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ABSTRACT: 

 

Road extraction plays a significant role in production of high definition maps (HD maps). This paper presents a novel boundary-

enhanced supervoxel segmentation method for extracting road edge contours from MLS point clouds. The proposed method first 

leverages normal feature judgment to obtain 3D point clouds global geometric information, then clusters points according to an existing 

method with global geometric information to enhance the boundaries. Finally, it utilizes the neighbor spatial distance metric to extract 

the contours and drop out existing outliers. The proposed method is tested on two datasets acquired by a RIEGL VMX-450 MLS 

system that contain the major point cloud scenes with different types of road boundaries. The experimental results demonstrate that 

the proposed method provides a promising solution for extracting contours efficiently and completely. Results show that the precision 

values are 1.5 times higher and approximately equal than the other two existing methods when the recall value is 0 for both tested two 

road datasets.  

 

 

1. INTRODUCTION 

 

Road transportation plays an important role in the modern 

intelligent society. High-precision maps and autonomous driving 

systems require more precise road information. Mobile Laser 

Scanning (MLS) systems that can produce precise information 

from 3D point clouds, have become the mainstream technology 

in 3D computer vision. Therefore, MLS has been successfully 

applied to extensive road research like road surface and marking 

extraction, and road pavement cracks detection. Many 

researchers have been concentrated for the extraction of road 

contours and corresponding subsequent applications in road 

environments. 

 

State-of-the-art approaches for extracting road boundaries and 

contours usually detect road curb and then extract the road lines. 

Considering that the researches about extracting 2D and 3D 

features in point cloud scenes, there were a variety of works 

related to them. (Weinmann et al., 2014) presents a novel and 

automatic algorithm with four steps so as to extract various 

features and classify the whole point scene. The algorithm 

framework obtained features based on the eigenvalue 

composition and select the features based on the Shannon entropy, 

then the authors utilized the Gaussian maximum-likelihood and 

Random Forest method to classify. The algorithm in (Weinmann 

et al., 2015) proposed a new algorithm using neighbourhood 

information and geometric features for the 3D point cloud 

classification test with minimizing the measure of eigenentropy 

and measure of symmetrical uncertainty. In (Niemeyer et al., 

2015), Conditional Random Field method was applied to classify 
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the contexts. This methodology used the local neighbourhood 

information and construct the segments for further classifying. 

(Landrieu et al., 2017) constructed a framework to smooth 

semantic labels in 3D point clouds for the classification of points 

according to graph- structured optimization methods. Instead of 

different feature selection and classification methods based on 

neighbourhood information, line based scene representation and 

road line detection were cases in point. In (Hackel et al., 2017), 

the authors built a framework for the sake of semantic 

classification and extracting contours on a large-scale point 

datasets. The approach were able to process large unstructured 

data and made use of machine learning methods to detect 

contours effectively. The algorithm in (Chen et al., 2016) 

presented the Lidar-histogram method to detect the roads, 

obstacles and water hazards. The method projected the 3D road 

plane as a straight line segment with obstacles near the segment 

and convert the 3D detection problems to line classification issue. 

The authors in Gu et al. (2018) fused the geometric knowledge 

and monocular camera images to detect roads on 3D points. The 

algorithm utilized the histogram and scanning method to estimate 

and improve the detection results. In (Jung et al., 2015), points 

were classified into two kinds of regions and detected the road 

lines based on an expectation-maximization method. 

 

Furthermore, the contour extraction methods based on 

supervoxels were also employed. The authors in Yang et al. 

(2015) used a multi-scale supervoxel with color and intensity 

information, and merged segments into meaningful regions. 

After obtaining semantic information, roads were extracted in a 

given order by moving the window operator to detect curb points.  
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Figure 1.  Flowchart of the proposed method. 

 

In (Guan et al., 2015), GeoReferenced Feature (GRF) images 

were used to segment road surface points. Trajectory data were 

used to divide the points into a lot of blocks as assistance and to 

detect the curb points from blocks. The algorithm in (Hackel et 

al., 2016) proposed a method to detect the contours automatically 

with two steps: predicting each representative points using a set 

of the points’ neighborhood features with a binary classifier, and 

selecting an optimal set with a high-order Markov Random Field 

(MRF). In (Lin et al., 2017) data points were segmented into a 

number of facets by local k means clustering. Then the algorithm 

used an improved α-shape method to extract the boundary points 

and group lines with both proposed line-group and region to 

cylinder algorithms. The authors in (Zai et al., 2018) improved 

the facet segmentation method and extracted the road boundaries 

by using supervoxels, smoothness of plane, 3D α-shape 

algorithm and undirected graph energy minimization. (Li et al., 

2019) presented a multi-feature algorithm to extract the road 

edges based on LiDAR data. 

 

It is difficult to use the supervoxel methods to extract the road 

contours without facets (Lin et al., 2017) or points attributes 

(colors, intensities and so on) (Yang et al., 2015). Facet 

segmentation method considered the smoothness of each point 

and it would extract redundant contour points without global 

information of scenes. If the contexts of points lacked enough 

other information (like colors and intensities) except the location, 

it was difficult for us to utilize the point attributes method for the 

subsequent processing. Furthermore, using supervoxel to extract 

contours, very few methods are available in existing literature. 

Hence, it is urgently needed to develop algorithms that can 

greatly enhance the road boundaries and subsequently extract the 

lines as boundaries of supervoxels. Inspired by the methods in 

(Zai et al., 2018) and (Lin et al., 2018), we present a novel 

algorithm to extract the road contours efficiently without 

generation of facets to take extra contour points and just making 

use of location information to process. The major contributions 

of our proposed algorithm are that it can be applied in laser 

scanning point clouds in road environment, and greatly enhance 

the boundary for extraction of road contours via a supervoxel 

segmentation method without generating any facets or points 

attributes, and without any trajectory data. Our proposed method 

first generates normal vectors of points by employing the well-

known iterative weighted least square method (Zai et al., 2018). 

Using geometric information, we improve the Lin’s method (Lin 

et al., 2018) to cluster the points when merging the point label 

into its neighbor representative points, which is significantly 

different from the original method. We obtain the boundaries of 

supervoxels that is covered by the road boundaries due to the 

consideration of global spatial structures. Finally, we use a spatial 

distance algorithm to extract the boundary points and drop out 

the existing outliers.  

 

The remainder of this paper is organized as follows. Section 2 

describes our method in three steps. Section 3 demonstrates a 

couple of experiments and evaluates the performance of the 

proposed method. Section 4 concludes the paper. 

 

2. METHOD 

The goal of our method is to extract the boundary contours from 

3D mobile laser scanning roads and filter out existing outliers. 

The proposed method consists of three parts: points normal 

generation, points clustering with geometric information 

judgment and boundary contour extraction. Figure 1 shows the 

flowchart of our proposed method. 

 

2.1 Normal vector generation 

Normal vectors play an essential role in point clouds processing. 

In this paper, we use the tangent planes to generate normal 

vectors for further clustering points (Yang et al., 2015), called 

global spatial judgement. For each tangent plane of point 𝑝𝑖, we 

use the three eigenvectors 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗  and 𝑣3⃗⃗⃗⃗  corresponding to the 

three eigenvalues 𝜆1, 𝜆2 and 𝜆3 to generate the normal vector as: 

 

�⃗� (𝑝𝑖) = 𝑣1⃗⃗⃗⃗ × 𝑣2⃗⃗⃗⃗                                  (1) 

 

where  × denotes the cross product operation. Then we use the 

spatial judgement to cluster points by setting thresholds (Qiu et 

al., 2016): 

 

ℎ𝑝𝑖
< 𝐻𝑇 && 𝜃 < 𝜃0||ℎ𝑝𝑖

> 𝐿𝑇                 (2) 

where ℎ𝑝𝑖
 is the height of 𝑝𝑖. 𝜃 is the angle between �⃗� (𝑝𝑖) and 

(0,0,1).  𝐻𝑇 and 𝐿𝑇 are height threshold value and low threshold 

value, respectively. The angle threshold 𝜃0  is set to 10o  as 

empirically.  

 

2.2 Point clustering 

In this paper, we improve the Lin’s (Lin et al., 2018) supervoxel 

segmentation method to cluster points. The supervoxel 

segmentation method is considered as a subset selection issue 

(Elhamifar et al., 2016) with no initialization of seed points, and 

the theoretical time complexity is optimized to the logarithmic 

time. In addition, the performance of this clustering method is 

better than traditional supervoxel segmentation methods with 

small supervoxel resolutions. In order to cluster the points near 

road edges, we use the global spatial structures from Section 2.1 

to merge points into their neighbor region. 

 

For our proposed improved supervoxel method, we adopt the 

same measure metric 𝐷(𝑚, 𝑛)  to cluster points between two 

points m and n: 

 

𝐷(𝑚, 𝑛) = 1 − |�⃗� 𝑚 ∙  �⃗� 𝑛| + 0.4
‖𝑚−𝑛‖

𝑅
              (3) 

 

where the �⃗� 𝑚 and �⃗� 𝑛 are the normal vectors of points m and n, 

respectively. |∙| denotes the inner product operation. ‖∙‖ denotes 

the Euclidean distance between two points. R is the supervoxel 
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resolution. The measure metric only considers the geometric and 

local information between two 3D points so it can be better used 

in no color scenes (Lin et al., 2017). 

 

2.3 Boundary contour extraction 

In order to greatly enhance the point cloud scene boundary 

contours, we design a boundary contour extraction algorithm to 

extract the contours in 3D supervoxel scenes by making full use 

of the information of supervoxel labels. For generated 

supervoxels, each point 𝑝𝑖 in P (point cloud) has a corresponding 

label. Meanwhile, each supervoxel range (with several points) 

has a particular representative point with the same label. Hence, 

the number of representative point is same with the number of 

supervoxel. Our contour extraction method contains two steps: (i) 

extracting the contours of dense supervoxels, and (ii) filtering out 

outliers (if they exist) and visualize the results of coarse 

extraction (Nurunnabi et al., 2015). 

 

j
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i
r

j
r
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Figure 2. The principle of boundary contour extraction based on 

supervoxel. 𝑆𝑖 and 𝑆𝑗 are two supervoxels, respectively. 𝑟𝑖 and 𝑟𝑗 

are representative points of supervoxel 𝑆𝑖  and 𝑆𝑗 , respectively. 

For each point 𝑝, if it belongs to 𝑆𝑖, it has the same label with 

point 𝑟𝑖, vice versa. 

 

First, we obtain the label of neighbor points for each point based 

on k Nearest Neighbor (kNN) search in order to drop out large 

scale pieces and remain the small scale pieces for the coarse 

purpose. As shown in Figure 2, after utilizing global spatial 

judgement in Section 2.1, different labelled points 𝑝 in generated 

supervoxels are represented by different representative points 𝑟𝑖 
that are denser than other regions for near boundary outline 

regions. We calculate the differences (we can define as the label 

distance) between neighbor points’ different labels and judge 

whether the numbers value of the differences neighbor points 

labels is greater than m (we set m = 3) for a given k. Next step we 

want to extract the contours precisely and further filter out useless 

points. Then given a fixed radius r, we use the Radius Nearest 

Neighbor (RNN) search to estimate the size of neighbor points 

about each point. If the size of neighbor points is greater than n, 

we consider the point as an extracted point.  

 

3. RESULTS AND DISCUSSION 

Our experiments include two public outdoor 3D point cloud 

dataset benchmark and two test datasets were acquired using the 

RIEGL VMX-450 mobile mapping system. 

 

The experiments are performed in three ways: 1) comparison 

results of using different boundary-enhanced methods on two 

public benchmarks and MLS data; 2) using different supervoxel 

resolutions, simply written as R, based on our proposed 

boundary-enhanced method on MLS data; 3) using other contour 

extraction methods to compare with our method on MLS data and 

evolution by the Precision and Recall curve. Our methods are 

implemented in C++ and the experiments are conducted on a PC 

with Ubuntu 18.04, Inter Core (TM) i5-3470 3.2GHz CPU and 

16.0 GB memory. 

 

     

(a) 

   

(b) 

Figure 3. Our tested dataset benchmark. (a) Cassette from IQTM 

dataset (Vallet et al., 2015), (b) Station from Semantic 3D dataset 

(Hackel et al., 2017). 

 

3.1 Test dataset 

In our experiments, we utilize the two public outdoor 3D point 

cloud dataset benchmarks to visualize the boundary-enhanced 

results compared with any other existing supervoxel methods and  

two MLS datasets are used to measure the Precision-Recall (PR) 

curves to prove our method effectively and accurately. 

 

Scene  
Number of 

points 
�̅�(cm) LT(m) HT(m) 

Cassette 1258014 2.286 35 38.2 

Station 3373270 0.912 -2 -1.5 

Table 1. The information of our tested scenes 

Method The number of supervoxel 

VCCS (Jeremie et al., 2013) 105 

VCCS-kNN(Lin et al., 2018) 193 

Lin (Lin et al., 2018) 193 

Zai(Zai et al., 2018) 5748 

Proposed 9676 

Table 2. The supervoxel information on IQTM dataset. 

Method The number of supervoxel 

VCCS(Jeremie et al., 2013) 43 

VCCS-kNN(Lin et al., 2018) 80 

Lin(Lin et al., 2018) 80 

Zai(Zai et al., 2018) 16512 

Proposed 80598 

Table 3. The supervoxel information on Semantic3D dataset. 

 

As shown in Figure 3, our experiments include two public 

outdoor 3D point cloud dataset benchmarks, IQmulus & 

TerraMobilita (IQTM) (Cassette) dataset benchmark (Vallet et 

al., 2015) and Semantic 3D (Station) dataset benchmark (Hackel 

et al., 2017). IQTM dataset is an urban point cloud analysis 

benchmark. It has 12 millions labelled points manually in Paris 

with 200m street. Semantic 3D dataset is a large-scale point cloud 

classification benchmark. It has 15 manual labelled points. The  
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(a) Ground-truth (b) VCCS (c) VCCS-kNN (d) Lin (e) Zai (f) Proposed
 

Figure 4. Visual representation of supervoxel results on IQTM dataset. 

(a) Ground-truth (b) VCCS (c) VCCS-kNN (d) Lin (e) Zai (f) Proposed
 

Figure 5. Visual representation of supervoxel results on Semantic 3D dataset. 

(a) Original road scene (b) Manuel procession (c) Region growing    (d) Facet segmentation  (e) Proposed method

Figure 6.  Visual comparison of three contour extraction methods for Road 1 (the brick-red color points are ground-truth points). 

(a) Original road scene (b) Manuel procession (c) Region growing    (d) Facet segmentation  (e) Proposed method
 

Figure 7.  Visual comparison of three contour extraction methods for Road 2 (the purple color points are ground-truth points). 

 

information of our tested scenes are described in Table 1. The �̅� 

is the average resolution of each scene (Zai et al., 2017). It can 

be calculated as the average distance between two arbitrary 

adjacent points. The information of �̅� on each dataset is shown in 

Table 1 in detail. Our proposed supervoxel method in Section 2.2 

has five parameters: supervoxel resolution, seed resolution, LT 

and HT and k. In order to cluster points based on edges, we set 

the supervoxel resolution and seed resolution as the same value 

R. LT and HT, which are used to limit the range of cluster, are 

defined in Section 2.1, respectively. k represent the number of the 

neighbourhood points for each point by k nearest neighbourhood 

search method. The detail was discussed in (Lin et al., 2017). Due 

to the lack of our computer memory, we down-sampled the 

dataset. 

 

Since the public benchmarks have existing labels, we are able to 

better show the results of boundary enhancement by setting the  

 

generated boundaries to black lines, which is compared with 

ground-truth scenes (Figures 4 and 5). 

 

Subsequently, we down-sample the Ring Island Road datasets 

acquired by a RIEGL VMX-450 system, which includes two full-

view RIEGL VQ-450 laser scanners, an inertial measurement 

unit (IMU), a global positioning system (GPS), and a distance 

measurement indicator (DMI) (Zai et al., 2018). And then we 

manually select the boundaries of roads as ground-truth. (Figure 

6 (b) and Figure 7 (b)). 

 

The supervoxel information is shown in Table 2 and Table 3 

when the resolution of supervoxel R is set as 5m. Our goal is to 

generate more supervoxels and make the boundaries of 

supervoxels become the road boundaries as much as possible. As 

shown in Table 2 and Table 3, the number of supervoxel of our 

proposed method is largest. Meanwhile, global spatial judgement 
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is used in our proposed supervoxel in Section 2.1. During 

clustering, more supervoxel boundaries exist near the road edges.    

So it is the more accuracy than any other mentioned supervoxel 

methods and it is significant to extract the contours in next step. 

The pictorial presentation of the results from ground-truth, VCCS 

(Jeremie et al., 2013), VCCS-kNN (Lin et al., 2018), Lin’s 

method (Lin et al., 2018), Zai’s method (facet segmentation) (Zai 

et al., 2018) and proposed method on IQTM dataset are shown in 

Figure 4. Visual representation of ground-truth, VCCS, VCCS-

kNN, Lin’s method, Zai’s method (facet segmentation) and 

proposed method on Semantic 3D dataset are in Figure 5. As 

shown in Figure 5, Lin’s method have no correlation to the 

ground-truth, this method is not effective due to the high 

resolution setting. 

 
Then we measure how well the extracted points can match the 

ground-truth points by calculating the precision-recall (PR) 

curves (Arbelaez et al., 2011). The points we can obtain are 

divided into three different parts. First, a point belongs to both 

the ground-truth point sets and the extract point sets. Second, a 

point belongs to both ground-truth point sets and is not in the 

extract point sets. Third, a point belongs to the extract point sets 

and is not in the ground-truth point sets. Hence, the definition of 

precision and recall is different from the Machine Learning (ML) 

theory (Luo et al., 2019). Precision is denoted as the rate that the 

true positive (TP) points belong to the ground-truth points. Recall 

is the rate that the TP points belong to the extracted points. We 

use a distance threshold d (at different times of the average 

resolutions of points �̅�) to determine whether a point is belong to 

the extracted regions and produce the PR curves. In order to 

simplify the problems, we manually remove buildings, trees and 

all kinds of any other barriers from the scene and voxelize the 

MLS road scenes (Figure 6 (b) and Figure 7 (b)).  

 
(a) 

 

(b) 

Figure 8. PR (precision-recall) curves of quantitative analysis in 

different supervoxel methods on two MLS road datasets. (a) 

Road1, (b) Road2. 

 

3.2 Experiment in different supervoxel methods 

According to the results we got, our precision and recall values 

are positively correlated. The ideal curve should be both high  

precision and recall in the case of efficient and complete 

extraction. The parameters (HT and LT) in Eq.2 are set as the 

lowest z-axis values and the highest z-axis values after manually 

cutting (Figure 6 (b) and Figure 7 (b)), respectively. Figure 8 

gives information about the PR curves based on five different 

supervoxel method on two MLS road datasets. As shown in 

Figure 8, our proposed supervoxel method can greatly enhance 

the boundaries of roads compared with the VCCS, VCCS-kNN, 

Lin’s method, Zai’s method (facet segmentation) since the PR 

curves of our proposed method in Figure 8 (a) and (b) are both 

highest compared with four other supervoxel methods. Moreover, 

the VCCS, VCCS-kNN and Lin method are no effect during all 

the supervoxel resolution range. 

 
(a) 

 

(b) 

Figure 9. PR (precision-recall) curves of quantitative analysis in 

different supervoxel resolutions on two MLS road data. (a) 

Road1, (b) Road2. 
 

3.3 Experiment in different supervoxel resolutions 

In this section, we set five kinds of supervoxel resolutions 

(according to the Eq.3) (R=1, R=1.5, R=2, R=2.5, R=3, 

respectively). Figure 9 illustrates the PR curves based on five 

different supervoxel resolutions on two MLS road datasets. The 

plots reveal the effectiveness of our proposed boundary-

enhanced supervoxel method on different supervoxel resolutions. 

As shown in Figure 9 (a) and (b), we can observe that the PR 

curve is high with the increase of supervoxel resolution. But the 
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exception is when R=2.5 and R=3. When the recall value is 1 on 

road 1, the precision value when R=1 is 0.2 lower than the 

situation when R=3. Meanwhile, the precision value in R=3 is 0.1 

higher than that in R=1 on road 2. The reason is that the points 

are clustered near the boundaries instead of any other regions 

with the supervoxel resolutions increasing due to our proposed 

global spatial structures in Section 2.1. So higher resolution 

solely based on our proposed supervoxel method can reach better 

results. 

 

3.4 Contour-based road extraction  

As shown in Figure 10, visual represents of the results are shown. 

In this experiment, we set the parameters k = 20 in step one and 

r = 0.5, n = 6 in step two in Section 2.3, respectively. In Figure 

10 (b), we observe that there exist some outliers in on-ground 

surface. Figure 10 (c) shows that the outliers are filtered out 

through our proposed method.  

 

 

(a) Supervoxels of raw road 

 

    (b) Extracted results after Step 1  

 

                    (c) Extracted results after Step 2 

Figure 10. The visualization of boundary contour extraction. (a) 

Our supervoxel with resolution of supervoxel is 3. (b) The 

boundary contour after step 1. (c) The boundary contour after 

step 2 empirically. We show several close-ups of outlier regions 

for comparison 

 

Furthermore, we use the proposed method to compare with a 

region growing method in (Zai et al., 2016 and Chauve et al., 

2010) and a facet segmentation method in (Lin et al., 2017). We 

observe that the road edge contours extracted by region growing 

method are incomplete in Figure 7 (c). As shown in Figure 6 (d) 

and Figure 7 (d), the existing facet segmentation method further 

extract the contours due to the small smoothness values of edge 

points, so this method misjudges the extracted points. Whereas, 

the proposed method efficiently and completely extracts the road 

contours in Figure 6 (e) and Figure 7 (e). Figure 9 presents 

information about the PR curves based on five different 

supervoxel resolutions on two MLS road datasets. The plots 

represent the effectiveness of our proposed whole method 

compared with the region growing method and the facet 

segmentation method. As shown in Figure 11, the Precision-

Recall curves have demonstrated that our approach achieves  

consistent and promising performance compared to the two 

baselines. Our proposed method can reach the same level with 

the region growing and 1.5 times higher than the facet 

segmentation method when extracting the contours. 
 

4. CONCLUSION 

In this paper, we have presented a boundary-enhanced 

supervoxel method to extract the road boundaries from MLS 

point clouds. After obtaining normal vectors for global  

 
(a) 

 

(b) 

Figure 11. PR (precision-recall) curves of quantitative analysis in 

three different contour extraction methods on two MLS road data. 

(a) Road1, (b) Road2. 

 

information, we improved Lin’s (Lin et al., 2018) method to 

cluster points. Then we have designed a boundary contour 

extraction algorithm to further analyze the results of extracted 

contours. The experimental results obtained using two MLS point 

cloud datasets demonstrate that the precision values of our 

method are 1.5 times higher than an existing region growing 

method when the recall value is 0 in Section 3.4. At the same time, 

the precision values of proposed method are higher than region 

growing method and approximately equal compared to the facet 

segmentation method during all different recall values. 

Meanwhile, the PR curves are higher and higher with the 

supervoxel resolutions increasing. There are also some 

drawbacks in our method, our proposed method can use the 

global spatial judgement in Section 2.1 for the reason that the 
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roads we used have some small vertical edges (Figure 6  and 

Figure 7). But without these such borders, we would not utilize 

our proposed method. Our future work will focus on extraction 

of road boundaries in more complex roadway environments with 

buildings, trees and all kinds of any other barriers. 
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