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ABSTRACT: 

 
The infrared (IR) imagery provides additional information to the visible (red-green-blue, RGB) about vegetation, soil, water, mineral, 
or temperature, and has become essential for various disciplines, such as geology, hydrology, ecology, archeology, meteorology or 
geography. The integration of the IR sensors, ranging from near-IR (NIR) to thermal-IR through mid-IR, constitutes a baseline for 
Earth Observation satellites but not for unmanned airborne vehicles (UAV). Given the hyperspatial and hypertemporal characteristics 
associated with the UAV survey, it is relevant to benefit from the IR waveband in addition to the visible imagery for mapping purposes. 
This paper proposes to predict the NIR reflectance from RGB digital number predictors collected with a consumer-grade UAV over a 

structurally and compositionally complex coastal area. An array of 15 000 data, distributed into calibration, validation and test datasets 
across 15 representative coastal habitats, was used to build and compare the performance of the standard least squares, decision tree, 
boosted tree, bootstrap forest and fully connected neural network (NN) models. The NN family surpassed the four other ones, and the 
best NN model (R2=0.67) integrated two hidden layers provided, each, with five nodes of hyperbolic tangent and five nodes of Gaussian 
activation functions. This perceptron enabled to produce a NIR reflectance spatially-explicit model deprived of original artifacts due 
to the flight constraints. At the habitat scale, sedimentary and dry vegetation environments were satisfactorily predicted (R2>0.6), 
contrary to the healthy vegetation (R2<0.2). Those innovative findings will be useful for scientists and managers tasked with 
hyperspatial and hypertemporal mapping.  

 
 

1. INTRODUCTION 

1.1 Handborne Infrared Spectrophotometry 

The integration of the infrared (IR) spectral information has 
enabled to enlarge the reflectance signature of a variety of 
objects, in order to better detect them. Since the discovery of the 
solar thermal IR radiation in 1800 by Herschel (Ring, 2000), IR 

ground spectroscopy studies have early attracted scientists’ 
attention working on algae (Mestre, 1935), leaves (Billings and 
Morris, 1951), soils and waters (Myers et al., 1966), as well as 
terrestrial (Adams and Goullaud, 1978) and extra-terrestrial 
minerals and rocks (Adams, 1974). By augmenting the 
electromagnetic spectrum of the traditional visible (red-green-
blue, RGB) information, natural and anthropogenic features can 
indeed be more easily discriminated given their specific spectral 
signature in such longer wavebands (Knipling, 1970). These 

pioneer research works consisted of the ground proof-of-concept 
studies, whose results were the rationale to embed IR sensors into 
top view platforms.  
 
1.2 Manned Airborne Infrared Imagery 

Beyond the 1D spectral signature, the photographic sensors 
capable to capture 2D imagery in the visible and IR spectrum 
(Clark, 1946) were mounted in manned airborne vehicles 
(MAV). The IR remote sensing has therefore been successful for 
studying geology (Laftman, 1963), hydrology (Abdel-Hardy, 
1970), ecology (Knipling, 1969), archeology (Estes, 1966) and 
meteorology (Roads, 1973). Following the declassification of the 

IR imagery by Defence Ministers or Departments in various 
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countries, a plethora of scientists have used this IR imagery as a 
stand-alone resource provided with increasing finer spectral 
resolution, topping with the Compact Airborne Hyperspectral 
Imager (Babey and Anger, 1989). These latter findings at 
hyperspatial resolution (close to the meter grain size) were 
nevertheless constrained by a local spatial scene. 

 
1.3 Spaceborne Infrared Imagery 

The launching of ‘Earthward’ spaceborne platforms allowed 
some regional scenes to be acquired by visible and IR sensors. 

The USA Television and InfraRed Observation Satellite 
(TIROS), launched in 1960, constitutes, to date, the first IR 
imager embarked on a civilian satellite. Then, the seminal Earth 
observation satellite programs, spearheading the Earth resources 
technology satellites (future Landsat, launched in 1972), and the 
Advanced very-high-resolution radiometer (TIROS-N, launched 
in 1978), integrated imagers provided with IR bands (Table 1).   
 

Band number Sensors’ spectral windows (µm) 

 AVHHR/1 TIROS-N Landsat-1 MSS  
1 0.55 - 0.9 (Red+NIR)  
2 0.725 - 1.1 (NIR)  
3 3.55 - 3.93 (MIR)  
4 10.5 - 11.5 (TIR) 0.5 - 0.6 (Green) 
5  0.6 - 0.7 (Red) 
6  0.7 - 0.8 (NIR) 

7  0.8 - 1.1 (NIR) 

Table 1. Spectral wavebands of the AVHRR/1 TIROS-N and 

Landsat-1 (NIR: Near-IR, MIR: Mid-IR, TIR: Thermal-IR). 
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The TIROS-N and Landsat-1 imageries were dedicated to the 

atmosphere and to the terrestrial biosphere monitoring and 
dynamics research. The measured reflectance in visible and IR 
enabled to map air temperature and humidity, as well as land 
moisture and vegetation, using the normalized difference 
vegetation index (Rouse et al., 1974).  
The spatial resolution of TIROS-N and Landsat-1 attained 1 km 
and 79 m (now resampled at 60 m), respectively. Fifty years later, 
the Landsat-8 and Sentinel-2 multispectral sensors continue 

delivering visible and NIR imageries, but at 30 m and 10 m pixel 
size, respectively. Covering the whole Earth, they leverage a 16-
day and 5-day temporal resolution, respectively.  
However, imagery built with 10 m spatial resolution cannot 
reconstruct the fine-scale spatial patterns and related biophysical 
processes (Collin et al., 2016). Since 2000, hyperspatial satellite 
sensors have been able to produce multispectral imagery between 
0.3 to 1 m pixel size (see. Collin et al., 2021), but at the detriment 
of the temporal resolution (monthly to quarterly). A novel 

platform is expected to capture multispectral imagery at 
hyperspatial and hypertemporal resolution. 
 
1.4 Unmanned Airborne Infrared Imagery 

Unmanned airborne vehicles (UAV) have the capabilities to 
collect imagery at the decimeter (Mury et al., 2019) and daily 
scale, depending on the favourable settled weather. Even if the 
spatial extent remains local, spanning several km2, the UAV 
imagery can be utilized as a stand-alone platform (James et al., 
2020) or as a linkage between ground-truth and satellite imagery 
(Collin et al., 2019a). The UAV is highly cost-efficient given the 
low purchase and maintenance prices, while substituting dozens 

of geo-photographers covering hundreds of m2. However, most 
of the commercial UAVs are only provided with a RGB sensor 
(e.g., Schiefer et al., 2020). In line with MAV (Collin et al., 
2018a) and satellite (Collin et al., 2018b) imagery, the integration 
of the NIR can yet significantly improve the UAV-based 
estimation (Mury et al., 2020) and classification of continuous 
and discrete environmental variables (Collin et al., 2019b, James 
et al., 2020). 

 
1.5 Predicting Infrared Imagery 

To date, the use of the IR, from NIR to TIR, remains very erratic 
in the UAV research study, insofar as it is constrained by the 

mounting of a dedicated sensor onto the platform. This operation 
could furthermore detract from the compliance with the flight 
legislation and therefore downgrade the UAV cost-efficiency. 
 
Embedded into a scientific era featured with increasingly massive 
data and efficient machine learners, we propose a novel approach 
to predict the NIR reflectance response from RGB digital number 
(DN) explanators using various state-of-the-art regressors, from 
linear to non-linear regression methods.  

 
This original experience will be tested with a consumer-grade 
UAV, whose the transferability power is very high. An in-depth 
statistical modelling, based on calibration, validation and test 
datasets, will be applied to the overall scale of a complex coastal 
landscape featured with 15 representative habitats for all 
regressors, and also to the individual scale of habitats for the best 
prediction (Figure 1). Results will be discussed in the light of the 

temporal, spatial, spectral, radiometric and numerical 
perspectives.       
  

 

Figure 1. Natural-coloured orthomosaic (7132 × 8974 pixels) 

derived from the Phantom 4 Pro V2 RGB sensor, over which 

geolocations of the 15-classed ground-truth are represented. 

 

2. METHODOLOGY 

2.1 Study Site 

The study site is located on the temperate coastal fringe 
(48°69’N, 1°95W) of the Northern Brittany (France). The 
rectangular test area covers 190 000 m2 (500 m × 380 m), and its 
altitude, referenced to the sea level of the lowest astronomical 
tide, ranges from 0 to 15 m. Subject to a megatidal range (14 m 
amplitude during the spring tide) and encompassing the three 
representative environments of the coast (rocky, sandy, and 
muddy), the site’s ecosystems are highly diversified: a reflective 

beach, a dune complex provided with a stratified succession 
(from the marram grasses to the pine trees), tidal flats, and a salt 
marsh featured with a stratified succession (from the pioneer cord 
grasses to the sea lavenders). 
 
2.2 Ground Measurements 

A field campaign was carried out just before the UAV flight on 
July 2, 2020, from 9 to 11h am (UTC+2).  
Firstly, an array of 13 ground control points (black stars on the 
Figure 1) was evenly distributed over the site and their 
geolocation was accurately measured using a D-GNSS (Topcon 
HiPer V). The centimeter accuracy was reached along horizontal 
(XY) and vertical (Z) coordinates using the post-processing 

freeware RTK lib (Takasu and Yasuda, 2009). 
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Secondly, a series of 30 photoquadrats (coloured spheres in 

Figure 1), whose the dimensions reached 0.5 m × 0.5 m, was also 
geolocated with the D-GNSS and sampled with a 12-megapixel 
Olympus Tough Camera. A statistical hierarchical clustering of 
the photoquadrats, based on their areal coverage, led to the 
constitution of 15 habitats (Table 2). 
 

Habitat name Description Picture 

Wet beach 

sand 

Low part of the reflective beach 

composed of saturated coarse sand 
 

Dry beach sand 
High part of the reflective beach 

composed of mid-to-fine sand 
 

Primary dune 

vegetation 

Wind-shaped sand covered by 

marram grasses 
 

Interdune 

vegetation 

Wind-shaped sand covered by soil 

and herbaceous vegetation 
 

Shrub 

vegetation 

Wind-shaped sand covered by soil 

and arbustive vegetation 
 

Tree 
Wind-shaped sand covered by soil 

and arborescent vegetation 
 

Wet mud 
Low part of the tidal flat 

composed of saturated clay and silt 
 

Dry mud 
High part of the tidal flat 

composed of unsaturated clay / silt 
 

Low salt marsh 

vegetation 

Low part of the salt marsh 

composed of cordgrass / glasswort 
 

Mid salt marsh 

vegetation 

Mid part of the salt marsh 

composed of sea purslane 
 

High salt 
marsh 
vegetation 

High part of the salt marsh made 
of sea poa grass/lavender 

 

Wet salt marsh 
sand 

Highest part of the estuary 
composed of saturated fine sand 

 

Dry salt marsh 
sand 

Highest part of the estuary 
composed of unsaturated fine sand 

 

Rock 
Pebbles and cobbles covered by 

macroalgae 
 

Road 
Anthropogenic ways covered by 

asphalt pavement 
 

Table 2. Habitat names and description of the 15 classes 

investigated in the study site. 

 
2.3 Unmanned Aerial Vehicle Survey 

Following the precedented fieldwork, the UAV flight occurred 
between 11 and 12h am (UTC+2). It was planned thanks to the 
application DJI GS Pro, ensuring a consistent 50 m height, as 
well as front and side overlap ratios of 80% and 70%, 
respectively. These flight constraints enable the further 

photogrammetric reconstruction to be optimized (Collin et al., 
2019b). The UAV comprised of a DJI Phantom 4 Pro V2 (P4V2) 
augmented with a Parrot Sequoia+. The P4V2 leverages a 4864 
× 3648 RGB sensor (Figure 1), and the Sequoia+ includes a 1280 
× 960 NIR (centered at 790 nm, and wide of 40 nm) nadiral 
sensor (Figure 2) and a zenithal irradiance sensor. The P4V2 and 

Sequoia+ collected 648 DN and 310 reflectance geolocated 

images, respectively. The orthomosaics were produced using the 
Pix4Dmapper software and georeferenced in the RGF 93 datum, 
tailored with the conic conform Lambert 93 projection. 
 

 

Figure 2. Infrared orthomosaic (7132 × 8974 pixels) derived 

from the Sequoia+ sensor, based on 310 reflectance images. 

 
2.4 Regression 

The potential to estimate the Sequoia+ NIR reflectance response 

from the P4V2 RGB DN predictors was examined using the 
estimation based on regressions. Assuming that each of the 15 
habitats is representative of an inherent sub-regression, a rigorous 
statistical stratification was undertaken. For each habitat, the seed 
pixels, measured in situ by the geolocated photoquadrats, were 
grown to the neighbour pixels based on their spectral signature 
membership. When 1000 pixels were reached, they were divided 
into 400 calibration, 400 validation and 200 test pixels. A suite 

of five families of regressor was inspected.  
 
2.4.1 Linear Model: The standard least squares (SLS) 
regressor shapes linear models for the numeric NIR response data 
with fixed effects by minimizing the sum of squared residuals 
derived from the numeric RGB DN:  
 

𝑅(𝑥) = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑖 , (1) 

 
where  yi = ith observed NIR value 

 f(xi) = ith modelled NIR value 
 
2.4.2 Partition Model: Three kind of partition models were 
tested to predict the NIR reflectance.  
The decision tree (DT) is a method that recursively splits NIR 
values using a cutting value from RGB predictors, maximizing 
the difference in the means of the NIR response between the two 
nodes of the split (Hawkins and Kass, 1982).  
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The boosted tree (BT) is a method that creates an additive DT, 

derived from an array of smaller DT, aligned in layers. Each layer 
is grown through the recursive fitting model, and produces a DT 
containing a small amount of splits. For every DT, the modelled 
NIR value in the leaf corresponds to the mean of all observed 
NIR values in that leaf. The final partition is the sum of the NIR 
predictions for a NIR observation over all the layers (Hastie et 
al., 2009). 
The bootstrap forest (BF) models the NIR response by averaging 

the NIR predictions across many DTs. Every tree stems from a 
random sample of observed NIR values, drawn with replacement, 
and the RGB predictors are sampled at every split. The final 
partition is here the average of the NIR predictions for a NIR 
observation over the population of DTs, namely the forest (Hastie 
et al., 2009). 
 

2.4.3 Neural Network: The neural network (NN) constructs 
a fully connected one- or two-layer perceptron, in which each 

(hidden) layer includes derived inputs, called (hidden) nodes or 
neurons (Heermann and Khazenie, 1992). For every node, a 
function of transformation, called activation function, is applied 
as a linear combination of the RGB predictors:  
 

𝑁(𝑋) = (∑ 𝑤𝑗𝑛𝑗(𝑋)𝑖 ), (2) 

 
where  wj = jth weighted activation function 
 nj = jth node 

 X = RGB predictors 
 
The first activation function experienced was a sigmoid function 
(fuzzy logic), defined as a hyperbolic tangent function (TanH), 
that scales values between lower -1 and upper 1 bounds:  
 

𝑇𝑎𝑛𝐻(𝑧) =
𝑒2𝑧−1

𝑒2𝑧+1
, (3) 

 
where  z = a linear combination of the RGB predictors (X) 
 
The second activation function executed was a Gaussian function 
(Gauss), that is likely to fit better the NIR response surface when 

it is normal in shape:  
 

𝐺𝑎𝑢𝑠𝑠(𝑧) = 𝑒−𝑧
2
, (4) 

 
Three series of NN fully connected multi-layer perceptrons were 
implemented: one hidden layer ranging from one to five nodes 
for separate sigmoid (hyperbolic tangent, TanH) and Gaussian 
(Gauss) functions; two hidden layers ranging from one to five 
nodes for separate TanH and Gauss functions; and two hidden 

layers ranging from one to five nodes for combined TanH and 
Gauss functions. For the sake of comparison at the regressor 
family scale, an average of all NNs was compiled. 
 
2.4.4 Accuracy Evaluation: All model predictions (SLS, DT, 
BT, BF, NN) were evaluated from the independent test dataset 
using the coefficient of determination (R2) and the root mean 
square error (RMSE).  
 

The results were further analyzed at the habitat scale for the best 
prediction. The formula found from that prediction was applied 
to the RGB wavebands, so as to rasterize the NIR reflectance 
response over the entire study area. 
 
 

3. RESULTS AND DISCUSSION 

3.1 Infrared Regressor Families 

Following the building of the five predictions of the NIR 
reflectance based on calibration and validation datasets, the 
results stemming from the test dataset showed an increasing 
sorting (Figure 3): linear SLS (R2=0.29), then non-linear partition 
models (DT, R2=0.57; BT, R2=0.58; BF, R2=0.59), and finally 
the average of all non-linear NNs (R2=0.62). These findings 
corroborate the evaluation of these regressors’ performance for 

bathymetry (Collin et al., 2017) and reef virality modelling 
(Collin et al., 2018a).  
 

 

Figure 3. Barplot of the regression models’ test results for 

linear standard least squares, non-linear decision tree, boosted 

tree, bootstrap forest, and the average of neural networks. 

 
3.2 Infrared Neural Network Regressions 

The R2 results derived from the three NN series ranged from 0.29, 
for the least efficient single one-nodded hidden layer (Figure 4), 
to 0.67, for the best efficient two ten-nodded hidden layers 
(Figure 5a and 5b).  
 
3.2.1 One-Layer Neural Network: The results for the single 
hidden layer indicated that the addition of the nodes 
progressively improved the NN prediction, with a strong 

disruption at the second node for both activation functions 
(Figure 4). From the three-nodded NN, the results yielded with 
the Gauss function slightly surpassed those with the TanH 
function.  
 

 

Figure 4. Barplot of the neural network models’ test results for 

one hidden layer for separate hyperbolic tangent (TanH) and 

Gaussian (Gauss) functions. 
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3.2.2 Two-Layer Neural Network: The inclusion of the 

nodes logically augmented the NN performance, either for the 
separate or combined activation functions (Figure 5a and 5b). 
While the second node break is obvious for the separate 
activation functions, whose results are dominated by TanH (blue 
series in Figure 5a), it is tangible but much less dramatic for the 
combined activation functions, whose scores are led by the 
crossed combinations (red series in Figure 5b).  
 

 

Figure 5. Barplots of the neural network models’ test results for 

(a) two hidden layers ranging for separate TanH and Gauss 

functions; and (b) two hidden layers for combined TanH and 

Gauss functions. 

 

3.3 Infrared Neural Network Regression at Habitat Scale 

The best NN model stemmed from the hidden ten-nodded double 
layers provided with crossed TanH-Gauss combinations, 
resulting in a highly complex architecture (Figure 6). 

 

 

Figure 6. Neural network diagram of the best model: 

TanH(5)Gauss(5)-TanH(5)Gauss(5). 

At the habitat scale, the best NN model predicted the NIR 

reflectance values in four distinct habitat groups, according to 
their inner regression score (Figure 7). The first group, composed 
by dry mud and dry salt marsh sand, was very satisfactorily 
predicted (R2 from 0.8 to 0.6). The second group, comprising wet 
mud, wet salt marsh sand and interdune vegetation, was 
satisfactorily estimated (R2 from 0.6 to 0.4). The third group, 
containing dry beach sand, primary dune vegetation, wet beach 
sand, road, low salt marsh vegetation and shrub, was moderately 

explained (R2 from 0.4 to 0.2). The last group, gathering mid salt 
marsh vegetation, high salt marsh vegetation, tree and rock, was 
not satisfactorily modelled (R2 from 0.2 to 0.0).  
 

 

Figure 7. Scatterplot of the observed test versus best predicted 

infrared reflectance. 

 
A general pattern could be drawn from these outcomes: the NIR 
reflectance prediction from RGB tends to be more efficient with 
sedimentary habitats compared to vegetated habitats. These 
findings could be logically explained by the spectral signature of 

the habitats at stake.  
Mineral features commonly display a moderate level of 
reflectance and its gradual increase in the visible spectrum, which 
continues in the NIR spectrum (Zhang and Baas, 2012). This 
spectral continuity is likely to be easily modelled by a well-
trained multi-layer NN. Likewise, the dryness and the wetness of 
the sedimentary habitats were well captured by the variability 
explained by the modelling. We could therefore advocate that the 

various soil types, whose spectral signatures are relatively linear 
from the visible to the NIR spectrum (McCarty et al., 2002), 
saturated by water or not, have the potential to be well predicted 
by this NN approach. 
Contrariwise, vegetation habitats, exhibiting a relatively low and 
sinusoidal reflectance trend in the visible gamut, show a sharp 
gain in reflectance in the NIR spectrum (Zhang and Baas, 2012). 
This discontinuity could certainly be the source of discrepancies 
in the NN modelling, even if this model works with the non-

linearity. Healthy vegetation, rich of chlorophyll pigments, 
typically follows this tendency: mid and high salt marsh 
vegetation, as well as rocks covered by macroalgae. The tree 
habitat, embodied by a pinewood (Pinus pinaster) in this study, 
echoes the same spectral disruption between the visible and NIR, 
even if the reflectance remains lower than green vegetation 
(Rautiainen et al., 2018).  
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However, it is worthwhile to underline that the NIR reflectance 

related to the herbaceous and low arbustive vegetation was 
correctly predicted, such as interdune, primary dune, low salt 
marsh, and shrub vegetation. Those habitats were covered, during 
the summer flight acquisition, by dry or senescent leaf blades, 
appearing yellowish in the visible spectrum, what facilitates a 
spectral continuity (a lower reflectance than this of the vivid 
vegetation) in the NIR spectrum, thus the better predictions.  
 

Temporal, spatial, spectral and radiometric specificities of the 
UAV flight constrain the power of explanation related to the 
RGB predictors.  
Both abiotic and biotic coastal habitats change with the season 
due to the ocean hydrodynamics, watershed hydrology, and plant 
phenology. The seasonal variability in spectral signatures of the 
habitats might have a significant influence on the NN 
performance, given the modification in sediment grain-size and 
wetness, as well as photosynthetic pigments. Given its 

hypertemporal resolution, the UAV has the capabilities to capture 
this spectral variance across time (James et al., 2020).  
The spectral signatures of these habitats can also vary with the 
spatial resolution. The UAV flight was, here, ceiled at 50 m 
height, providing a centimeter-scale pixel size. However, a 
higher UAV height or a MAV will collect RGB imagery at the 
decimeter-scale but over regional extents, thus including a wider 
diversity of land use / land cover and sea use / sea cover types 

(Collin et al., 2021). On-going research is quantifying the impact 
of the spatial scale on the NN prediction.  
The predictive modelling focuses here on the NIR spectrum. 
Insofar as the obtained results were suitable for features provided 
with a linear trend across the electromagnetic spectrum, we could 
assume that the MIR signatures of the sediment and dry 
vegetation habitats, studied here, as well as various soil (McCarty 
et al., 2002) and snow (Warren, 2019) types, might also be 

satisfactorily predicted.    
The NIR reflectance was predicted from the RGB variables at the 
raw radiometric level, namely DN. The NN modelling was based 
on the punctual sampling of the response and predictors (see 15 
habitats’ geolocations in Figure 1). Following the rasterization of 
the complex formula stemming from the multiple links of the ten-
nodded two-layered architecture (see Figure 6), the spatially-
explicit model of the NIR reflectance (Figure 8) did not 

interpolate the artifacts of the reflectance due to the flight 
conditions (see vertical bands in Figure 2). The NIR sensor was 
indeed fixed on the UAV structure, what explains these artifacts 
due to the UAV roll change to compensate for the lateral wind 
gust. This acquisition artifacts could have been avoided with a 
dedicated gimbal. Overall, the improvement of the NIR raster 
through the NN modelling could be helpful for further studies 
requiring radiometrically-corrected 2D models.  
 

This NIR predictive modelling was built from a fully connected 
perceptron, limited to two hidden layers and ten nodes in each 
one, that is to say 20 nodes and 140 node connections. This 
number of weighted activation functions requires substantial 
amounts of memory and computing resources for training the 
network. The numeric limitation could be overcome by creating 
a convolutional neural network (CNN) that minimizes the 
number of node connections by only focusing on the local region 

of every node. A CNN U-net could be advised since the output 
imagery will correspond to the strict similar size as the input 
imagery (Letard et al., 2020). 
 

 

Figure 8. Infrared reflectance orthomosaic (7132 × 8974 pixels) 

modelled by the ten-nodded two-layered neural networks based 

on red-green-blue digital number predictors. 

 

4. CONCLUSIONS 

Predictive modelling of the NIR reflectance from RGB DN in a 
context of a hyperspatial UAV survey over a structurally and 
compositionally complex coastal area has been investigated. 
Five families of regressor have been experienced: linear, partition 
(regular and boosted tree, bootstrap forest), and neural network 

(NN) models. Ground-truth data, divided into calibration, 
validation and test datasets across 15 habitats, have been used to 
quantify the prediction accuracy at the overall scale.  
The NN model, whose the architecture comprised two hidden 
layers with five TanH nodes and five Gauss nodes each one, 
yielded the best accuracy (R2=0.67).  
At the habitat scale, the NN model satisfactorily predicted 
sedimentary, dry and senescent vegetated habitats (such as 

herbaceous and low arbustive vegetation), while being few 
reliable on the healthy vegetation, including macroalgae, mid and 
high salt marsh vegetation. This trend in the NIR prediction has 
been discussed in the light of the spectral continuity or 
discontinuity between the visible (the predictors’ window) and 
NIR (the response’s window) spectrum.  
Those original findings hold great promise in the spatially-
explicit modelling of the NIR, and more largely of the IR, at 
various spatio-tempo-spectral scales.   
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