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ABSTRACT: 
 
Using space-borne remote sensing data is widely used for land-cover classification (LCC) due to its ability to provide a big amount 
of data with a regular temporal revisit time. In recent years, optical and synthetic aperture radar (SAR) imagery have become 
available for free, and their integration in time series have improved LCC. This research evaluates the classification accuracy using 
multitemporal (MT) Sentinel-1 (S1) and Sentinel-2 (S2) imagery. Pixel-based LCC is made for S1 and S2 imagery, and for a 
combination of both datasets with Random Forest (RF) and Extreme Gradient Boosting (XGBoost; XGB). The extent of the study 
area, is located in the south-east of France, in Lyon. Regardless of LCC using single-date or MT data, the highest classification 
results were achieved with integrated S1 and S2 imagery and XGB method, whereas overall accuracy (OA) and Kappa coefficient 
(Kappa) increased from 85.51% to 91.09%, and from 0.81 to 0.88, respectively. Furthermore, the integration of MT imagery 
significantly improved the classification of urban areas and reduced misclassification between forest and low vegetation. In this 
paper, in terms of the pixel-based classification, XGB produced slightly better results than RF, and outperformed it in terms of 
computational time. This research improved LCC with integration of radar and optical MT imagery, which can be useful for areas 
hampered by a frequent cloud cover. Future work should use the aforementioned data for specific applications in remote sensing, as 
well as evaluate the classification performance with different approaches, such as neural networks or deep learning. 
 
 

 
*  Corresponding author 
 

1. INTRODUCTION 

Land-cover classification (LCC) is significant for monitoring 
urban growth, agricultural planning, and deforestation (Souza, 
Jr et al., 2013; Veloso et al., 2017; Zakeri et al., 2017). Satellite 
imagery acquired from remote sensing (RS) is widely used in 
LCC and monitoring owing to a big amount of spatial data with 
a daily revisit time. The usual way of performing classification 
tasks is the use of optical satellite imagery. Optical RS uses the 
sun as an external source of irradiance; however, the acquisition 
of optical imagery may be limited if the cloud layer is large 
(Sun et al., 2019). Being an active microwave sensor, synthetic 
aperture radar (SAR) can provide data acquisition that is 
independent of solar illumination and cloud cover, as 
microwave radiation penetrates through clouds. SAR data is 
sensitive to the surface roughness, textural and dielectric 
properties of land objects (Feng et al., 2019).  
 
For LCC, many studies preferred optical data to SAR imagery, 
because of a better understanding of the links between the 
observations (Immitzer et al., 2012; Gašparović et al., 2018; Noi 
and Kappas, 2018). In recent years, optical and SAR imagery 
have become available for free, and their integration in time 
series have improved LCC. Van Tricht et al. (2018) investigated 
the possibility of crop mapping using joint radar (Sentinel-1; 
S1) and optical (Sentinel-2; S2) data. The integration of S1 and 
S2 imagery, led to higher classification accuracies compared to 
optical-only classification. Sonobe et al. (2017) evaluated the 
suitability of S1 and S2 data for the classification of various 
crop types. Classification for a set of six crop types on five S1 
and one S2 imagery with a Random Forest (RF) algorithm 

achieved overall accuracy (OA) of 95.7%. The research showed 
a remarkable potential for crop classification. Gómez (2017) 
combined S1 and S2 data for LCC. For a pixel-based 
classification of six land-cover classes with RF algorithm 
achieved OA was 84.33%, and Kappa of 0.81. For the pixel-
based approach, the used data was S1, S2, and vegetation 
indices. 
The aforementioned research used data from Sentinel satellites 
developed within the Copernicus Programme. European Space 
Agency (ESA) provided free and open access to S1 radar and 
S2 optical data, with almost global data availability with the 
revisit frequency of 6 and 5 days, respectively (Van Tricht et al., 
2018). 
 
Besides highly spatial, temporal and spectral resolutions of the 
data, machine learning methods are fundamental for developing 
LCC maps over a large area within short acquisition window. 
Classifiers such as artificial neural networks (ANN), Support 
Vector Machine (SVM), or RF outperform traditional 
parametric approaches with their ability to deal with noise and 
unbalanced datasets (Abdullah et al., 2019). In this research, 
used algorithms were RF, and extreme gradient boosting 
(XGBoost; XGB). RF is a robust classifier that avoids 
overfitting through bootstrapping and provides good 
classification results and computer processing time (Waske and 
Braun, 2009; Niculescu et al., 2018). XGB is an implementation 
of gradient boosted decision trees developed by Chen and 
Guestrin (2016). In recent research for LCC applications, XGB 
slightly outperformed RF and SVM with increased processing 
time (Man et al., 2018; Hirayama et al., 2019). When the 
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number of samples is large, SVM needs a lot of machine 
memory leading to increased computation time, so this 
algorithm was not used in this research (Mountrakis et al., 
2011).  
 
The purpose of this paper is (1) to evaluate how classification 
accuracy depends on the multitemporal input source (optical 
data, radar data, or a combination of both) at a pixel-level and 
(2) to evaluate the performance of the machine learning 
methods for producing LCC maps.  
 
 

2. STUDY AREA AND DATA 

2.1 Study area 

For the research, the city of Lyon, which is located in the south-
east of France, was chosen (Figure 1). The city is surrounded by 
the rivers Rhone and Saone, and it is the third most populated 
city in France. The characteristics of a study area is a mild 
climate with an average temperature of 11.6 °C. The average 
annual precipitation is 763 mm. For this research, almost 1200 
km2 area (30 km x 40 km) was examined, which includes land-
cover classes such as water, bare soil, forest, built-up and low 
vegetation.  
 

 
 
Figure 1. Overview of the study area on (a) S1 imagery (VH dB 

values; 04-06-2019) and (b) S2 imagery (“true colour” 
composite (B04-B03-B02); sensing date: 02-06-2019). 

  

2.2 Data 

Because of the availability of S1 and S2 data, both 
multitemporal and multisensor Sentinel data were used for 
LCC. S1 is an imaging radar satellite whose constellation 
comprises two satellites: S1A and S1B. Both satellites carry a 
C-band (~5.55 cm), capable of providing dual polarisation 
observations in several measuring modes (Torres et al., 2012). 
For this research, three imagery of S1 GRDH (ground range 
detected in high resolution) products were used with a spatial 
resolution of 10 m. S1 Level-1 imagery were selected according 
to the date proximity in relation to the cloud-free S2 imagery 
(Table 1). 
 

  Sentinel-1 
Acquisition 
date 23-05-2019 04-06-2019 10-06-2019 
Acquisition 
orbit ASC ASC ASC 
Orbit 
number 27358 27533 16637 

Polarisation VV, VH 
 

Table 1. Characteristics of the S1 data; vertical-vertical (VV) 
and vertical-horizontal (VH) polarizations. 

 
S2 also consists of two identical polar-orbiting satellites, and it 
provides high resolution multispectral optical imagery within 13 
spectral bands. For this research, three optical S2 (Level-2A) 
scenes were selected for LCC. We selected temporal imagery 
with zero cloud coverage (Table 2). Spectral bands in the visible 
and near-infrared spectrum, i.e., Blue (B02), Green (B03), Red 
(B04), and the Near-Infrared band (B08) with an identical 
spatial resolution of 10 m as S1 were used. 
 

  Sentinel-2 
Acquisition 
date 23-05-2019 02-06-2019 17-06-2019 
Sun zenith 
angle [°] 26.88 25.46 24.59 
Orbit 
number 20454 20597 11903 
Spectral 
bands B02, B03, B04, B08 

 
Table 2. Characteristics of the S2 imagery used in this research. 

 
 

3. METHODS 

3.1 Sentinel-1 data pre-processing 

After downloading the S1 imagery from the ESA’s Sentinel 
Scientific Hub, SAR data pre-processing was implemented 
using S1 Toolbox provided by the ESA. S1 Level-1 products 
are not radiometrically corrected by default, and therefore 
digital pixel values need to be converted to radiometrically 
calibrated SAR backscatter (Filipponi, 2019). The radiometric 
calibration is performed by calculating the sigma naught (σ0). 
Speckle noise is inevitable in the SAR imagery, owing to the 
coherent mode of backscattered signal processing (Oliver, 
1991). Therefore, speckle filtering is necessary for most SAR 
image analysis. Along with many developed spatial speckle 
filters for speckle suppression (Shi and Fung, 1994), a 5 x 5 
Frost filter was applied to each image. The Frost filter reduces 
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speckle noise by using local statistics in order to efficiently 
preserve edges in radar imagery (Frost et al., 1982). The 
aforementioned filter was already used in similar research for 
LCC using multitemporal (MT) SAR imagery (Waske and 
Braun, 2009; Maghsoudi et al., 2012), and hence, Frost filter 
was applied on single-date S1 imagery which was then stacked 
together. Level-1 GRD imagery are not considered for the 
geometric distortions caused by terrain topography. Therefore, 
Range Doppler terrain correction operator is applied on the S1 
imagery in order to improve or evaluate the geopositioning 
accuracy (Dobrinić et al., 2018; Gašparović et al., 2019), and 
projecting the scenes in WGS 1984/UTM Zone 31 N. Before 
the pixel-based LCC, the σ0 values were transformed to dB 
values through its logarithmic form, as shown in Equation (1) 
(López-Caloca et al., 2018): 
 

   0 0
1010 logdb     (1) 

 
3.2 Land-cover classification algorithms 

For the supervised pixel-based classification, RF and XGB 
classifiers were tested using R version 3.6.0 (R Core Team, 
2016).  
 
RF is a tree-based algorithm that is created from a large number 
of individual decision trees (Breiman, 2001). Classifier 
randomly selects subset features using bagging method, and it is 
relatively robust to outliers and noise (Rodriguez-Galiano et al., 
2012). RF has two hyperparameters: number of trees to grow 
within the model (ntree) and how many variables are available 
for selection at a node split (mtry). A research by Kulkarni et al. 
(2012) evaluated that mtry hyperparameter has a larger impact 
on classification accuracy than ntree parameter. 
 
XGB, as an ensemble tree-boosting model, converts weak 
learners into strong learners. Weak learners are added until no 
further improvements can be made, and by using a gradient 
descent algorithm, the loss of the model is minimized (Chen and 
Guestrin, 2016). XGB has many hyperparameters that need to 
be optimized, as described by Man et al. (2018). 
 
3.3 Accuracy assessment 

In this research, the land-cover classes were selected using 
common categories (Table 3) described in similar studies 
(Clerici et al., 2017; Gašparović et al., 2018). The classification 
accuracy was assessed based on the error matrix (Foody, 2010). 
Overall, 800 polygons were divided into training (70%) and 
validation (30%) subsets. From the error matrix, the accuracy 
for the LCC was assessed using the overall accuracy (OA) and 
Kappa coefficient (Kappa). For land-cover classes, the User’s 
accuracy (UA) and Producer’s accuracy (PA) were computed. 
 

ID Class Number of samples 

1 Water 140 

2 Bare soil 160 

3 Forest 160 

4 Built-up 200 

5 Low vegetation 160 
 

Table 3. Overview of the land-cover classes used in this 
research. 

4. RESULTS AND DISCUSSION 

The results of the LCC using the two machine learning methods 
described in Section 3 are shown here. In Section 4.1, results 
using the single-date S1 and S2 imagery are discussed, and in 
Section 4.2, results using the MT S1, and S2 imagery are 
discussed. 
 
4.1 Land-cover classification on a single-date S1 and S2 
imagery 

In order to evaluate how classification accuracy changes on MT 
imagery, firstly, classification was done using single-date S1 
and S2 imagery. For S1 and S2 imagery, June 4th, and June 2nd, 
2019, were chosen as reference dates, respectively. OA and 
Kappa values for S1, S2, and using the combination of S1 and 
S2 are shown in Table 4. 
 

Sensor S1 S2 S1+S2 

Method RF XGB RF XGB RF XGB 

OA 
[%] 

70.41 72.02 84.17 83.75 85.47 85.51 

Kappa 0.61 0.63 0.80 0.79 0.81 0.81 

 
Table 4. OA and Kappa values of RF and XGB, as applied to 

the single-date S1 and S2 imagery. 
 
For the S1 classification, XGB performed better than RF with 
OA values of 72.02%, and 70.41%, respectively, whereas in the 
S2 classification, RF achieved higher accuracy metrics than the 
XGB method, with an OA of 84.17%, and Kappa of 0.80. In the 
single-date SAR land-cover classification, speckle noise 
presents a challenging task in order to reduce speckle for quality 
image interpretation and further analysis (Xiao et al., 2003). 
Optical imagery, like S2, has already proven for the LCC 
applications, so we wanted to investigate the integration of radar 
and SAR data, similar to the research of Van Tricht et al., 
(2018). XGB performed slightly better than RF for the 
combined S1 and S2 classification with an OA of 85.51% and 
Kappa 0.81. Similar to the LCC results obtained in Hirayama et 
al. (2019), XGB slightly outperformed RF. Irrespective of the 
classifier used for combined S1 and S2 pixel-based 
classification, increased OA, and Kappa values overlap with 
similar research in LCC (Gómez, 2017; Abdi, 2019). For better 
discrimination of the land-cover classes, the error matrix, along 
with UA, PA metrics, for the XGB classification using 
integrated S1 and S2 imagery, is shown in Table 5. 
 

S1+S2 
single 
date 

Reference data   

1 2 3 4 5 UA 

P
re

d
ic

ti
on

 d
at

a 

1 11406 32 149 7 3 98.4 

2 7 20846 1536 53 491 90.9 

3 133 1597 19014 142 1347 85.5 

4 34 1126 1744 7742 923 66.9 

5 4 665 1873 30 11239 81.4 

  PA  98.5 85.9 78.2 97.1 80.3   

 
Table 5. Error matrix for the XGB classification using 

integrated S1 and S2 imagery, with UA [%] and PA [%] for 
each class. 
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As shown in Table 5, the water class achieved the highest UA 
and PA values of 98.4% and 98.5%, respectively. Increased 
wetland classification accuracy has been reported in a paper 
from Kaplan and Avdan (2018). Also, for the S1 imagery, the 
VV polarization has a better effect on mapping calm water 
surfaces than VH polarization (Martinis et al., 2018). Slightly 
lower UA values were obtained for the bare soil and forest 
class. Overall, the forest class has the highest omission error of 
21.8%. According to Chust et al. (2004), the use of MT SAR 
imagery are more efficient for vegetation mapping, in opposite 
to single-date imagery. The built-up class attained higher PA 
values than UA values, which means that the XGB method 
correctly identified more ground truth pixels as bare soil, but the 
commission error was higher than the omission error. Including 
the Grey Level Co-occurrence Matrix (GLCM) texture variables 
increases classification results (Jin et al., 2018), especially for 
various built-up classes (Zakeri et al., 2017). Low vegetation 
class was mostly misclassified to the forest class, and vice-
versa. In order to increase LCC accuracy using a single-date S1 
and S2 data, textural parameters (e.g., GLCM) for S1 (Idol et 
al., 2017), and various vegetation indices (e.g., NDVI, MSAVI) 
(Clerici et al., 2017) should be included and investigated along 
with machine learning methods used in this research. 
 
4.2 Land-cover classification on a multitemporal S1 and S2 
imagery 

According to Vuolo et al. (2018), MT classification provides 
better results than single-date acquisitions within sub-optimal 
temporal windows. Therefore, available S2 imagery with zero 
cloud coverage before and after the reference date, as described 
in Table 2, were chosen for LCC. Afterward, according to S2 
acquisition time, S1 imagery was used for MT LCC (Table 1). 
Accuracy assessment for the MT classification for S1 and S2 
imagery, and using the combination of S1 and S2 are shown in 
Table 6. 

Sensor S1 S2 S1+S2 

Method RF XGB RF XGB RF XGB 

OA 
[%] 

84.47 86.28 88.26 89.72 90.78 91.09 

Kappa 0.80 0.82 0.85 0.87 0.88 0.88 

 
Table 6. OA and Kappa values of RF and XGB, as applied to 

the multitemporal S1 and S2 imagery. 
 

For the classification obtained using MT S1 imagery, XGB 
performed better than RF, with OA and Kappa values of 
86.28% and 0.82 against 84.47% and 0.80, respectively. MT S1 
imagery significantly increased classification accuracy for RF 
and XGB method. Such improvement occurred due to spatial 
speckle filtering on the single-date S1 imagery, which was then 
stacked together. Maghsoudi et al. (2012) reported that MT 
filtering offers no advantage for classification tasks against 
spatial speckle filters. Therefore, the increase of OA metric of 
14.06%, and 14.26% for RF and XGB method on MT S1 
imagery is achieved, respectively. In the MT S2 classification, 
XGB performed better than RF, with an OA value of 89.72%, 
and 88.26%, respectively. Obtained results for MT S2 imagery 
confirm that LCC methods applied to MT imagery perform 
better that single-date mapping methods (Belgiu and Csillik, 
2018; Vuolo et al., 2018), since phenological patterns can be 
identified on a time-series datasets. Overall, the highest 
classification accuracy in this research was obtained using 
integrated MT S1 and S2 imagery. For the RF method, OA was 
90.78%, and Kappa 0.88, whereas the XGB method achieved 

OA of 91.09%, and Kappa 0.88. Sun et al. (2019) used S1, S2, 
and Landsat-8 data for crop-type mapping. Their MT and the 
multi-source combination produced the highest OA of 93%, and 
Kappa 0.91 with an RF classifier. According to the authors, 
although the use of S1 imagery affected the LCC, their ability to 
classify crop type was weaker than for S2 data. Viskovic et al. 
(2019) used MT S1 and S2 data for crop classification. RF 
outperformed other classifiers (e.g., SVM, K-nearest neighbors) 
with an OA of 84.20%, and Kappa 0.82. Furthermore, in order 
to compare and evaluate MT classification accuracy for separate 
land-cover classes, Table 7 shows the error matrix along with 
UA, PA metrics for the XGB classifier.  
 

S1+S2 
multi 
date 

Reference data   

1 2 3 4 5 UA 

P
re

d
ic

ti
o

n
 d

at
a 

1 11301 3 31 21 0 99.5 

2 35 22466 1640 74 1073 88.8 

3 218 631 20992 84 619 93.1 

4 13 12 101 7762 31 98.0 

5 23 1148 1517 46 12277 81.8 

  PA  97.5 92.6 86.5 97.2 87.7   

 
Table 7. Error matrix for the XGB classification using 

integrated MT S1 and S2 imagery, with UA [%], PA [%] 
metrics for each class. 

 
For the MT S1 and S2 classification, the water class achieved 
the highest UA and PA values of 99.5%, and 97.5%, 
respectively. Since no precipitation events occurred during the 
acquisition of the radar imagery, bare soil class was very well 
classified using MT data. Otherwise, soil moisture, which 
increases dielectric constant, has a major effect on the 
backscatter magnitude (Molijn et al., 2018). Regardless of LCC 
on a single-date or MT S1 and S2 imagery, the bare soil class 
achieved high PA results and was well classified on LCC maps. 
The highest increase from single-date to MT LCC, in terms of 
UA metric, achieved the built-up class. MT imagery 
significantly helped to correctly separate built-up areas, with an 
UA of 98.0%, against UA of 66.9% obtained for LCC using 
single-date imagery. Using single speckle filtering on MT 
imagery significantly reduced confusion between forest and 
built-up class (i.e., 1744 false-negative forest pixels to 101 
pixels). Besides MT imagery, GLCM texture features should be 
included in order to improve the classification OA, and the 
discrimination of urban areas (Dell’Acqua et al., 2003). In this 
research, the highest contribution of adding MT S1 and S2 
imagery, in terms of decreased omission and commission errors, 
was for the forest and low vegetation class. For the forest class, 
UA and PA increased 7.6% and 8.3%, respectively, whereas 
1347 pixels misclassified as low vegetation decreased to 619 
pixels. Using Frost spatial filter for speckle reduction for single-
date S1 imagery, which were then stacked together, efficiently 
preserved edges and features, which alleviated the 
differentiation between forest and low vegetation class. 
Likewise, Rüetschi et al., (2018) showed that MT SAR imagery 
have the potential to supplement optical RS data for the 
mapping of mixed forests. Using them, monitoring at various 
spatial and temporal scales can be used for quantification of 
changes in species composition due to climate change. 
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Figure 2. Example subset for a central part of the study area: (a) 
S2 ‘true color’ composite; (b) XGB classification using single-
date S1 and S2 imagery; (c) XGB classification using MT S1 

and S2 imagery. 
 

Figure 2 shows classification maps obtained with S1 and S2 
data using an XGB classifier. It can be seen that granular noise 
decreased with additional temporal features of S1 and S2 
imagery. The major improvement for land-cover classification 
using MT imagery, occurred for the built-up class, because of 
stable objects like buildings, and other artificial built-up 
structures. Additionally, salt and pepper effect was reduced for 
forest and low vegetation class owing to the speckle filtering, 
and the MT classification map has sharper and clearer 
boundaries between the land-cover classes. Also, optical 
satellite imagery (i.e., S2) improved the distinction of different 
features (e.g., roads, still water), which are commonly 
misclassified using radar data because of similar backscatter 
pattern (Haas and Ban, 2017). 
 
Chen and Guestrin (2016) reported that the XGB algorithm is 
designed for speed and performance by using gradient boosted 
decision trees, and hence, processing times for RF and XGB 
were investigated (Figure 3). The processing time for the single-
date data using RF and XGB varied between 17 min and 31 min 
and between 3 min and 6 min, respectively. Using MT imagery, 
the computational time varied between 20 min and 26 min for 
RF, and between 5 min and 12 min for XGB. 

 
 

Figure 3. The computational time required for a single-date and 
MT classification using RF and XGB classifier. 

 
This research evaluated the integration of multisource and 
multitemporal data provided by ESA for LCC. Regardless of 
LCC on a single-date or MT imagery, the highest classification 
results were achieved with integrated S1 and S2 imagery (Table 
4 and Table 6). Gómez (2017) mentioned that the benefits of 
joining S1 and S2 data are more applicable for the pixel-based 
than in the polygon-based approach. Furthermore, classification 
accuracy significantly improved on MT SAR imagery, with an 
OA and Kappa increase of 14.06% and 0.19, respectively. 
Temporal series of SAR imagery in combination with speckle 
filtering improves classification results, as reported in Skriver et 
al. (2011) and Maghsoudi et al. (2012). Future research should 
address the integration of GLCM texture features with MT SAR 
imagery, which can be used for areas that are most times 
covered with clouds. The second part of the research was to 
evaluate the RF and XGB classifiers for producing LCC maps. 
In this paper, for the pixel-based classification, XGB produced 
slightly better results than RF but outperformed it in terms of 
computational time. This gradient boosting algorithm gained 
popularity in various machine learning and data science 
competitions, and most recently in producing LCC maps (Man 
et al., 2018; Hirayama et al., 2019). Future research should 
compare the performance with different approaches, such as 
SVM, ANNs, and kernel-based extreme learning machine 
(KELM) (Clerici et al., 2017; Sonobe et al., 2017; Zhang et al., 
2019). 
 
 

5. CONCLUSIONS 

In this research, classification accuracy was examined for LCC 
on multitemporal input data (S1, S2, and their integration) using 
two classifiers (RF and XGB).  
 
A combination of multitemporal S1 and S2 imagery 
successfully classified five land-cover classes with the XGB 
classifier and OA of 91.09% and Kappa 0.88. Furthermore, the 
integration of MT imagery significantly improved the 
classification of urban areas and reduced misclassification 
between forest and low vegetation. It should also be noted how 
overall classification accuracy for S1 imagery increased from 
72.02% to 86.28% with the use of the MT imagery, which can 
be useful for areas hampered by a frequent cloud cover. This 
research proved that RF and XGB algorithms are robust and can 
be used for LCC. In terms of computational time, XGB 
performed RF, whereas accuracy metrics were similar, so the 
trade-off between accuracy and processing time must be 
considered. 
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This research evaluated the potential of radar and optical 
imagery for land-cover classification, so the future work should 
focus on specific applications (e.g., crop classification, 
vegetation monitoring, urban area mapping). Additionally, 
neural networks and deep learning methods should be examined 
for land-cover classification on remote sensing data. 
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