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ABSTRACT: 

 

With this contribution, we describe and publish two high-quality street-level datasets, captured with a portable high-performance 

Mobile Mapping System (MMS). The datasets will be freely available for scientific use. Both datasets, from a city centre and a forest 

represent area-wide street-level reality captures which can be used e.g. for establishing cloud-based frameworks for infrastructure 

management as well as for smart city and forestry applications. The quality of these data sets has been thoroughly evaluated and 

demonstrated. For example, georeferencing accuracies in the centimetre range using these datasets in combination with image-based 

georeferencing have been achieved. Both high-quality multi sensor system street-level datasets are suitable for evaluating and 

improving methods for multiple tasks related to high-precision 3D reality capture and the creation of digital twins. Potential 

applications range from localization and georeferencing, dense image matching and 3D reconstruction to combined methods such as 

simultaneous localization and mapping and structure-from-motion as well as classification and scene interpretation. Our dataset is 

available online at: https://www.fhnw.ch/habg/bimage-datasets 

 

 

1. INTRODUCTION 

The ongoing progress in digitalization leads to massive 

transformations and innovations in infrastructure management. 

Multiple domains require detailed and accurate 3D data for cre-

ating and updating smart city and digital twin solutions. Mobile 

mapping systems (MMS) hold the potential to provide such data 

in a cost-effective manner. From the first stereo image-based 

MMS in the early 1990s (Novak, 1991; Schwarz et al., 1993) they 

evolved into multi-stereo camera and panoramic camera config-

urations with an almost complete coverage (Meilland et al., 2015; 

Blaser et al., 2017). 

 

Nebiker et al. (2015) discuss advantages of image-based Mobile 

Mapping (MM) over the widely distributed light detection and 

ranging (LiDAR)-based MM in terms of temporal coherence in 

the acquisition and of information density. Moreover, image-

based MM allow to create 3D geospatial image spaces, which can 

be used e.g. for infrastructure management using cloud-based 

web applications. Blaser et al. (2017) show the great potential of 

automatically creating detailed 3D city models from street-level 

using imagery. As vehicle-based MMS have become well estab-

lished, portable MMS have entered the market in recent years. 

Lehtola et al. (2017) provide a comparison of numerous state-of-

the-art LiDAR-based indoor MMS. Blaser et al. (2018) present 

the development of a portable image-based indoor MMS and 

provide accuracy analysis in indoor environment with promising 

results within the centimetre range. Blaser et al. (2020) extended 

the portable MMS with a tactical grade inertial measurement unit 

(IMU) for indoor and outdoor use. They conducted performance 

evaluations using three independent georeferencing methods in 

challenging outdoor test sites not accessible to vehicles and 

achieved accuracies in the centimetre range. However, all geo-

referencing methods showed outliers. Combining various georef-

erencing methods or coupling multiple sensor data could further 

improve the accuracy as well as the reliability. 

 

In recent decades and years, we also witnessed a paradigm shift 

towards open science. Open access publications, open source 

software as well as open datasets promoted transparency and 

comparability in science. Related sciences like computer vision 

or robotics experienced enormous progress, which was acceler-

ated or even made possible thanks to the open science philoso-

phy. Thus, we consider that our challenging datasets could help 

to accelerate the development of novel methods in the field of 

mobile 3D reality capture and smart city. 

 

With this contribution, we 

• publish two high-quality street-level datasets captured with 

a portable high-performance MMS from challenging envi-

ronments in a city centre as well as in a forest for scientific 

use. 

• describe our MMS and the resulting raw and pre-processed 

data and our accurate overall system calibration so that the 

data provided can be fully utilized. 

• describe both test sites and their associated datasets. 

• show our initial research and discuss the potential and pos-

sible applications for the datasets provided. 

 

First, we discuss related work and related open datasets that al-

ready exist. Second, we describe our MMS, provide our overall 

system calibration, and specify resulting raw and pre-processed 

data. Third, we describe our test sites as well as our published 

datasets. Finally, we show initial research and point out its poten-

tial and show possible applications. 

 

2. RELATED WORK 

In autonomous driving, there exist numerous benchmark datasets 

(e.g. KITTI Vision Benchmark Suite, Waymo Open Dataset, 

ApolloScape Dataset, etc.). Choi (2019) provide a list of the most 

recent benchmark datasets and dataset collections for robotics. 

The KITTI Vision Benchmark Suite (Geiger et al., 2012) pro-

vides benchmark data and leader boards for numerous applica-
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tions in autonomous driving. However, in these fields high frame 

rates and low latency are of greater importance than image qual-

ity, precise sensor synchronisation and exact overall calibration 

– aspects which are important for mapping applications. 

 

Most of the mobile mapping datasets published to date base on 

LiDAR point clouds and focus on a specific scientific issue. Tan 

et al. (2020) provide the Toronto-3D dataset for semantic seg-

mentation of urban roadways. Their mobile lidar system (MLS) 

is precisely synchronized, so that they can provide coloured point 

clouds with additional precise global navigation satellite system 

(GNSS) time stamps for each LiDAR point. By contrast, Wang 

et al. (2019) introduce the ISPRS Benchmark on Multisensory 

Indoor Mapping and Positioning (MIMAP) using data from their 

self-developed Indoor MM backpack XBeibao (Wen et al., 2016). 

They use the Network Time Protocol (NTP) for sensor synchro-

nization. However, they only synchronize the start time of the 

data acquisition and interpolate the subsequent data using the 

frame rate. Since the cameras and the smartphone were connected 

over Wi-Fi, significant time delays are to be expected. MIMAP 

consists of three benchmark data sets: Indoor Simultaneous 

Localization and Mapping (SLAM), Building Information Mod-

elling (BIM) feature extraction and Indoor positioning. 

 

Khoshelham et al. (2017) present the ISPRS Benchmark on 

Indoor Modeling. This benchmark includes five different indoor 

point cloud datasets without any sensor raw data and trajectory 

information. Each point cloud was collected with a different com-

mercial indoor MMS. The benchmark includes the comparison 

of derived BIM models to their corresponding reference models. 

 

Nex et al. (2015) introduce and describe the ISPRS Benchmark 

for Multi-Platform Photogrammetry. With respect to research ac-

tivities in dense image matching (Cavegn et al., 2014), they 

proposed two benchmark areas ‘City center’ and ‘Zeche Zollern’ 

located in Dortmund, Germany. Both areas were captured with 

cameras and LiDAR scanners from different perspectives and 

ranges: from terrestrial and short range up to Unmanned Aerial 

Vehicle (UAV) and aircraft based. 

 

3. SYSTEM DESCRIPTION 

We captured both datasets with our portable BIMAGE Backpack 

MMS. Since our system is a self-developed non-commercial 

research prototype, there are no restrictions in accessing and pro-

viding raw sensor data and in describing the system design and 

configuration in detail. Something, which is typically not avail-

able from commercial systems due to intellectual property issues. 

 

This chapter briefly introduces the non-commercial prototypical 

BIMAGE Backpack MMS, provides the overall system calibra-

tion parameters, and describes the output data as well as the data 

structure. 

 

3.1 Hardware 

Our portable MMS BIMAGE Backpack includes state-of-the-art 

and high-end sensors, such as the GNSS- and IMU-based 

navigation unit NovAtel SPAN CPT7 with tactical grade perfor-

mance, two multi-beam LiDAR scanners Velodyne VLP-16 as 

well as the multi-head panoramic camera FLIR Ladybug 5 (see 

Figure 1). Blaser et al. (2020) provide a detailed description of 

all components used. 

 

Precise sensor synchronization is one of the key features. The 

internal clocks of both LiDAR scanners are synchronized with an 

electronic Pulse Per Second (PPS) to the reference clock of the 

navigation unit. This allows to assign a precise acquisition time-

stamp to each LiDAR point. Furthermore, each panoramic cam-

era trigger sends an electronic pulse to the navigation unit, which 

generates a precise reference time stamp. Consequently, each im-

age is assigned with a precise acquisition timestamp. 

 

 

Figure 1. Portable high-performance MMS BIMAGE Backpack 

with multi sensor configuration. (Blaser et al., 2020) 

 

3.2 Coordinate Frames and Overall System Calibration 

Parameters 

The overall system calibration consists of a) the boresight align-

ment (BA), b) the relative orientation (RO), and c) the interior 

orientation (IO). 

 

Blaser et al. (2018) describe the BA, RO and IO panoramic 

camera calibration procedure and the results in more detail. In 

this contribution, we mainly provide the coordinate frame defini-

tion and the calibration parameters required for further data pro-

cessing and data evaluation. 

 

The BA describes lever-arm and misalignment from a specific 

sensor coordinate frame to the body frame. In case of a multi-

camera configuration, the RO describes the lever-arm and the 

misalignment from a sub-ordered camera coordinate frame to the 

principal camera coordinate frame. Both BA and RO mathemat-

ically describe rigid body transformations with six parameters 
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In our MMS, we use right-handed coordinate frames and Euler 

angles about rotated axes 
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Figure 2 shows the orientation of the sensor coordinate frames. 

The body frame b corresponds to the navigation coordinate frame 
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of the IMU. Its y-axis points in walking direction, the x-axis to 

the right and its z-axis points upwards. The panoramic camera 

sensor coordinate frame corresponds with the camera coordinate 

system of the principal camera head cam0. For cameras, we use 

the photogrammetric camera coordinate system definition with 

origin in the projection centre, where the x-axis points to the 

right, the y-axis points upwards and the z-axis points backwards 

to the viewing direction. Thus, principal camera head cam0 of 

the panoramic camera points backwards to the moving direction 

(see Figure 2). 

 

 

Figure 2. Coordinate frame definition outlines of the BIMAGE 

Backpack view from the left (left), back view (centre) and view 

from the right (right). The big black arrows (left and right) mark 

the moving direction. Bold labels b (body frame), Hz (horizon-

tal LiDAR), V (vertical LiDAR) and cam0 (panoramic camera) 

represent the coordinate frames and italic labels mark the coor-

dinate axis. Point symbols in the coordinate frame origin repre-

sent forward-pointing axes, while cross symbols mark 

backward-pointing axes. 

 

Sensor Leverarm [m] 

[𝒙 𝒚 𝒛]𝑻 

Misalignment [deg] 

[𝝎 𝝓 𝜿]𝑻 

Pano 

cam0 

 - 0.028 

 - 0.033 

 0.685 

 - 78.902755 

 0.493794 

 179.001458 

LiDAR 

Hz 

 - 0.174 

 0.075 

 0.882 

 31.410335 

 - 0.011460 

 - 179.513889 

LiDAR 

V 

 - 0.005 

 - 0.208 

 0.216 

 89.509669 

 0.100370 

 - 90.067824 

Table 1. Boresight alignment parameters (BAs) of the BIMAGE 

Backpack. The BAs start from the sensors and point to the body 

frame. 

 

Table 1 shows the BAs of the panoramic camera and of both 

LiDAR scanners, while Table 2 lists the ROs of the panoramic 

camera. To calculate camera poses, BAs and ROs can be con-

catenated e.g. as follows: 
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while 𝑻𝑐𝑎𝑚0  
 

 
𝑏  is the BA of the panoramic camera and 

𝑻𝑐𝑎𝑚 𝑛  
 

 
𝑐𝑎𝑚0  is the RO of a specific camera head, when we 

assume that the body frame pose 𝑻𝑏  
 

 
𝑤 is given. 

 

Sensor Leverarm [m] 

[𝒙 𝒚 𝒛]𝑻 

Misalignment [deg] 

[𝝎 𝝓 𝜿]𝑻 

Pano 

cam1 

 0.059 

 0.000 

 0.042 

 - 0.646642 

 - 72.103993 

 - 0.269886 

Pano 

cam2 

 0.036 

 0.000 

 0.109 

 0.538770 

 - 144.043410 

 0.401385 

Pano 

cam3 

 - 0.035 

 0.000 

 0.111 

 0.033551 

 - 216.020014 

 0.245717 

Pano 

cam4 

 - 0.057 

 0.000 

 0.042 

 0.538346 

 - 288.221386 

 - 0.204128 

Pano 

cam5 

 - 0.001 

 0.075 

 0.060 

 90.079865 

 0.087070 

 180.677179 

Table 2. Relative orientation parameters (ROs) of the Ladybug 

5 panoramic camera. The ROs start from the mentioned camera 

heads (sensor) and point to the reference camera head (cam0). 

 

By contrast, the IO describes the transformation from the image 

coordinate frame to the camera coordinate frame. For this pur-

pose, we use the equidistant camera model (Abraham, Förstner, 

2005) that appropriately models the fisheye distortions. Since we 

provide undistorted images to the equidistant camera model, the 

principal points of the camera heads correspond with its image 

centres. The image width amounts to 2048 pixels and the image 

height to 2448 pixels. The sensor pixel size is 3.45 µm. Table 3 

lists the calibrated focal lengths of the individual panoramic 

camera heads. 

 

Sensor cam0 cam1 cam2 cam3 cam4 cam5 

c [mm] 4.2607 4.2656 4.2698 4.2601 4.2505 4.2660 

Table 3. Calibrated focal lengths c of the individual Ladybug 5 

panoramic camera heads. 

 

3.3 Data Formats and Data Preparation 

For both datasets, we provide the raw LiDAR and navigation data 

as well as the anonymized image data, to ensure free distribution 

without data protection issues. 

 

Figure 3 shows the data acquisition frequency of the different 

sensors, which gives a first indication of the resulting data vol-

ume. The panoramic camera acquires image epochs consisting of 

six images from the individual camera heads with a frequency in 

the range of 0.5 to 2 Hz. The computer on the BIMAGE Backpack 

stores the raw images and the navigation unit generates precise 

timestamps. A first self-developed and python-implemented 

post-processing procedure undistorts the raw camera images to 

the equidistant camera model. Then, a second post-processing 

procedure using the open-source tool Anonymizer (understand.ai, 

2019) detects and blurs personal data such as faces and car 

license plates. 

 

Both horizontal and vertical LiDAR scanners acquire multi-

profiles with a frequency of 10 Hz, whereby a total of 576’000 

LiDAR points per second are recorded (see Figure 3). The 

slightly modified Robot Operating System (ROS)-based 

(Quigley et al., 2009) Velodyne driver (Withley, 2016) stores raw 

LiDAR sensor data packages within so-called rosbag files on the 

BIMAGE Backpack computer. With a post-processing step, using 
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a self-developed Velodyne driver extension, we calculate a pre-

cisely GNSS Seconds of Week (SOW) timestamped point cloud, 

which lies in the respective sensor coordinate frame. 

 

The navigation unit SPAN CPT7 records GNSS and IMU raw 

observations. In post-processing, we convert the proprietary data 

format to the GNSS RINEX data format and a CSV file contain-

ing the IMU raw observations. Furthermore, we also store the 

IMU raw data into a rosbag file. 

 

 

Figure 3. Frequency spectrum of the data recording by the 

BIMAGE Backpack. Image epoch denotes a high-resolution 

multi-head panoramic image consisting of 6 individual images. 

GNSS and IMU epoch represent one sensor reading. LiDAR 

multi-profile means one revolution of all multi-profile scanners, 

while LiDAR detector represents one point of one LiDAR 

profile and LiDAR point indicates one point of all LiDAR 

profiles and scanners. 

 

4. DATASET DESCRIPTION 

In this section, we describe the two backpack MMS datasets that 

we publish. We captured both datasets in challenging environ-

ments. The first dataset is from a test site in the city centre and 

the second dataset is from another test site in a forest. 

Both datasets contain a) image data with undistorted equidistant 

and anonymized images from the individual panoramic camera 

heads as well as the image timestamps, b) LiDAR data represent-

ed as timestamped point clouds in the sensor coordinate frame, c) 

navigation data with GNSS raw observations from the BIMAGE 

Backpack as well as from the reference station and IMU raw data. 

 

Our BIMAGE dataset website provides more detailed information 

about the data structure and the data formats. Furthermore, the 

website provides download access to the datasets for scientific 

use: 

https://www.fhnw.ch/habg/bimage-datasets 

 

4.1 City Centre 

The first dataset was acquired in the city centre of Basel, Switzer-

land. The 800 m loop-shaped trajectory was recorded in 24 

minutes. It includes different road and path widths including a 

large square with good GNSS reception for system initialization 

(see Figure 4, Image 1). By contrast, it also includes narrow al-

leys only accessible to pedestrians with steps and slopes up to 

16 % (see Figure 4, Image 2). Wide pedestrian promenades with 

shops on both sides dominate other parts of the trajectory (see 

Figure 4, Image 3). Image 4 in Figure 4 shows the main traffic 

axis through the city centre with busy tram and bicycle traffic. 

 

The dataset ‘city centre’ contains 721 panoramic images, approx. 

840 million LiDAR points, GNSS data as available and IMU 

data. We provide 15 ground control points (GCPs) arranged in 

groups of three and 18 check points (CPs) along the first loop of 

the trajectory (see Figure 4). Most of the GCPs and CPs are well-

defined natural reference points, but some were marked with 

photogrammetric targets. Fricker and Weber (2019) provide a 

detailed description of the reference point measurements by 

tachymetry and show a 3D standard deviation below 5 mm. 

 

 

Figure 4. Map from the ‘city centre’ dataset with images 

showing typical environmental conditions. We extended this 

map from Blaser et al. (2020) by the check points (CPs) and 

ground control points (GCPs) that we publish with this dataset. 

 

4.2 Forest 

The second dataset was acquired in a partially dense forest. Its 

trajectory length amounts to 740 m and the data capture required 

25 minutes. It also incorporates an area with good GNSS recep-

tion at a nearby highway exit for system initialization (see Figure 

5, Image 1). Furthermore, the forest path leads through a road 

underpass (see Figure 5, Image 2). Narrow paths only accessible 

to pedestrians with dense vegetation at ground level dominate the 

scenery in images 3 and 6 of Figure 5. In addition, the trajectory 

also includes drivable forest roads with less dense vegetation (see 

Figure 5, Images 4 and 5). 

The ‘forest’ dataset includes 843 panoramic images, approx. 850 

million LiDAR points and navigation data in the scope of the first 

dataset. We provide 15 GCPs arranged in groups of three and 8 

CPs along the first segment of the trajectory (see Figure 5). All 

points are marked with photogrammetric targets and fixed either 

on trees or on driven-in pillars. Fricker and Weber (2019) de-

scribe the reference point measurements by tachymetry with 

closed polygons as well as the geodetic evaluation, which shows 

a 3D standard deviation of 5 mm. 
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Figure 5. Map from the ‘forest’ dataset with images showing 

typical environmental conditions. We extended this map from 

Blaser et al. (2020) by the check points (CPs) and ground 

control points (GCPs) that we publish with this dataset. 

 

5. APPLICATIONS AND FIRST EXPERIMENTS 

Both high-quality datasets provide a great potential for evaluating 

and improving methods for multiple tasks related to high-

precision 3D reality capture and the creation of digital twins. 

Potential applications range from localization and georeferenc-

ing, dense image matching and 3D reconstruction to combined 

methods such as SLAM and Structure-from-Motion (SfM) as 

well as classification and scene interpretation. 

 

In this section, we show and discuss first experiments using the 

published datasets in the fields of georeferencing, SLAM and 3D 

reconstruction. 

 

5.1 Georeferencing 

In the past, Blaser et al. (2020) successfully conducted investiga-

tions on the localization and georeferencing using both datasets. 

They investigated and compared the three different georefer-

encing methods a) direct georeferencing, b) SLAM-based geore-

ferencing and c) image-based georeferencing. 

They processed the direct georeferencing using data from the 

navigation unit SPAN CPT7 using tightly coupled GNSS and 

IMU sensor data fusion with a Kalman filter using the Waypoint 

Intertial Explorer software. By contrast, for LiDAR SLAM-

based georeferencing they independently processed raw IMU and 

LiDAR data with the 3D SLAM algorithm Google Cartographer 

(Hess et al., 2016). Finally, they introduced the LiDAR SLAM-

based georeferencing poses and the panoramic camera images 

into the SfM-pipeline Agisoft Metashape and performed the 

image-based georeferencing using a camera rig constrained 

bundle-adjustment. 

 

They achieved median GCP and CP coordinate differences 

between 45.2 cm and 100.2 cm using direct georeferencing, 

between 21.0 cm and 36.6 cm using SLAM-based georeferenc-

ing and between 4.3 cm and 13.4 cm with image-based georefer-

encing. 

 

However, there is a great potential for further accuracy and 

robustness improvements by combining and coupling different 

georeferencing methods or by developing novel methods com-

bining different sensor data. Nevertheless, georeferencing forms 

the basis for mapping and further applications and products and 

has a direct influence on its accuracy. Thus, a more accurate geo-

referencing enables accurate reconstruction and mapping. 

 

5.2 Simultaneous Localization and Mapping 

SLAM has great potential as it is not only an alternative georef-

erencing method for areas with poor GNSS coverage, but also 

simultaneously generates a map in near real-time. Especially 

LiDAR SLAM is promising on both datasets because the LiDAR 

acquisition data frequency is higher, and the processing effort 

lower compared to images and visual SLAM. Thus, we also 

obtain a point cloud when performing the SLAM-based georef-

erencing. Figure 6 shows the resulting point cloud that incorpo-

rates the trajectory, which is projected on the XY-plane. Not only 

the street-level is clearly visible, but the point cloud also partially 

depicts commercial indoor areas, which are visible from the 

street-level. If the point cloud has an accuracy analogous to 

SLAM-based georeferencing, it is not only sufficient for com-

pleteness checks during data acquisition but could also be used 

as a tool for higher-level urban planning.  

 

 

Figure 6. XY-plane from the resulting point cloud of the 

LiDAR SLAM using the city centre dataset. 

 

The LiDAR point cloud from the forest dataset (see Figure 7) also 

clearly shows single trees and fine-grain structures, so that the 

point cloud has great potential for forest applications. The 

improvement of SLAM algorithms has enormous potential, as 

more available accurate real-time 3D information opens numer-

ous other applications. 
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Figure 7. XY-plane from the resulting point cloud of the 

LiDAR SLAM using the forest dataset. 

 

5.3 3D Reconstruction 

Furthermore, we performed a 3D reconstruction using the city 

centre dataset based on the image-based georeferenced image 

poses. We used the 3D reconstruction software ContextCapture 

from Bentley, which also supports fisheye camera models. 

The result of the automatic 3D reconstruction process was a 

highly detailed 3D city model from street-level perspective which 

is similar to previous investigations (Blaser et al., 2017) with 

vehicle-based MMS, despite the lower image density of the 

BIMAGE Backpack. 

Completeness and level of detail of the automatic reconstruction 

are remarkable (see Figure 8). However, the reconstruction accu-

racy decreases with increasing height. Nevertheless, such a street 

level dataset has great potential for reality-based VR traffic sim-

ulations (Wahbeh et al., 2021) or to complement aerial-based city 

models. 

 

 

 

Figure 8. Samples of the automatically reconstructed 3D city 

model of the ‘city centre’ dataset using street-level backpack 

MM data 

 

6. CONCLUSION AND OUTLOOK 

In this paper, we provided two high-quality datasets captured 

with the BIMAGE Backpack MMS in challenging urban and 

forest environments. We further described our BIMAGE Back-

pack MMS in detail, provided the overall system calibration 

parameters and specified the resulting raw and pre-processed data 

so that the datasets can be fully used for future investigations. We 

then described both test sites ‘city centre’ and ‘forest’ and their 

associated data sets. The quality of these data sets has been thor-

oughly evaluated and demonstrated. Blaser et al. (2020), for ex-

ample, achieved georeferencing accuracies in the centimetre 

range using these data sets in combination with image-based geo-

referencing. 

 

Both datasets can be used for developing, testing, and improving 

digital twin-related tasks (e.g. georeferencing, SLAM, SfM, 3D 

reconstruction, classification, and scene interpretation). In the 

future, we aim to provide contests in various fields, possibly in 

cooperation with interested other groups and universities. 
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