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ABSTRACT:

Localisation is one of the key elements in navigation. Especially due to the development in automated driving, precise and reliable
localisation becomes essential. In this paper, we report on different cooperation approaches in visual localisation with two vehicles
driving in a convoy formation. Each vehicle is equipped with a multi-sensor platform consisting of front-facing stereo cameras and
a global navigation satellite system (GNSS) receiver. In the first approach, the GNSS signals are used as excentric observations
for the projection centres of the cameras in a bundle adjustment, whereas the second approach uses markers on the front vehicle
as dynamic ground control points (GCPs). As the platforms are moving and data acquisition is not synchronised, we use time
dependent platform poses. These time dependent poses are represented by trajectories consisting of multiple 6 Degree of Freedom
(DoF) anchor points between which linear interpolation takes place. In order to investigate the developed approach experimentally,
in particular the potential of dynamic GCPs, we captured data using two platforms driving on a public road at normal speed. As a
baseline, we determine the localisation parameters of one platform using only data of that platform. We then compute a solution
based on image and GNSS data from both platforms. In a third scenario, the front platform is used as a dynamic GCP which can be
related to the trailing platform by markers observed in the images acquired by the latter. We show that both cooperative approaches
lead to significant improvements in the precision of the poses of the anchor points after bundle adjustment compared to the baseline.
The improvement achieved due to the inclusion of dynamic GCPs is somewhat smaller than the one due to relating the platforms
by tie points. Finally, we show that for an individual vehicle, the use of dynamic GCPs can compensate for the lack of GNSS data.

1. INTRODUCTION

In the field of automated driving, precise and reliable self-lo-
calisation is a fundamental pre-condition. Especially in densely
built-up urban areas classical positioning sensors like global
navigation satellite system (GNSS) receivers reach their lim-
its, as occlusions and multipath effects can lead to systematic
errors. In these areas, in particular, additional sensors such as
laser scanners or cameras are used to improve the localisation,
e.g. (Garcia-Fernandez and Schön, 2019). Although cameras
require an external light source, they are lighter and cheaper
than laser scanners, making them more flexible in use. Ex-
amples of the usage of cameras in challenging urban areas are
(Cavegn et al., 2016) and (Cavegn, 2020), where the authors
show an improvement of the accuracy of the object points by a
factor of 10 when comparing image-based georeferencing using
ground control points (GCPs) with direct georeferencing using
GNSS/INS. They also demonstrate that the uncertainty of the
localisation derived from GNSS/INS only can be too optimistic.

While typical visual localisation methods, for example visual
simultaneous localisation and mapping (SLAM), use a single
platform, sharing information among multiple platforms can
lead to better reliability of the solution. Therefore, applica-
tions for cooperative visual SLAM with multiple agents have
recently been developed (Zou et al., 2019). Due to the emer-
gence of car-to-car and car-to-X communication, cooperation
is also interesting for automated driving. Cooperation can be
archived, for example, by sharing position, in which context
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the cooperating vehicle can be used as a dynamic GCP (Mo-
lina et al., 2017), (Stoven-Dubois et al., 2018), (Trusheim and
Heipke, 2020) or by sharing images or features derived from
images (Zou and Tan, 2013). Especially in (Molina et al., 2017)
and (Stoven-Dubois et al., 2018), where one of the participat-
ing platforms has worse possibilities for self-localisation, the
additional information leads to better results.

In this paper, we investigate the potential improvement of loc-
alisation using image sensors in typical traffic scenarios due
to cooperation. The paper extends our prior work (Trusheim
and Heipke, 2020), in which only simulations were investig-
ated, by presenting results achieved using real data. For this
purpose, we recorded data in a typical traffic situation. Two
vehicles equipped with multi-sensor platforms drive in a convoy
formation through a road with normal traffic volume. Mark-
ers on the vehicles allow to identify them in the images (fig-
ure 1). Both multi-sensor platforms are equipped with a GNSS
receiver and a stereo camera pair. Images are captured with
GNSS timestamps. Therefore, all sensor data are available in a
common time frame. The pose of all sensors and the markers
relative to the platform is known from prior calibration.

Our main contribution is the demonstration of the advantages of
cooperative visual localisation in urban traffic scenarios using
bundle adjustment. For this purpose we qualitatively investigate
the trajectory precision of the corresponding vehicles, using (a)
common tie points and (b) so called dynamic GCPs.

The paper is structured as follows: After the introduction, we
give a short overview of existing work in section 2. In section
3 we describe the employed bundle adjustment approach with
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Figure 1. Top: multi-sensor platforms used for this paper. Left:
platform of the trailing vehicle. Right: platform of the front

vehicle. Both platforms are equipped with a GNSS receiver and
a stereo camera pair looking into the direction of travel. Bottom:

Front vehicle with attached markers.

a detailed description of the used functional models. Section 4
contains our experiments. We first introduce the different scen-
arios and give a short overview of the sensors and data used in
the experiments. We then present and discuss the results of each
scenario in a comparative way. In section 5 we recapitulate the
results and discuss possible steps for future work.

2. RELATED WORK

Visual sensors provide important information for localisation
in difficult environments. Cavegn et al. (2016) and Cavegn
(2020) deal with the challenge of georeferencing image sequen-
ces. The authors employ image-based georeferencing by us-
ing bundle adjustment. With this method, they can reduce the
residuals at checkpoints from approx. 40 cm, achieved with
GNSS/IMU sensors only, to 4 cm. While these results show the
potential of the idea to use visual localisation in autonomous
driving for determining ego-motion, the authors use GCPs to
obtain their results. In many applications, however, such GCPs
are not available.

To increase the accuracy and reliability of localisation, a co-
operation of several cameras is also used, especially in robotics;
cf. the overview in (Zou et al., 2019). In CoSLAM (Zou and
Tan, 2013), several moving cameras acquire data processed in
a centralised adjustment. The authors state that they can scale
their system to up to 12 cameras; image coordinates of points
on moving objects are eliminated by outlier detection. Another
possibility of cooperation is the recognition of cooperating plat-
forms in the images. Stoven-Dubois et al. (2018) introduce an
unmanned aerial vehicle (UAV) tandem system for surveying
objects in GNSS denied areas. A so called surveying UAV flies
next to the object to be surveyed and takes images while be-
ing tracked in an image and georeferenced by another UAV that
flies at a higher altitude with a good GNSS signal. MapKITE
(Molina et al., 2017; Nahon et al., 2019) also uses a tandem
system. Here, the authors combine a terrestrial mobile map-
ping van with a UAV, so that they can make use of both types

of measurements. The van has a much higher payload and,
thus, can be used for heavier and also more accurate equipment.
In that approach, the vehicle is used as a dynamic GCP. For
accurate automated positioning, a circular target is placed on
the vehicle roof. In our previous work (Trusheim and Heipke,
2020), a comparison of static and dynamic GCPs in a traffic-
related scenario based on simulated data was shown. Here, we
apply this approach to real data.

Obviously, dynamic approaches must be able to handle time-
dependent parameters. To this end, Colomina and Blázquez
(2004) describe a model for trajectory and sensor orientation.
The authors compare a state space and a network approach and
point out the respective advantages and disadvantages. They
show that, whereas state space approaches are faster, network
approaches achieve higher precisions and allow for the integra-
tion of both time-dependent and time-independent models. For
short trajectory sections, linear interpolation can be performed
for time-dependent parameters; this is discussed in (Cucci et
al., 2017a) and (Cucci et al., 2017b) regarding raw observations
from inertial measurement units (IMUs) in dynamic networks.

3. COOPERATIVE VISUAL POSE ESTIMATION

In a dynamic environment, observations taken at different epochs
are related to different states. In our case, we use observations
of moving GNSS sensors to derive what we call dynamic GCPs
which can be observed in images images acquired by cameras
from another moving platform. In this case, the GNSS obser-
vations used to define the dynamic GCP do not refer to the 3D
position that dynamic GCP was at when the images showing
that GCP were captured. Thus, fusing observations of time-de-
pendent processes typically requires interpolation of some entit-
ies, here platform poses, in a time-dependent model. We solve
this problem by modelling the platform pose by a set of anchor
points with linear interpolation in between. Each anchor point
represents a 6 Degree of Freedom (DoF) pose of a platform at
a specific point time. Image points in different images showing
the same object point (i.e. potential tie points of the photogram-
metric block) may also refer to different positions in 3D if these
object points are not static. In this paper, we consider these non-
static points as blunders, which are to be eliminated in a robust
bundle adjustment.

In the bundle adjustment, we use three types of observations:
(a) the position of the GNSS antenna of a platform in the global
frame, (b) the image coordinates of conjugate points, which are
used as tie points in space and time, and (c) the image coordin-
ates of the marker points of a cooperating platform if these are
visible. The (time-constant) 3D coordinates of the tie points
in the global frame and the 6 DoF poses of the platform an-
chor points in the global frame are considered as unknowns; the
platform poses at the time of image acquisition are interpolated
from those of the anchor points by linear interpolation.

3.1 Functional models

We start the description of the functional model with the GNSS
observations. Figure 2 shows the relationship between the posi-
tion of the GNSS antenna in the platform frame and the position
of the antenna observed in the global frame. We formulate this
relationship as follows (the superscript indicates the frame; note
that the global frame does not have a superscript. Also, a t in
the subscript means ”time-dependent”):

XGNSS,t = Rplat,tX
plat
GNSS +Xplat,t. (1)
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Figure 2. Relationship between the position of the GNSS
antenna in the platform frame and its position observed in the

global frame.

Here, XGNSS,t,l is the position of the GNSS antenna observed
in the global frame at time t. Xplat,t represents the position of
the platform at time t, whereas Rplat,t is a rotation matrix de-
scribing the rotation between the platform and the global sys-
tems at time t. It is a function of three time-dependent rotation
angles roll, pitch, yaw (rt, pt, yt). Thus, (Rplat,t, Xplat,t) de-
scribe the unknown pose of the platform time t. Xplat

GNSS is the
position of the antenna in the platform frame, which is constant
and known from prior calibration.

Figure 3 illustrates the observation of a static object point which
is used as a tie point. The functional model for the image co-
ordinates of these tie points is described as follows:

Xplat
tp,t = RT

plat,t (Xtp −Xplat,t) (2)

Xcam
tp,t = Rcam

plat
T
(
Xplat

tp,t −Xcam
plat

)
(3)

xtp = x0 − c
XXcam

tp,t

ZXcam
tp,t

+ ∆x (4)

ytp = y0 − c
YXcam

tp,t

ZXcam
tp,t

+ ∆y.

In eq. 2 the coordinates of the tie point in the global frame Xtp

and the pose (Rplat,t, Xplat,t) of the platform are unknown.
The rotation matrix Rcam

plat and the shift Xcam
plat (eq. 3) represent

the pose of the camera in the platform frame; this transform-
ation is constant and given from prior calibration. Also, the
interior orientation parameters x0, y0, c and the parameters of
the distortion correction functions ∆x,∆y (eq. 4) are known
from this calibration. Here, XXcam

tp,t
is the first component of

the vector Xcam
tp,t , which represents the position of the tie point

at time t in the camera frame, YXcam
tp,t

is correspondingly the
second component and ZXcam

tp,t
the third. xtp, ytp are the ob-

served image coordinates of the tie point.

Finally, in figure 4 we show the case of an observed marker
point attached to a cooperating vehicle. For such observations,
we use the following model:

X
platk
mk,t = RT

platk,t

(
Rplatj ,tX

platj
mk +Xplatj ,t −Xplatk,t

)
(5)

Xcam
mk,t = Rcam

platk
T
(
X

platk
mk,t −Xcam

platk

)
(6)

xmk = x0 − c
XXcam

mk,t

ZXcam
mk,t

+ ∆x (7)

ymk = y0 − c
YXcam

mk,t

ZXcam
mk,t

+ ∆y.

Figure 3. Relationship between an object point in the global
frame and its position observed in the image.

Figure 4. Relationship between a marker point on a cooperating
platform and its position observed in the image.

Here, platform j is the observed platform and platform k is the
observing platform. We transform the position Xplatj

mk of the
marker point on the observed platform j into the global frame
using the pose (Rplatj ,t, Xplatj ,t) of platform j, where Xplatj

mk

is determined in a prior calibration and assumed to be constant
and the pose of the observed platform (Rplatj ,t, Xplatj ,t) is un-
known (eq. 5). Using the pose (Rplatk,t, Xplatk,t) of the ob-
serving platform k, this point is transformed into the platform
frame of k. Similar to eqs. 3 and 4, we then transform the point
into image coordinates xmk, ymk, used as observations (see eqs.
6 and 7). Note that this type of observations contributes to the
determination of the poses of both platforms.

3.2 Stochastic models

Each of the three different groups of observations is assumed
to be of constant precision, and all correlations are neglected.
As a consequence, the variance-covariance matrix of the obser-
vations is a diagonal matrix. For the observation of the GNSS
antenna positions, we used a relatively conservative standard
deviation of σXY ZGNSS = 0.5 m for all components. The
image coordinates are introduced with σxytp = 0.8 pixel for
the tie points and σxymk = 0.5 pixel for the marker points.
The accuracy for the marker points was chosen to be slightly
smaller than the one for tie points because the markers were
specially designed to be well identifiable in the images.

3.3 Platform trajectory modelling

As mentioned before, the trajectory of a platform is modelled
by a series of anchor points Aplat,ti , each consisting of a 3D
vector Xplat,ti representing the position of the platform at time
ti and another 3D vector Oplat,ti = (rti , pti , yti , ) represent-
ing the time-dependent rotation angles forming the other com-
ponent of the platform pose at time ti. The components of the
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anchor points are the actual unknowns in the adjustment. To de-
termine the pose of the platform at the time t at which an image
or a GNSS observation is acquired, we use linear interpolation
between the neighbouring anchor points for both components:

Xplat,t =
t− ti

ti+1 − ti

(
Xplat,ti+1 −Xplat,ti

)
+Xplat,ti

Oplat,t =
t− ti

ti+1 − ti

(
Oplat,ti+1 −Oplat,ti

)
+Oplat,ti (8)

where Xplat,t and Oplat,t represent the pose of the platform at
time t, i.e. the time of observation, and the entities at times
ti and ti+1 are the corresponding entities of the anchor points.
The time ti is the time of the anchor point before the observa-
tion and ti+1 the one after the observation. The angles Oplat,t

are used to compute the rotation matrix Rplat,t (e.g. eq. 1).

3.4 Precision

As a measure of quality of our investigation, we use the preci-
sion resulting from the bundle adjustment, contained in the co-
variance matrix of the unknowns. The inverse of the matrix of
normal equationsN contains information about the variances of
the unknowns. In our case, we are interested in the 6 DoF poses
of the anchor points of the trajectories and the 3D coordinates
of the object points. The precision is then calculated by taking
the square root of the corresponding entry of N−1, multiplied
by the a posteriori standard deviation of unit weight.

4. EXPERIMENTS

4.1 Scenarios

In this section, we consider five different scenarios involving
two platforms to demonstrate the potential of cooperative local-
isation using bundle adjustment. The different combinations of
observations used for the different scenarios are shown in table
1. In the following, the leading platform is named platform
front and the trailing platform is named platform back.

platform back platform front
TP GNSS MP TP GNSS

Sc. 1 X X × × ×
Sc. 2 X X × X X
Sc. 3 X X X × X
Sc. 4 X X X X X
Sc. 5 X × X × X

Table 1. Combination of observations used for the different
scenarios (X = used, × = not used). TP: image coordinates of tie

points, GNSS: position of GNSS antenna, MP: image
coordinates of marker points placed on platform front. and

observed by platform back

Note that for some scenarios only image related observations
from one platform are needed, and thus all computations (fea-
ture extraction, matching and bundle adjustment) can be ex-
ecuted locally on that vehicle: only the GNSS data of the other
vehicle need to be communicated. For other scenarios, image
observations from both vehicles are needed, thus locally extrac-
ted features and their description also need to be transferred to
the vehicle which performs the bundle adjustment. However, a
more detailed discussion of the communication aspects is bey-
ond the scope of this paper. The five scenarios are defined as
follows:

1. In the first scenario, we use only a single platform. The
GNSS data and the image coordinates of tie points are
used as observations in a bundle adjustment. This scen-
ario provides a baseline regarding the obtainable precision
using one multi-sensor platform and no cooperation.

2. In the second scenario the GNSS data and the image co-
ordinates of the tie points of both platforms are used as
observations in a common bundle adjustment. The inclu-
sion of information from different platforms, including tie
points observed from both platforms, should lead to a bet-
ter result for the precision than in scenario 1.

3. In the third scenario, we use the image observations and
the GNSS data of platform back, in addition to the image
coordinates of the observed marker points of platform
front and its GNSS data, thus we use the markers to be
able to use the observed platform as a dynamic GCP. Up
to four marker points are visible in one image. Due to the
use of the dynamic GCP, results should be better than in
scenario 1, but not as precise as in scenario 2, because tie
points observations are only used from platform back.

4. The fourth scenario combines scenarios 2 and 3 by consid-
ering multiple platforms including a dynamic GCP. With
this scenario, we want to check if the precision of scenario
2 can be further improved by using the additional cooper-
ation strategy.

5. Finally, we show that the use of a dynamic GCP also makes
it possible to calculate the ego-pose of the platform back
even if no own GNSS data are available for that platform.
For this purpose, we use the image coordinates of the tie
points of platform back and the image coordinates of the
observed marker points of platform front, as well as the
GNSS data of platform front.

4.2 Data Acquisition

The data was recorded in a measurement campaign with several
multi-sensor platforms. For this paper, a track is chosen where
two platforms travel in tandem around a curve of approximately
90 degrees in an urban canyon. For the first half of the track, the
vehicles travel in easterly direction and then turn turn south (fig-
ure 5). We use the stereo camera pairs and the GNSS receivers
of both platforms shown in figure 1 in different combinations
as described above. As the cameras look into the direction of
travel, the distribution of tie points varies along the trajectory:
for the part of the track after the turn there are significantly more
points than for the first part, see figure 5.

The cameras we use are Grasshopper 3 USB cameras. They ac-
quire images of 1920 × 1200 pixels at a frequency of 5 Hz
and have a focal length of 11.3 mm, equivalent to 1930 pixels.
Image acquisition was initiated by an external trigger signal
provided to both cameras. Based on this signal also the GNSS
time is saved, therefore, all sensor data is given in the same
time frame. The GNSS positions are captured using geodetic
receivers Septentrio PolaRx5e SN 3061550 with a JAVRING-
ANT G5T NONE, SN 06380 antenna at a frequency of 1 Hz.
The images were taken on Aug. 25, 2020, at 5 pm, thus relat-
ively late in the day. The sky was overcast, which led to difficult
lighting conditions (figure 6).
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Figure 5. Data acquisition scenario. Black: sparse tie points; the
GNSS observations of platform back and platform front

are shown red and green, respectively.

Figure 6. Image taken by the trailing vehicle at a point in time
between anchor point 12 and 13; the front vehicle can be seen in
the centre of the image. Yellow: observed marker points. Blue:

observed tie point. Red: tie points eliminated as outliers.

4.3 Experimental Setup

For the experiments, a section of the track covering about 25 s
was chosen. At a frequency of 1 Hz, this makes 25 GNSS
observations for each platform, as well as 125 image pairs per
stereo camera pair captured at 5 Hz (500 images in total). To
define the trajectory we place an anchor point every 0.25 s
(4 Hz), yielding a total of 100 anchor points per trajectory.
These anchor points were aligned with the GNSS observations
such that the time stamp of every GNSS observation corres-
ponds exactly to the time associated with one anchor point. Im-
age coordinates of tie points were extracted using the software
COLMAP (Schönberger et al., 2016; Schönberger and Frahm
2016), where we used SIFT-features and exhaustive matching.

In scenarios 3 and 5, where only GNSS observations are avail-
able for platform front, the anchor point density of this plat-
form is reduced to 1 Hz (25 anchor points), as there are no
image observations which could support a denser selection. For
the marker points, only observations in images closest in time
to the GNSS observations of platform front are used, which

is done to avoid interpolation errors. Thus, these marker point
observations are only available at a frequency of 1 Hz.

4.4 Results

In all scenarios, the estimated standard deviation of the weight
unit indicated a good fit of the stochastic model after conver-
gence. The average back-projection error of the image coordin-
ates amounts to approximately 0.65 pixels in the x-direction and
0.8 pixels in the y-direction. In general, it can be said that the
height component of the positions of both the anchor and the
object points can be determined with a lower precision than the
planimetric components.

The number of tie points observed in the individual images is
shown in figure 7. The reduction of the number of tie points at
the beginning and the end of the right-hand turn of the vehicles
(near anchor points 25 and 50, respectively, for platform back)
is particularly noticeable. Figure 7 also shows that for platform
front there are significantly more tie points per image, which
can be explained by a longer exposure time for the cameras on
this platform.

Figure 7. Number of tie points observed in each image.

An example for the distribution of these tie points can be seen
in figure 6. The figure also shows the effects of using robust
adjustment: in this image, some of the tie points were elimin-
ated as blunders, and the majority of them lies on the moving
platform front. We note, however, that not all these mov-
ing tie points were identified as blunders. In this image, four
marker points can also be seen (marked in yellow). It has to be
noted that they are not well distributed across the whole image,
which somewhat weakens the solution.

Figure 8 shows the pose of the platform back relative to its ini-
tial pose. The pose is represented by the positions and rotation
angles of the individual anchor points. The upper part shows the
positions. It can be seen that the platform first moves eastwards
(increasing values of the blue curve) and then southwards (de-
creasing values of the orange curve), while the altitude remains
largely constant (green curve). This 90o turn can also be seen
in the yaw angle (green curve in the lower part of the figure).
Roll and pitch (blue and orange curves), on the other hand, are
nearly constant along the journey.

4.4.1 Scenario 1: In this scenario, we only use platform
back. Observations are the image coordinates observed by the
stereo camera system and the positions of the GNSS antenna
of the platform in the global frame. Figure 9 shows the pre-
cision for the 6 DoF poses of the anchor points in the global
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frame. The overall precision of the position values (figure 9
top) is between 0.1 and 0.3 m. It is interesting to observe the
impact of the right-hand turn of the platform on the precision.
While driving along a straight trajectory, the σHeight values de-
crease, whereas they increases during the right-hand turn of the
platform before becoming smaller and increasing again towards
the end of the trajectory. In general, the planimetric precision is
better than the one in height. Due to the turning manoeuvre, the
relationship between the two global planimetric position axes
(East vs. North) and those of the platform (in vs. across driv-
ing direction) changes between anchor points 35 and 55. In the
first part of the track, the orange curve (North/across-track) has
behaviour a similar to the height, but is slightly more precise,
partly due to the images having a wider horizontal than ver-
tical extension. In the second half of the track, the blue curve
(East/across-track) shows a corresponding behaviour. The pre-
cision in driving direction (first blue, then orange curve) is bet-
ter than the one across driving direction.

The bottom part of figure 9 shows the estimated precisions of
the rotation angles. The effect of the change of the driving dir-
ection on σRoll and σPitch is similar to the one of σEast and
σNorth. Due to the spatial distribution of object points (fig-
ure 5), the precision of the rotation around the global East-axis
(blue curve during the first part of the drive; orange curve in
the second part) is better than the one around the global north-
axis. The precision around the height axis (σY aw) is the best
one along the entire trajectory.

4.4.2 Scenario 2: In the second scenario, platform front
is introduced as a second platform to investigate cooperative
localisation. In order to compare the results to scenario 1, again
the results of platform back are shown, see figure 10. It can be
seen that the general shapes of the curves are similar to those in
scenario 1, but in scenario 2 a better precision is achieved for all
pose elements. This corresponds to our expectations according
to the results of earlier simulations (Lenz, 2020).

4.4.3 Scenario 3: In the third scenario, the cooperative part
is introduced by using the attached marker points (eqs. 5 and
7). This allows the platform front to be used as a dynamic
GCP. The observations used are the image coordinates of the
marker points and the GNSS observations of platform front
in addition to those used in scenario 1.

In this scenario, a problem occurs: In the course of the traject-
ory there is a short time interval of about 5 s during the turn
in which the marker points are not visible. Thus, we do not
have any observations supporting the estimation of the related
anchor points of platform front. This means that rotations of
platform front cannot be determined here. We find a work-
around by regularising the solution; we introduce direct obser-
vation of the rotations of platform front for each anchor point
with relatively large standard deviations (σ = 0.2 rad (11.5o)
for roll and pitch and σ = 0.5 rad (28.6o) for yaw), based on
the assumption that the car only moves in the direction of travel
and roll and pitch are rather constant over time. The yaw angle
is estimated from two consecutive GNSS observations. In this
way, numerical instabilities of the solutions are prevented.

If we compare the precision results of this scenario (figure 11)
with those of the two previous ones, we notice that we achieve
an improvement compared to scenario 1, but it is somewhat
smaller than the one obtained in scenario 2. The reason is
that the photogrammetric block is already geometrically rather
stable in scenario 1, as enough well distributed tie points are

available, so the GNSS data for platform back are sufficient to
yield a rather precise solution, and the additional dynamic GCP
does not have much effect. The precision of yaw is slightly de-
creased in the anchor points corresponding to the turn of the
platform, when the platform front is not visible.

4.4.4 Scenario 4: The fourth scenario combines scenarios
2 and 3. As the determination of the rotation of the platform
front is supported by the image coordinate observations of the
tie points between the vehicles, the introduction of a regularisa-
tion as in scenario 3 is not necessary. The results achieved in
this scenario are shown in figure 12. These are similar to the
results obtained in scenario 2, which again shows that the intro-
duction of the dynamic GCP does not have a significant effect
if the photogrammetric block has a stable geometry stemming
from a large enough number of well distributed tie points.

4.4.5 Scenario 5: In the fifth scenario, we consider the situ-
ation of localisation of a platform without GNSS observations
taken by its own sensor, so that dynamic GCPs are the only in-
formation about the global frame. For this purpose, additional
rotation observations of the platform front are again needed
to regularise the solution as described in section 4.4.3.

The results are shown in figure 13. The precision plots have
a similar appearance than those for the other scenarios, but, as
expected, compared to scenario 1, the solution is significantly
less precise. The fact that during the right-hand turn the front
vehicle is not visible has a further negative impact on these res-
ults.

4.4.6 Comparison Finally, we compare all scenarios based
on the mean values for the precision of the pose parameters at
the anchor points of the whole trajectory of platform back (see
table 2). We consider the first scenario as the baseline, as it does
not contain any cooperation.

σEast [mm] σNorth [mm] σHeight [mm]

Scenario 1 131 109 168
Scenario 2 94 78 121
Scenario 3 98 80 126
Scenario 4 96 76 118
Scenario 5 159 126 218

σRoll [o] σPitch [o] σY aw [o]

Scenario 1 0.61 0.52 0.29
Scenario 2 0.45 0.38 0.21
Scenario 3 0.48 0.42 0.22
Scenario 4 0.45 0.38 0.21
Scenario 5 0.93 0.77 0.37

Table 2. Mean precision of the 6 DoF pose over all anchor points
of the different scenarios.

Scenario 2 yields an improvement in the precision of the posi-
tion of 37 mm in East, 31 mm in North, 47 mm in height and
an improvement in rotation precision of 0.16o for roll, 0.14o

for pitch and 0.08o for yaw. Overall, the average improvement
over the precision of the 6 DoF pose is 27.5 % compared to the
non-cooperative solution.

For scenario 3, an improvement in the precision of the 6 DoF
poses of the anchor points compared to the baseline can also
be observed. The improvements are 33 mm in East, 29 mm
in North, 42 mm in height and 0.13o in roll, 0.10o in pitch and
0.07o in yaw. This results in an average improvement of 24.0 %
compared to the non-cooperative solution.
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Figure 8. Trajectory of the platform back represented by the
individual components of the anchor points. Top: Position of the

anchor points in East, North and Height. Bottom: Rotations
angles (roll, pitch, yaw).

Figure 9. Results of platform back, scenario 1. Top: Precision
of the anchor point positions in East, North and Height. Bottom:

Precision of the anchor point rotations (roll, pitch, yaw).

Figure 10. Results of platform back, scenario 2 (details see
figure 9).

Figure 11. Results of platform back, scenario 3 (details see
figure 9).

Figure 12. Results of platform back, scenario 4 (details see
figure 9).

Figure 13. Results of platform back, scenario 5 (details see
figure 9).

.
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For the combination of the two cooperation strategies (scenario
4), the individual, as well as the average improvement (27.8 %),
is very similar to the one obtained in scenario 2.

Scenario 5 is interesting, as in this case cooperation is the only
way to achieve a solution. Compared to scenario 1, the preci-
sion in position deteriorates by 28mm in East, 17mm in North
and 50 mm in height, a deterioration is also found in the preci-
sion of rotation of 0.32o in roll, 0.25o in pitch and 0.08o in yaw.
Overall, the precision of the 6 DoF pose deteriorates by 32.2 %
on average.

5. CONCLUSION

In summary, we underline that a significant improvement in
visual localisation can be obtained through cooperation. It was
shown that both, cooperation by using other participants as dy-
namic GCPs as well as cooperation in a common bundle adjust-
ment, lead to improvements in the precision of over 20 % with
respect to the uncooperative approach.

The improvement obtained with a common bundle is slightly
higher compared to using a single dynamic GCP, but a larger
number and a better distribution of dynamic GCPs will improve
the results obtained. Furthermore, the results show that cooper-
ation can also compensate for the (temporal) absence of GNSS
data. Such situations often happen in urban environments.

In further work, we will introduce more general interpolation
schemes, which will allow us to be more flexible concerning
defining anchor points. These will also be chosen as a func-
tion of driving mode (straight course, turn etc.), and we will se-
lect different distances between anchor points for different pose
parameters. As a further improvement, additional sensor data
could be introduced, such as IMU data, which are available in
a higher measuring frequency and provide further information
about the driving behaviour. These extensions should also be
examined to avoid the regularisation for the rotation introduced
in scenarios 3 and 5.

Another aspect is that in this work dynamic tie points are con-
sidered as blunders and are eliminated in a robust adjustment.
In figure 6 it is shown that this is true for some points, but it
is also visible that some points lying on the front vehicle are
not eliminated. In future work, we will investigate possibilit-
ies to subdivide the tie points into dynamic and static before
the adjustment. This should lead to a further improvement, also
because trajectories can be defined for dynamic tie points also.

We conclude that our work shows that cooperative visual loc-
alisation in a real-world traffic environment leads to promising
results with improved precision.
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