁

𝑛,𝑚=1;𝑛≠𝑚

 (22) 

where  da = complex reflectivity of the ambiguity 

 y = residual ambiguity error 

 xp, xn = along-track coordinates of target and satellites 

 λ = wavelength 

 ψn = squint angle of the n-th satellite 

One point is that the error is always real since the summation in 

(22) involves even terms. Furthermore, this is responsible for a 

coherence: 

𝛾ℎ =

𝐸 [|∑ exp (
2𝜋𝑞

𝑅𝑃𝜆 sin 𝜃
(𝐵𝑛 − 𝐵𝑚))𝑁

𝑛,𝑚=1;𝑛≠𝑚 |

2

]

𝑁2
 

(23) 

that, assuming a zero mean, normal distribution for both the 

elevations and the baselines can be linearly approximated to 

𝛾ℎ ≃ 1 −
𝑁 − 1

𝑁
(

2𝜋

𝑅𝑃𝜆 sin 𝜃
)

2 𝜎𝑞
2𝜎𝑏

2

2
 (24)  

where 𝜎𝑞
2 and 𝜎𝑏

2 are the standard deviation of the elevation 

and baseline respectively. 

The result in (24) compares with the SIMO case but assuming a 

double value for the baseline standard deviation. As a practical 

example, in the MIMO-3 case, by assuming the parameters in 

Table 1, and σq=100 m, we would need a baseline dispersion of 

about 10 m to keep the coherence higher than 0.9. This will then 

result in 𝜎𝑏 =12 m if we assume the Sentinel-1 case with orbit 

height of 700 km in place of 500. 

 

CONCLUSIONS 

The simultaneous MIMO formation here presented provides a 

valuable generalization of the well-known SIMO concept. The 

SNR gain of N² has been confirmed even in the worst case of 

N=2, attaining a good IRF. If the formation is exploited to 

enhance the coverage, by reducing the PRF, performance in 

terms of signal to ambiguity ratio and sidelobes in the impulse 

response function are shown to be comparable with the SIMO 

cases. Also, the along-track positioning has proven a similar 

sensitivity, where accuracies better than a fraction 𝐿𝑎/𝑁 are 

required. Such along-track metric accuracy can be well achieved 

by exploiting the split antenna, proposed in (Guidici et al, 2019). 

The sensitivity respect to the normal baselines is twice respected 

to the SIMO, however, the errors will compensate giving always 

phase preserving images.  
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Figure 9. Sketch of the geometries for the analysis of the 
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