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ABSTRACT:

Several advanced DInSAR techniques have been used to map surface deformations due to volcanism, active tectonics, landslides,
subsidence, and uplift as well as to monitor the deformation of critical infrastructure such as bridges and dams. Recently, studies
have explored the potential of these techniques to be integrated into a permanently operating monitoring system. ESA’s Sentinel-1
satellites have been providing SAR images for such a purpose since 2014. Nowadays, it is easy to access more than 230 SAR
images of any area of interest, and update this dataset every six days with a new image.
Due to the high frequency of the data acquisition, the question arises on how to best handle such a dataset. Is it suitable to always
consider the whole available dataset or would a partial processing of the dataset and combining the results at a later point be more
appropriate? To answer these questions, three different processing strategies are investigated in this paper. The first is a continuously
growing dataset and for the second and third strategy, the dataset was divided into sub-stacks with and without overlap. In this study,
the key parameters of each strategy are analyzed. In addition, the size of the sub-stacks is varied and the results are compared.

1. INTRODUCTION

In the last decades, numerous improvements and developments
in the field of DInSAR techniques have been made to over-
come its major limitations (i.e., the spatial and temporal de-
correlation as well as the atmospheric phase delay), resulting
in techniques such as persistent scatterer interferometry (PSI)
(Ferretti et al., 2001, Hooper et al., 2004), small baseline sub-
set approach (Berardino et al., 2002), and SqueeSARTM (Fer-
retti et al., 2011). The advantage of these techniques is their
capability to map displacement fields accurately down to a mil-
limeter over a large area, providing a full picture of the sur-
face deformation (Marinkovic et al., 2007). Numerous studies
have employed these techniques to map or monitor either nat-
urally occurring or human-induced surface deformations, such
as landslides, uplift, subsidence, or the deformation of critical
infrastructure (e.g. dams or bridges) (Berardino et al., 2003,
Bonı̀ et al., 2015, Bonı̀ et al., 2018, Tomás et al., 2013, Sousa et
al., 2013). More recent studies have explored the possibility of
integrating these techniques into a permanently operating mon-
itoring system. Their primary focus is on automatically identi-
fying areas of active deformation, characterizing their behavior
and creating alerts, if any changes in the behavior occur (Berti et
al., 2013, Tomás et al., 2019, Raspini et al., 2018, Kalia, 2018).
A continuous stream of interferometric SAR images is essential
for such applications.
The European Space Agency’s (ESA) Sentinel-1 satellites have
been continuously mapping the surface of the earth since they
were launched in April 2014 and April 2016. Their products
are provided by the Copernicus initiative free of charge. Today,
it is easy to access more than 230 SAR images of any area of
interest and update this base dataset every six days with a new
image. Due to this high frequency of the data acquisition, some
questions concerning their PSI analysis arise. On the one hand,
a large dataset is needed to accurately identify a set of persistent
scatterers (PS) and correct their differential phase for unwanted
contributions. Also, a larger dataset is needed for a full history
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of the PS movements to accurately characterize their behavior.
On the other hand, the likelihood of a pixel to be a PS drops
with an increase in images. Also, if the PS density is too low,
some areas of active deformation might not be identified or their
extent is underestimated. Furthermore, to integrate this method
into a permanently operating monitoring system a timely ana-
lysis of the data is needed. Thus, a smaller dataset is preferred.
Hence, the question is, is there a processing strategy that can
fulfill all these requirements? Is it acceptable to always con-
sider the whole available dataset or would a partial processing
of the dataset and a later combination of the results be more ap-
propriate?
To answer these questions, we investigated three different pro-
cessing strategies. The first strategy is to always consider the
entire available data set, while the second and third strategies
only take into account a part of the full available dataset, which
from now is referred to as a sub-stack. In all three cases the
dataset is regularly updated and reprocessed. Thus, the PS ana-
lysis always provides information about the current situation.
The parameters processing time, memory consumption, number
of PS candidates (PSC), number of PS, PS density, percentage
of PSC identified as PS, and number of PS common between
sub-stacks are analyzed.
The paper is structured as follows. The method PSI and the
three processing strategies are described in Section 2. The study
area and dataset are briefly described in Section 3. The results
for each processing strategy are presented in Section 4. In Sec-
tion 5, the results are compared concerning their performance
and some conclusions are drawn.

2. METHODS

2.1 Persistent Scatter Interferometry (PSI)

The response signal, a pixel in a SAR image depicts, is the co-
herent sum of the backscattered signal of each scatterer within
the corresponding ground resolution cell. Taking into account
the deviation in look angle and the possible relative movement
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of the individual scatterers, the constructive and destructive in-
terference of their response signals leads to variations in the
phase and amplitude of the corresponding signal. However, this
effect is greatly reduced, if a single scatterer dominates the re-
sponse signal of the ground resolution cell. These scatterers
can be man-made structures such as the corner of a building
or naturally occurring ones, for example a large rock. A pixel
whose response signal is dominated by such a scatterer is called
a persistent scatterer (PS). The goal of all PSI algorithms is to
identify these pixels and to determine their relative movement
over time. This concept was first presented in 2001 (Ferretti et
al., 2001). However, we used the Standford Method for Persist-
ent Scatterer (StaMPS) (Hooper et al., 2004).

Interferometric Pre-Processing
In order to use StaMPS, a stack of interferograms and a second
stack with the corresponding single look complex (SLC) im-
ages were created. All the SLC images need to be coregistered
to the same master. This was done using the software SNAP
provided by ESA.
The interferometric pre-processing of Sentinel-1 images for a
PSI analysis consists of eight steps: (1) S-1 TOPS Split, (2)
Apply-Orbit-File, (3) Back-Geocoding, (4) Enhanced-Spectral-
Diversity, (5) S-1 TOPS Deburst, (6) Subset Creation, (7) In-
terferogram Generation and (8) Topographic Phase Removal.
A Digital Elevation Model (DEM) is needed for steps 3 and 4,
which are responsible for the coregistration of the slaves to the
master. We used the freely available SRTM-3 DEM.
The results of the interferometric pre-processing are the differ-
ential interferograms, the coregistered SLC images, the height
information, and geocoordinates for each pixel. These serve as
input for the StaMPS algorithm.

PSI Analysis
The PS selection of the StaMPS algorithm consists of two steps.
In the first step, a set of PS candidates (PSC) is identified em-
ploying the amplitude dispersion DA (Hooper et al., 2004).
This parameter is a good proxy for the phase standard deviation
σΦ, in case of a constant signal and high signal to noise ratio.
The amplitude dispersion is calculated for each pixel as the quo-
tient of the mean and standard deviation of a time series of amp-
litude values (Ferretti et al., 2001). All pixels with DA ≤ 0.4
are chosen as PSC (Hooper et al., 2004). The second step is the
phase analysis. The goal is to identify PSC, which distinguish
themselves by having a low phase noise level. The algorithm
uses the value γx as an indicator. It is similar to the magnitude
of coherence, however, the amplitude is not used to calculate it:

γx :=
1

N
|
N∑
i=1

exp
{
j
(
ψint,x,i − ψ̃int,x,i − ψ̂ncθ,x,i

)}
| (1)

Here, ψint,x,i is the wrapped phase of pixel x in the ith topo-
graphically corrected interferogram, ψ̃int,x,i is the estimate for
the spatially correlated part of the phase contributions due to
look angle error, atmospheric disturbances, orbit inaccuracies,
and ground deformation. The non-spatially correlated part of
the phase contribution due to look angle error is denoted by
ψ̂ncθ,x,i, and N is the number of interferograms. The value γx
is calculated for each pixel and all pixels with γx ≥ γthres are
considered to be PS. The threshold γthres is chosen, so that the
percentage of false positives is still acceptable (Hooper et al.,
2004). We decided to use the default value, which is 20 %.
After identifying the set of PS, their phase is corrected for the
spatially uncorrelated look angle error and afterwards a 3D un-

wrapping algorithm is used to derive the displacement for each
interferogram and the corresponding mean velocity for the time
series (Hooper, Zebker, 2007). The last two steps are the estim-
ation of the spatially correlated look angle error and the atmo-
spheric filtering (Hooper et al., 2007). The final results are a
map of the mean velocity in line-of-sight (LOS) of the satellite
and a time series of the displacement of each PS relative to the
master.

2.2 Different Scenarios

The motivation for this study is the recent push to utilize ad-
vanced DInSAR techniques for continuous monitoring systems.
At the moment, in case of PSI, this would be done by adding
new images to the dataset when they become available, and
completely reprocess the entire dataset. However, this does not
seem to be the best approach. The most important demands
towards a PSI processing strategy are: (1) a high enough PS
density to accurately estimate the extent and intensity of the
deformation, (2) a high sampling rate of the mean velocity to
detect short term variations and (3) a possibility for recombin-
ing the sub-stack results.
In this study, three different processing strategies were tested.
The strategies are described in detail in the following para-
graphs. The pre-processing steps are not further considered in
this study because the amount of time needed to pre-process a
single image does not change with the total number of images
used.

Approach A:
The first approach represents the conventionally used proced-
ure. As a first step a base dataset of 28 images covering half
a year was processed. This base dataset was then updated 13
times with all available images acquired within the time period
of two months (i.e, 7 to 10 new images) and entirely repro-
cessed. For each sub-stack the same master scene as in the base
dataset was used.
The main questions for this approach are:

1. How does the number of initially chosen PSCs and the
number of used images affect the processing time?

2. How does the PS density change with an increasing num-
ber of images?

3. How does the ratio between PSC and PS change with an
increasing number of images?

Approach B:
For the second approach, we decided to process consecutive
sub-stacks instead of adding new images to a base dataset. These
sub-stacks did not overlap in time, i.e., as soon as enough new
images were available, they were used to perform a PSI ana-
lysis independently from the previous sub-stack. The master
was chosen individually for each sub-stack. To analyze the im-
pact of the sub-stack size, we analyzed sub-stacks with sizes of
20, 30 and 40 images.
The main questions here were:

1. What is the processing time of this approach?

2. How many PSC are common to the sub-stacks and how
many are particular to one of them?

3. Does the size of the sub-stack influence the number of PS
common to the sub-stacks?
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Figure 1. An exemplary single look complex Sentinel-1 image of the study area recorded on 12/11/2016.

Approach C:
The third approach, is similar to Approach B in the sense that
we also processed sub-stacks. However, in this case the sub-
stacks did overlap in time. The procedure can be best described
as a sliding window approach. Whenever a new image became
available, it was used to create a new interferogram. The oldest
interferogram of the current sub-stack was then exchanged for
the new one and the sub-stack was reprocessed. In this case,
we also varied the size of the sub-stacks and processed sub-
stacks with 20, 30, and 40 images. Here, we processed on the
following questions:

1. What is the processing time of this approach?

2. What changes does the set of PSC undergo after exchan-
ging one image?

3. Does the size of the sub-stack influence the changes the set
of PSC undergoes after exchanging one image?

Furthermore, we compared the three approaches, weighted their
advantages and disadvantages, and chose the approach, which
best serves our purpose.

3. STUDY AREA & DATASET

The different processing strategies were applied to a dataset
covering an area of roughly 2,344 km2 on the northwestern tip
of the Peloponnese Peninsula (Greece). The area of interest
is framed by the Erymanthos and Panachaiko mountains to the
East and South as well as the Mediterranean Sea to the West
and North. The topography of the area varies from flat at the
shoreline to hilly terrain with steep slopes in the East and South.
The area consists of non-urban as well as urban parts.
The expected ground deformations for this area are landslides
in the hilly terrain (Del Soldato et al., 2018) and vertical as well
as horizontal displacement alongside known active faults within
the area (Sakkas et al., 2018).
The SAR dataset used for this study consists of 147 images. The
images were recorded by the Sentinel-1 satellites and provided
by the Copernicus Initiative. The images were recorded in des-
cending acquisition geometry and with the standard acquisition
mode Interferometric Wide Swath. They cover the time period
from 10/06/2016 to 07/23/2019. The study area and the data

set are described in more detail in (Evers et al., 2019). Figure 1
shows an exemplary SLC image of the dataset. Due to the size
of the scene, we chose a subset. The subset is marked with a
red rectangle.
While Approach A was used to process the entire dataset, only
part of the dataset was processed using Approaches B and C.
The long processing time of a PSI analysis limited the number
of sub-stacks processed for this study. For this reason, some
key parameters needed to be extrapolated. Figure 2 illustrates
the segmentation of the dataset into sub-stacks for each of the
three approaches. In case of Approach A (blue bars), the data-
set was divided into 14 sub-stacks. Each sub-stack was used to
perform a PSI analysis. In case of Approaches B (green bars)
and C (red bars), 9 sub-stacks each were used to perform a PSI
analysis. The sub-stacks were processed in groups of three con-
secutive sub-stacks. The sub-stacks of one group had the same
size. The number next to each bar signifies either the number
of used images for the respective process (Approach A) or the
size of the three consecutive sub-stacks (Approaches B and C).

4. RESULTS

In this section, the results of each approach are analyzed in-
dividually. First, the curve progression of each parameter re-
garding an increasing number of images is analyzed. Second,
the velocity maps are analyzed visually. Afterwards, a general
recommendation for each approach is given.

Approach A:
Processing the entire dataset with Approach A leads to the val-
ues summarized in Table 1. The memory consumption increases
linearly with an increase in the number of images. The base
dataset of 28 images needs 40 GB and after the last update (i.e.,
147 images) the dataset needs 147 GB. The parameters listed in
Table 1 are: the number of identified PSC NPSC , the number
of PS NPS , the quotient Q of NPS and NPSC , the PS dens-
ity ρPS and the processing time TP . The parameters NPSC ,
NPS , ρPS , and TP decrease with an increasing number of im-
ages. The quotient Q, which signifies the percentage of PSC
identified as PS, increases the longer the time series is. The last
parameter ρPS drops from 823 PS

km2 for the base dataset to 140
PS
km2 after the last update.
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Figure 2. The three different approaches to analyze a SAR time series.
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Figure 3. Number of PSC and the processing time (Approach A).

One initial question concerning the processing of large data-
sets was, how the number of images and the number of PSC

influence processing time. Figure 3 illustrates their relation-
ship. Both, TP (black) and NPSC (red), follow the same trend.
At first, both drop significantly, while the number of images in-
creases continuously. The processing time then stabilizes around
22 hours. The number of PSC continues to decrease, however,
at a much smaller rate. The outlier in the TP graph is most likely
due to background process of the server, which we used to con-
duct this study. The similar curve progression of TP and NPSC
indicates, thatNPSC has more influence on the processing time
than the number of images.
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Figure 4. Number of PSC, PS and their ratio (Approach A).

The second question relates to the percentage of initially se-
lected PSC, which are actually identified as PS. The graphs of
NPSC (blue) and NPS (red) follow a similar trend as shown in
Figure 4. Though, as expected there is an offset between them.
The number of selected PSC is usually higher than the num-
ber of identified PS. This offset, however, decreases with an
increasing number of images. This is also reflected in the black
graph of Figure 4, which illustrates the percentageQ of PSC ac-
tually identified as PS. Q increases with increasing number of
images, as is shown in Figure 4. For the base dataset, only 56 %
of the PSC turned out to actually be PS and after the last update,
the percentage has increased to 95 %. Therefore, the conclusion
can be made that the longer the time series is, the higher is the
probability that a PSC is identified as a PS. Though a draw-
back of longer time series is that short term deformations are
not noticeable anymore. In addition to the analysis of the nu-
meric values, a visual comparison of the results was performed.
The analysis of the spatial distribution and local variations is
especially important concerning the PS density. The PS dens-
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Figure 5. Map of the PS mean velocity in LOS direction derived from different numbers of SAR images (Approach A).

ity is a crucial value for the detection of areas of active ground
deformation. However, the average density calculated for the
entire scene does not provide information concerning the spa-
tial distribution of the PS. The PS density might be high enough
in one area of the scene, but not in another one. This becomes
visible in Figure 5. The figure shows two mean velocity maps of
the same area. The only difference between the maps is the size
of the sub-stacks used to generate them. Stack I (left map) con-
siders 99 images and Stack II (right map) 147 images. In gen-
eral, both mean velocity maps look similar. However, a closer
look shows that the PS density differs. Particularly in the area
marked with the red rectangle the PS density is lower for Stack
II than for Stack I. The blue clusters of PS in this area mark
active landslides in the rural parts of the study area. Their ex-
tent and maximum velocity are underestimated in case of Stack
II. If the PS density decreases further in this area, they would
probably not even be identified anymore.
The black rectangle marks a part of the study area located in the
city of Patras. The difference in PS density is less noticeable in
this area. However, it is visible that less noise is superimposed
on the mean velocities map of Stack II.
It is necessary to balance between the PS density and the su-
perimposed noise to identify the optimal sub-stack size for this
scene (taking into account image repetition time and type of
ground deformation). The PS density needs to be high to de-
tect the ground deformation of interest, while the noise super-
imposed on the mean velocities needs to be minimized. The
optimal sub-stack size for this scene is between 80 and 100 im-
ages.
The processing time stabilizes around 22 hours for a sub-stack
size of more than 70 images and therefore is not a limiting
factor. This recommendation is tailored for this dataset. In
the case of another dataset with other types of deformation, the
parameters would need to be readjusted. Nevertheless, it can
generally be said that a sub-stack size can be too large to detect
certain types of deformation accurately.

Approach B:
In case of Approach B, memory consumption exhibits differ-
ent values for the same sub-stack size, e.g., sub-stacks with 30
images need between 38 GB and 45.7 GB with an average of

41.4 GB of hard disk space. Sub-stacks with 20 and 40 images
need an average of 41.2 GB and 46.3 GB, respectively. The
parameters listed in Table 2 are the same as listed in Table 1.
Each one of these parameters varies significantly for sub-stacks
of the same size. For example, the number of selected PSC var-
ies, in case of a sub-stack size of 30 images, between 4,232,665
and 2,794,999. Additionally, the number of selected PS varies
between 2,770,730 and 1,361,120. The processing time varies
between 41 hours and 124 hours with an average of 75 hours.
The average processing time for a sub-stack size of 20 and 40
images is 188 hours and 50 hours, respectively.

Further, the number of PSC identified in one sub-stack and the
number of PSC identified in multiple sub-stacks was a concern.
Table 3 provides information concerning this. For sub-stacks
with 40 images no PSC was identified in more than one sub-
stack. For sub-stacks with 20 and 30 images 3 PSC were iden-
tified in two sub-stacks, but none were identified in all three
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Figure 6. The PSC, which are identified in one subset (dark blue), in two (petrol) or in three (yellow) subsets, are featured in the maps.
There is a map for each subset size, starting with the size 20 images on the left side, 30 images in the middle and 40 images on the

right side (Approach C).

sequential sub-stacks. The lack of PSC identified in more than
one sub-stack is most likely due to using different masters for
the sequential sub-stacks. The change in master has the con-
sequence that the localization of the PSC is slightly different.
This would make a recombination of the sub-stack results dif-
ficult. A solution could be to coregister all slaves to the same
master, which is from now on referred to as a super-master. The
interferogram generation would then be performed with a dif-
ferent master, which can be interchangeable. Another possible
solution could be to interpolate the results. In that case, areas
of interest would need to be analyzed instead of individual PSC
or PS.

An additional drawback of Approach B is the sampling rate of
the mean velocity. Depending on the sub-stack size, a new value
for the mean velocity is calculated every 120, 180, or 240 days.
Short term variations of the mean velocity are not detectable.
In order to provide a high sampling rate of the mean velocity to
detect short term variations, a small sub-stack size is preferred.

However, this would lead to a higher noise level and longer
processing time. In addition, the mean velocity maps would
either need to be interpolated for each sub-stack or all slaves
would need to be coregistered to the same master. This would
increase the processing time further.

Approach C:
The key parameters of this approach are summarized in Table
4. All the parameters have similar values for sub-stacks of the
same size.

This is also given for the memory consumption. Sub-stacks of
the size of 20, 30 and 40 images need on average 32.96 GB,
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40.6 GB and 47.5 GB, respectively. In addition to the key para-
meters, the number of PSC identified in one sub-stack and the
number of PSC identified in multiple sub-stacks was a concern.
In Figure 6 three maps of the same area are shown, which cor-
respond to a different sub-stack size (i.e., 20, 30 and 40 images).
All PSC that are identified in one sub-stack are featured in the
corresponding map. The color indicates, if the PSC is identified
in one sub-stack (dark blue), in two (petrol) or three sub-stacks
(yellow). Figure 6 illustrates that the portion of PSC identified
in one or two sub-stacks decreases with an increasing sub-stack
size. For the sub-stack size of 20 images 20 % of the PSC are
only identified in one of the sub-stacks, 17 % are identified in
two sub-stacks, and 58 % in three sub-stacks. In case the sub-
stack size is 30 images, 18 % of the PSC are only identified in
one of the sub-stacks, 14 % are identified in two sub-stacks, and
68 % in three sub-stacks. And for a sub-stack size of 40 images
15 % of the PSC are only identified in one of the sub-stacks, 11
% are identified in two sub-stacks, and 74 % in three sub-stacks.
In case of Approach C, we did not vary the master for each sub-
stack. However, it would be necessary to change the master,
if the master scene is no longer included within the sub-stack.
In that case, PSC common between the sub-stacks would most
likely not be identified. A solution would be to either use a
super-master or interpolate the results. However, the interpol-
ation would need to be performed less frequently than in case
of Approach B. Further, Approach C provides a high sampling
rate of the mean velocity. A new value is calculated every 6
days.
In case of Approach C, a larger sub-stack size is preferential,
because the same master could be used for a longer time period
and the processing time would be less than in case of a smal-
ler sub-stack. The noise level would also be lower in case of a
larger sub-stack.

5. DISCUSSION & CONCLUSION

The recent advances in integrating advanced DInSAR techniques
into permanently operating monitoring systems (Berti et al.,
2013, Tomás et al., 2019, Raspini et al., 2018, Kalia, 2018)
were the motivation for this study. We wanted to identify a pro-
cessing strategy, which best serves the purpose of continuously
monitoring active deformation areas employing PSI. Therefore,
at the beginning of this paper we asked the question, if it is a
better approach to always consider the whole available dataset
or to process sub-stacks and later combine the results. The most
important demands towards a PSI processing strategy are: (1) a
high enough PS density to accurately estimate the extent and in-
tensity of the deformation, (2) a high sampling rate of the mean
velocity to detect short term variations and (3) a possibility for
recombining the sub-stack results.
Using Approach A showed, that the average PS density de-
creases with an increasing number of images. However, the
average value calculated for the entire scene does not provide
information concerning the spatial distribution of the PS. Fig-
ure 5 illustrates, how important the spatial distribution is to de-
tect areas of active deformation. The differences between the
two maps are particularly given in the areas of the black and
red rectangles. While in the urban area (black rectangle) of the
mean velocity map the differences in PS density are not visible,
the map of Stack II shows less noise superimposed on the mean
velocities compared to the results from Stack I. In contrast, the
differences in PS density are visible in the non-urban area (red
rectangle). The area is located about 12 km southeast of Patras
and is characterized by a hilly terrain with steep slopes. This is

an area known to be affected by landslides and in case of Stack
I, these landslides are visible as clusters of dark blue colored
PS. In case of Stack II, they are not as clearly visible. In ad-
dition, their extent and maximum velocity are underestimated.
Thus, it would be preferential to always use the same number
of images (exact number depends on the scene, image repeti-
tion time and type of deformation to be observed) to achieve a
consistent PS density and distribution.
Table 2 indicates that a change of master leads to a lack of
PSC, and thus PS, which are identified in all sequential sub-
stacks. The change in master occurs once the original master
is no longer part of the sub-stack. Since, the sub-stacks of Ap-
proach B do not overlap in time, the master is changed for every
sub-stack. In case of Approach C, only one image of the sub-
stack is interchanged and for this reason the same master can be
used for a longer time period. Identifying common PS between
the sub-stacks is necessary for a seamless and continuous post-
processing analysis of the PS displacement time series. In case
of Approach A, this is easily achieved, because the approach
always considers the entire available dataset, and therefore a
change in master would not matter. In case of Approaches B
and C the master needs to be changed once it is no longer part
of the sub-stack. Here, two solutions are possible. Either all
images are coregistered to a super-master and an additional in-
terchangeable master is used for the interferogram generation or
the results of the sub-stacks are interpolated. An additional step
such as interpolating the results would be needed less frequently
in case of Approach C than for Approach B. Another concern
is the sampling rate of the mean velocity. Sentinel-1 provides a
new image every six days. Approach C provides a new value for
the mean velocity at the same rate, while Approach B provides
a new value, depending on the sub-stack size, every 120, 180,
or 240 days. In case of Approach A, a new value is provided
roughly every 60 days. However, Approach A could be adjus-
ted to provide a new value every 6 days.

Even though the challenges resulting from changing the master
have yet to be solved, we concluded that Approach C serves our
purpose the best. Approach C provides a high sampling rate of
the mean velocity and a consistent number of PS to detect short
term and long term variations. Depending on the sub-stack size,
the master can be reused for a longer time period than for Ap-
proach B. Thus, additional steps to recombine the sub-stack res-
ults need to be performed less often. Also, because Approach
C uses sub-stacks that have a large overlap, most of the inter-
ferograms are used multiple times. At this point, there might be
the potential to reuse some of the intermediate results already
calculated with the previous sub-stack.
In the future, we will focus on solving the challenge of changing
the master and still recombing the sub-stack results. Addition-
ally, we will explore the possibility to decrease processing time
by reusing intermediate results and comparing the total amount
of time needed per year to use the approaches for a continuous
monitoring of ground deformation.
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Journal of Geophysical Research: Solid Earth, 112(B7).

Hooper, A., Zebker, H., 2007. Phase unwrapping in three di-
mensions with application to InSAR time series. J. Opt. Soc.
Am. A, 24(9), 2737–2747.

Hooper, A., Zebker, H., Segall, P., Kampes, B., 2004. A new
method for measuring deformation on volcanoes and other nat-
ural terrains using InSAR persistent scatterers. Geophysical Re-
search Letters, 31(23), L23611.

Kalia, A. C., 2018. Classification of landslide activity on a
regional scale using persistent scatterer interferometry at the
Moselle Valley (Germany). Remote Sensing, 10(12), 1880.

Marinkovic, P., Ketelaar, G., van Leijen, F., Hanssen, R., 2007.
Insar quality control: Analysis of five years of corner reflector
time series. Proceedings of Fringe 2007 Workshop (ESA SP-
649), Frascati, Italy, 26, 1–8.

Raspini, F., Bianchini, S., Ciampalini, A., Del Soldato, M., Sol-
ari, L., Novali, F., Del Conte, S., Rucci, A., Ferretti, A., Casagli,
N., 2018. Continuous, semi-automatic monitoring of ground
deformation using Sentinel-1 satellites. Scientific reports, 8(1),
1-11.

Sakkas, V., Garcia, M., Bianchi, M., Lagios, E., 2018. Squeesar
analysis based on Sentinel-1 data in the seismic active area of
Patras Gulf (W. Greece). IGARSS 2018 - 2018 IEEE Interna-
tional Geoscience and Remote Sensing Symposium, 208–211.

Sousa, J., Bastos, L., Monserrat, O., Perski, Z., 2013. Multi-
temporal SAR interferometry reveals acceleration of bridge
sinking before collapse. Natural Hazards & Earth System Sci-
ences, 13(3), 659-667.

Tomás, R., Cano, M., Garcia-Barba, J., Vicente, F., Herrera,
G., Lopez-Sanchez, J. M., Mallorquı́, J., 2013. Monitoring an
earthfill dam using differential SAR interferometry: La Pedrera
dam, Alicante, Spain. Engineering Geology, 157, 21-32.

Tomás, R., Pagán, J. I., Navarro, J. A., Cano, M., Pastor, J. L.,
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