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ABSTRACT:

Multispectral satellite imagery is the primary data source for monitoring land cover change and characterizing land cover at the global
scale. However, the accuracy of land cover classification is often constrained by the spatial and temporal resolutions of the acquired
satellite images. This paper proposes a novel spatiotemporal fusion method based on deep convolutional neural networks under the
application background of massive remote sensing data, as well as the large spatial resolution gaps between MODIS and Sentinel
images. The training was taken on the public SEN12MS dataset, while the validation and testing were conducted using ground truth
data from the 2020 IEEE GRSS data fusion contest. As a result of data fusion, the synthesized land cover map was more accurate than
the corresponding MODIS-derived land cover map, with an enhanced spatial resolution of 10 meters. The ensemble approach can be
implemented for improving data quality when generating a global land cover product from coarse satellite imageries.

1. INTRODUCTION

Remote sensed satellite imagery is the primary data source for
monitoring land cover change (LCC) and characterizing land cover
at the global scale (Song et al., 2017). However, the accuracy
of land cover classification is often constrained by the spatial
and temporal resolutions of the acquired satellite images. For
instance, Landsat satellites capture images with a moderate spa-
tial resolution of 30 meters but with a long revisit period of 16
days. To the contrary, the Moderate resolution Imaging Spectro-
radiometer (MODIS) can provide images on a daily basis, with
coarser spatial resolutions of 250 m, 500 m, and 1 km. Hence,
it is important to understand how to jointly leverage complemen-
tary data sources in an efficient way as conducting land cover
classification. For the purpose of having up-to-date land cover
monitoring with fine spatial scale, increasing the spatial resolu-
tion of coarse satellite imagery represents a continued advance-
ment in remote sensing research. Global-scale land cover map-
ping at coarse resolution has been driven by the availability of
MODIS dataset, previous researches have conducted spatiotem-
poral fusion to blend MODIS and Landsat data in order to obtain
improved classification results with a higher spatial resolution of
30m (Gevaert and Garcı́a-Haro, 2015, Wang et al., 2015, Chen et
al., 2017). Sentinel-1 and Sentinel-2 are two recently launched
satellite constellations which provide higher temporal resolution
(3 – 5 days) and higher spatial resolution (5 – 10 meters) than
Landsat satellites. These advantages are fundamental in a spa-
tiotemporal fusion process for improving land cover classifica-
tion.

Recently, deep learning frameworks have enhanced the classi-
fication performance by automatic extraction of deep features.
Therefore, deep learning-based land cover classification has be-
come a current hotpot in the remote sensing research community.
One of the major advantages of using deep learning algorithms is
that neutral network is a learning-based method, which automat-
ically learns an end-to-end mapping between coarse resolution
images and fine resolution images.
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To the best of our knowledge, no deep learning-based model has
yet been introduced to conduct spatiotemporal fusion to blend
MODIS data and Sentinel satellite images. With the aim of pro-
viding enhanced land cover mapping through the fusion of mul-
tisource satellite data, this study proposes an end-to-end deep
learning method to enhance the spatial resolution of MODIS-
derived land cover maps, by integrating the maps (with original
spatial resolution of 500 m), Synthetic-aperture radar (SAR) im-
ages derived from Sentinel-1, and multispectral images derived
from Sentinel-2. The outputs of the model are high-resolution
(10 m) land cover thematic maps. Technically, this is a task of
supervised semantic segmentation of the Sentinel images, since
the MODIS maps are utilized as the target ground truth labels,
and the model assigns one of the label classes to each pixel in
the Sentinel images. However, due to the coarse resolution of
MODIS maps, the Sentinel images only contain partial observa-
tions of the target ground truth labels, which makes the task be-
come a weakly supervised semantic segmentation. To deal with
weakly annotated ground truth labels, additional module was em-
bedded in the model, and it automatically updates the coarse la-
bels based on the intermediate predictions on the training sets.

2. METHOD

2.1 DeepLabV3 Plus

The network architecture of the proposed data-fusion model is
based on the semantic segmentation framework developed by Chen
et al. (2018), namely DeepLabV3 Plus. It is the latest version
of DeepLab semantic segmentation architecture, which utilizes
a spatial pyramid pooling module. It extends the previous ver-
sion (DeepLabV3) by adding a decoder module to refine the seg-
mentation results especially along object boundaries (Chen et al.,
2018). The framework achieves state-of-the-art mean IOU of
89% on PASCAL VOC 2012 test.

For this study, several modifications were made based on original
design of DeepLabV3 Plus. The framework was implemented
on TensorFlow, while the proposed model is implemented on Py-
Torch. The original backbone network Xception+ was replaced
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Figure 1: Framework overview of the proposed model

with the deep residual network ResNet-101. For model initializa-
tion, the proposed model was pre-trained on ImageNet.

2.2 Pre-processing of Sentinel-1 SAR images

The presence of speckle noise in the Sentinel-1 SAR images makes
the interpretation of the contents difficult, thereby degrading the
quality of the image. Therefore, an efficient speckle noise re-
moval technique needs to be applied to the Sentinel-1 SAR im-
ages. In this study, SAR images are processed by Enhanced Lee
Filter (Lee, 1981) to deal with the common problem of noisy edge
boundaries. The filter algorithm operates by using edge directed
windows. The local mean and local variance are computed using
only those pixels in the edge directed window. After the speckle
filtering, the images were enhanced by 2% linear stretch. With
the lowest 2% values and the highest 2% values are set to 0 and
255, respectively. Values in between are distributed from 0 to
255. As shown in Figure 4, the noise in the high contrast areas is
effectively removed and the edges are enhanced.

Figure 2: Example of raw Sentinel-1 SAR image (left). The cor-
responding processed Sentinel-1 SAR image (Right)

2.3 Data Augmentation

To improve the performance by enlarging the training dataset,
several augmentation techniques have been added to the data-
loader module of the model network. These includes geometric
transformations (e.g. flip, rotation, warp) and linear transforma-
tions (e.g. 2%-98% contrast stretch). All geometric transforma-
tions are randomly selected and applied to images, each with a
probability of 0.5. The linear stretch is assumed to be useful as
applying to images with low contrast (e.g. image taken during
nighttime).

2.4 Label Refinement

In essence, the major task of this study is semantic segmentation
on weakly supervised training, which the annotation (i.e. MODIS

labels) is noisy and unreliable. To further improve the perfor-
mance of the model, additional strategies should be adopted to
deal with noisy label specifically. In SEN12MS dataset, images
of each scene were selected and cropped to be relatively homoge-
nous. Noises (or incorrect labels), normally exist at the edges
of land cover parcels. For example, shorelines are not clearly
shown on the MODIS maps. For that matter, an additional mod-
ule was added to the model which updates the labels every 5
epochs (an epoch refers to one cycle through the full training
dataset). Hence, only for the first five epochs, the model was
trained on original MODIS labels. After the fifth epoch, the
model outputs the intermediate predictions on all training sam-
ples, and then obtain the updated labels by comparing the inter-
mediate predictions with the original MODIS labels. The differ-
ences would be covered with an ignore mask, and only the inter-
section of the MODIS labels and the predictions are used for the
next 5 epochs.

Figure 3: Label refinement process (Ignore mask is in white)

3. EXPERIMENTS

3.1 DATA

3.1.1 Training dataset The model is trained on a public satel-
lite imagery dataset, SEN12MS, which was published by (Schmitt
et al., 2019). This dataset contains globally distributed scenes, in
which covering all inhabited continents during all meteorologi-
cal seasons. SEN12MS includes 180,662 triplets of MODIS land
cover maps, dual-polarized (VV and VH) SAR Sentinel-1 image
patches, and multi-spectral Sentinel-2 image patches. Each im-
age is cropped to a size of 256 pixels by 256 pixels. While all
data are oversampled to be at a ground sample distance (GSD) of
10m, the Sentinel images have a native resolution of about 10 -
60m per pixel, and the MODIS-derived land cover has a native
resolution of 500m per pixel.

Figure 4: An example of SEN12MS triplets

The Sentinel-1 SAR images are provided in original form with no
pre-processing (e.g. speckle filtering). As for the Sentinel-2 mul-
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tispectral images, a sophisticated mosaicking workflow was im-
plemented to avoid the impacts of cloud-covered images. On the
other hands, the MODIS land cover maps were created based on
calibrated MODIS reflectance data in 2016. The raw reflectance
data was classified following the International Geosphere-Biosphere
Programme (IGBP) classification scheme (Loveland and Belward,
1997) and land cover classification system (LCCS) scheme (Di Gre-
gorio, 2005). Moreover, sophisticated post-processing is carried
out for class-specific refinement, which integrates prior knowl-
edge, auxiliary information and temporal regularization based on
a Markov random field (Schmitt et al., 2019). For different clas-
sification schemes, the provided MODIS maps have overall ac-
curacies of approximately 67% under IGBP, 74% under LCCS
land cover, and 81% under LCCS land use (Sulla-Menashe et al.,
2019). For this study, a simplified version of IGBP was chosen to
be the classification scheme. It means that the coarse label used
in this study can only correctly annotate at most 67% of the image
pixels. Detailed information of the chosen classification scheme
is presented in the section 2.3.

3.1.2 Validation and Testing datasets To validate and test
the performance of presented deep learning spatiotemporal fu-
sion model, the dataset of 2020 IEEE GRSS data fusion con-
test (DFC2020) is used. The DFC2020 dataset contains scenes
with undisclosed geolocation and not contained in the SEN12MS
dataset, with semi-manually derived high resolution (10m) land
cover maps as the ground truth labels. In addition to the high-
resolution ground truth labels, the validation and testing images
are provided in the same triplet format as the training dataset (i.e.
corresponding Sentinel-1, Sentinel-2, and MODIS labels). The
validation set contains 986 quadruplets, and the testing set has
5128 quadruplets.

Figure 5: An example of DFC2020 quadruplets

3.1.3 Classification scheme A simplified version of the IGBP
classification scheme is used for this project. As shown in the Ta-
ble 1 below, the original IGBP scheme has 17 classes in total.
The simplified scheme has 10 classes.

3.2 Implementation details

In addition to the proposed model, the original DeepLabV3 Plus
is used as the baseline model which compares to the proposed
model. Both models were trained for 50 epochs. The parameter
settings of the baseline model and the proposed model are shown
below in Table 2. The implementation details of the proposed
model and the baseline are presented in Table 2.

3.3 Experiment results

The results on the validation set and the testing set for the base-
line and the proposed models are shown in Table 3 and Table 4,

Table 1: The original and simplified IGBP Land Cover Classifi-
cation schemes

Simplified Simplified IGPB
Class Class IGBP Class Name Class

Number Name Number

1 Forest

Evergreen Needleleaf Forest 1
Evergreen Broadleaf Forest 2

Deciduous Needleleaf Forest 3
Deciduous Broadleaf Forest 4

Mixed Forest 5

2 Shrubland Closed Shrublands 6
Open Shrublands 7

3 Savanna Woody Savannas 8
Savannas 9

4 Grassland Grasslands 10
5 Wetlands Permanent Wetlands 11

6 Croplands Croplands 12
Cropland/Natural Vegetation Mosaics 14

7 Urban/Built-up Urban/Built-up 13
8 Snow/Ice Permanent Snow and Ice 15
9 Barren Barren 16
10 Water Water Bodies 17

Table 2: Parameters setting of the baseline model and the pro-
posed model.

Baseline Proposed
Pretrained on ImageNet True True
Label Refinement False True
SAR image pre-processing False True
Data augmentation False True
Backbone network Xception+ ResNet101
Initial learning rate 0.01 0.001
Batch size 16 16
Output Stride 16 16

respectively. The performances are assessed using Average Class
Accuracy (AA), which indicates the mean of the accuracies of
all land cover classes in the simplified IGBP scheme. It is worth
mentioning that the validation and testing dataset does not include
Savanna (Class #3) and Snow/Ice (Class #8).

From the comparative analysis between the baseline model and
the proposed model, it can be observed that the proposed model
achieves 51.95% on the validation set and 50.18% on the testing
set, which outperforms the baseline model, which obtains 41.34%
and 41.12%. Additionally, for each individual class, the proposed
model reaches higher performance than the baseline model on
most of the land cover classes, except Grassland (Class #4). The
highest accuracies are related to Forest (Class #1), Urban/Built-
up (Class #7) and Water (Class #10). Considering the spectral
characteristics of these classes, the high accuracies are the results
of the effectiveness of the model to extract distinct pixel values.
On the contrary, the model performs poorly on identifying Shrub-
land (Class #2) and Barren (Class #9). Neither of the two classes
reach 5% accuracy. It could be the results of the relatively high
textural and spectral similarities between grassland and shrub-
land, as well as that of urban and barren.

3.4 Visualized comparison

In addition to the accuracy evaluations, the visualization of the
predicted maps was also presented for a qualitative overview of
the spatial resolution enhancement of the land cover mapping. As
shown in the figures below, some enhanced land cover maps ob-
tained by the proposed model are provided as example to demon-
strate how the model performs on predicting different land cov-
ers. Each example includes the input Sentinel-2 multispectral
image, the input Sentinel-1 SAR image, the original MODIS la-
bel/map, the enhanced map from the prediction of the proposed
model, and the DFC2020 ground truth label/map. As shown in
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Table 3: Performances on DFC2020 Validation set.
Baseline Proposed

Average Class Accuracy (AA) 41.34% 51.95%
Pixel-wise Accuracy (PA) 50.17% 62.99%
Class 1 (Forest) 62.61% 85.67%
Class 2 (Shrubland) 1.07% 13.58%
Class 4 (Grassland) 48.21% 26.23%
Class 5 (Wetlands) 14.02% 29.98%
Class 6 (Croplands) 43.54% 75.04%
Class 7 (Urban/Built-up) 66.35% 84.51%
Class 9 (Barren) 0.21% 3.74%
Class 10 (Water) 94.72% 96.87%

Table 4: Performances on DFC2020 Testing set.
Baseline Proposed

Average Class Accuracy (AA) 41.12% 50.18%
Pixel-wise Accuracy (PA) 49.93% 62.57%
Class 1 (Forest) 60.04% 74.53%
Class 2 (Shrubland) 2.31% 14.17%
Class 4 (Grassland) 50.05% 46.75%
Class 5 (Wetlands) 12.45% 28.48%
Class 6 (Croplands) 41.59% 64.29%
Class 7 (Urban/Built-up) 69.26% 77.78%
Class 9 (Barren) 0.37% 1.20%
Class 10 (Water) 92.92% 94.22%

Figure 6, the detection of shorelines and beaches are well recog-
nized on the enhanced land cover map, with smoothed boundaries
between land cover parcels.

Figure 6: Detection of shoreline and beach

Figure 7: Reduced impact of the weak MODIS label

It can be seen from Figure 7 that the model successfully mini-
mized the impact of misclassified label of grassland on the cor-
responding MODIS land cover map. Moreover, as visually ana-
lyzing the input image and the DFC ground truth label, we can
find that the DFC map underestimates the area of urban/built-up
in this image, while the enhanced map correctly detects the pres-
ence of buildings. It indicates that even the ground truth label
could still contain minor misclassifications.

Figure 8: Misclassifications of rivers and wetlands

As shown in the example image in Figure 8, the model performs
poorly on identifying narrow rivers or small ponds in despite of
the significant spectral differences. Both Figure 8 and Figure 9
show that the proposed model has the tendency to misclassify
cropland, wetland and grassland. The incorrect MODIS label cer-
tainly mislead the prediction, but the misclassification also could
be a result of spectral similarities between the three land covers.
For example, paddy field is one type of cropland, but it is very
similar to wetland (a mix of water and vegetation) as it contains a
lot of water. Additionally, irregular cropland can also be confused
with natural grassland.

Figure 9: Misclassification of cropland and shrubland

It also can be seen from Figure 9 that the model has difficulties
identifying shrubland from cropland or grassland.

To conclude, the model tends to be biased toward high repre-
sented classes such as forest, grassland and urban. This is prob-
ably related to the fact that those classes exhibit a more general
textural and spectral characteristics, which could be confusing for
the model prediction.
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Figure 10: Misclassification of barren

3.5 Foreseeable limitations

Given the computational capacity of the machine platform used
for this study, the model has not been trained for sufficient num-
ber of epochs. It can be expected that the train loss would con-
tinue to decrease after 20 epochs. Therefore, if the model could
be trained for more epochs, the result may be further improved.
Moreover, there was no fine tuning of the hyperparameters of the
model. Most of the hyperparameters were set to be same as the
original DeepLabV3 plus model. The performance is expected
to be better if the fine tuning of the hyperparameters was carried
out.

Furthermore, the proposed label refinement method is relatively
simple and naı̈ve comparing to the current state-of-art techniques
used in weakly supervised semantic segmentation, such as Ex-
pectation Maximization, Multiple Instance Learning, Self Super-
vised Learning, and Object Proposal Class Inference (Chan et al.,
2019). The model could be further improved by adding those
techniques as additional modules to deal with noisy annotations.

4. CONCLUSION

In this paper, a deep learning-based model was proposed for the
fusion of satellite data at high spatial resolution with satellite-
derived land cover maps at high temporal resolution in order to
perform enhanced land cover mapping. Experiment results have
validated the effectiveness and potential of deep learning-based
semantic segmentation architecture in the fusion of multisource
satellite data and improving land cover mapping. In the future,
the model could be further improved by adding more sophisti-
cated techniques of handling weak annotation.
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