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ABSTRACT:

Hyperspectral sensor technology has been advancing in recent years and become more practical to tackle a variety of applications.
The arising issues of data transmission and storage can be addressed with the help of compression. To minimize the loss of
important information, high spectral correlation between adjacent bands is exploited. In this paper, we introduce an approach to
compress hyperspectral data based on a 1D-Convolutional Autoencoder. Compression is achieved through reducing correlation by
transforming the spectral signature into a low-dimensional space, while simultaneously preserving the significant features. The
focus lies on compression of the spectral dimension. The spatial dimension is not used in the compression in order not to falsify
correlation between the spectral dimension and accuracy of the reconstruction. The proposed 1D-Convolutional Autoencoder
efficiently finds and extracts features relevant for compression. Additionally, it can be exploited as a feature extractor or for
dimensionality reduction. The hyperspectral data sets Greding Village and Pavia University were used for the training and the
evaluation process. The reconstruction accuracy is evaluated using the Signal to Noise Ratio and the Spectral Angle. Additionally,
a land cover classification using a multi-class Support Vector Machine is used as a target application. The classification performance
of the original and reconstructed data are compared. The reconstruction accuracy of the 1D-Convolutional Autoencoder outperforms
the Deep Autoencoder and Nonlinear Principal Component Analysis for the used metrics and for both data sets using a fixed
compression ratio.

1. INTRODUCTION

Hyperspectral sensors measures the reflected electromagnetic
spectrum of a territory in hundreds of narrow and contiguous
wavelength intervals, referred to as bands. The resulting data
is represented as a 3D data cube, which is composed of two
spatial and one spectral dimension. Each pixel of the hyper-
spectral image contains a spectral signature of the materials in
the scene. The signatures of different materials have charac-
teristic features, which can be used to robustly classify land
cover or to increase the accuracy of object recognition. Due to
the increasing demand for real-time processing of hyperspectral
data and industry-related applications, the enormous amounts
of data resulting from the high spectral dimensionality by the
multiple spectral channels must be addressed. Efficient data
transmission and storage are required, as a single hyperspectral
data set can have several hundred megabytes. The data volume
makes the downlink from a carrier platform to a ground sta-
tion more complicated, since the bandwidth is limited and can
only be expanded with great effort, especially for satellite-based
systems. Transmission of large amounts of data is also essen-
tial for real-time applications, such as disaster management. In
this work, we address the transmission problem through hyper-
spectral data compression. We focus on lossy compression to
optimize towards higher compression rates, while still main-
taining the relevant features. The goal is to maintain all relev-
ant features and properties of the hyperspectral data through the
compression and reconstruction process to make the data usable
for various applications.

Most state-of-the-art methods for lossy compression are based
on transform coding. The idea is to transform the hyperspec-
tral data into a low-dimensional space in which the repres-
entation of the data is less correlated. There are methods us-

ing the 3D-transformations like 3D-discrete wavelet transform
(DWT)(Lim et al., 2001) or 3D-discrete cosine transformation
(DCT) (Abousleman et al., 1995); others examine the spec-
tral and spatial dimensions separately. In (Penna et al., 2006),
a low-complexity version of the Karhunen-Loève transform is
used to decorrelate the spectral information, while the JPEG
2000 is used for the spatial decorrelation as well as an entropy
coder. In (Du and Fowler, 2007), a Principal Component Ana-
lysis (PCA) is used to reduce the spectral dimensionality of the
hyperspectral data. Following the PCA, a 2D-DWT is applied
to the spatial dimension exploiting the spatial correlations for
compression. The coefficients are encoded in a bitstream with
the JPEG 2000 framework and transmitted to the decoder. In
(Du and Fowler, 2008), several strategies for reducing the com-
putational effort of the PCA algorithm are explored. The first
method reduces the computational effort by both spatial and
spectral subsampling in the covariance calculation. The second
method is based on a simple neural network (NN) architecture.
The NN has a feedforward structure with one input layer and
one output layer. The output neuron provides the largest eigen-
value with the weights representing the corresponding eigen-
vector.
In recent years, machine learning methods have been estab-
lished to be a powerful tool in signal processing. In (Theis
et al., 2017), lossy image compression is performed using an
Autoencoder. Since then, Autoencoder approaches have be-
come increasingly popular in hyperspectral image processing.
In (Zabalza et al., 2016), stacked autoencoders are used for di-
mensionality reduction and feature extraction in hyperspectral
imaging. The focus lies on dividing the spectral dimension into
different regions, which are used by the autoencoder for feature
extraction. The extracted features are used to improve the clas-
sification results. In (Li and Liu, 2019), a convolutional neural
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network (CNN) reduces the spectral dimension of multispectral
data. The reduced data is then decomposed into coefficients
with the DCT and encoded in a bitstream. The CNN is utilized
for dimensionality reduction. The actual compression, how-
ever, is realized by the DCT and the coding of the bitstream.
In (Priya et al., 2019), fully-connected autoencoder approaches
are used for dimensionality reduction in hyperspectral imaging.
Here, the spectral dimension is transformed to a lower dimen-
sional subspace while simultaneously preserving the signific-
ant features. The reconstruction accuracy is examined depend-
ing on the number of nodes in the bottleneck. In (Licciardi
et al., 2014) and (Licciardi and Chanussot, 2018) a Nonlin-
ear Principal Component Analysis (NLPCA) based multilayer
perceptron with an autoencoder architecture is implemented to
compress the spectral dimension of hyperspectral data. The
autoencoder with non-linear activation functions in the hidden
layers resembles a NLPCA with a fixed number of components.
The number of components in the input and low-dimensional
space determines the compression rate. Due to the non-linear
properties of the NLPCA and its fixed number of components,
the information of the original spectrum is obtained and distrib-
uted equally among all components. In (Kuester et al., 2020),
a Deep Autoencoder is used to compress the spectral dimen-
sion by reducing the correlation of the hyperspectral data while
maintaining significant features with a focus on minimizing the
reconstruction error. The reconstruction accuracy is evaluated
using the Signal to Noise Ratio (SNR) and the Spectral Angle
Mapper (SAM).

This paper investigates the compression performance and the
reconstruction accuracy for the spectral dimension using a
1D-Convolutional Autoencoder (1D-CAE). The compression is
achieved through reducing the correlation by transforming it
into a low-dimensional space while simultaneously preserving
the significant features. The focus lies on the compression of
the spectral dimension without taking spatial neighborhoods
into account. The spatial dimension is not used in the compres-
sion in order not to falsify the correlation between the spectral
dimension and the accuracy of the reconstruction. To find rel-
evant information and retain only the essential features for the
compression, the model uses a convolutional layer and a max
pooling layer. The accuracy of the reconstructed data from the
proposed model is compared to the results from the Deep Au-
toencoder (DAE) (Kuester et al., 2020) and the NLPCA method
(Licciardi and Chanussot, 2018). The Signal to Noise Ratio
(SNR) and the Spectral Angle Mapper (SAM) are used to cal-
culate the spectral similarity between the reconstructed data set
and the original. A land cover classification is used as a tar-
get application. For this we use a multi-class Support Vec-
tor Machine (SVM). The reconstruction accuracy of the 1D-
convolutional Autoencoder outperforms the DAE and NLPCA
for every used metric for the Greding Villiage as well as Pavia
University hyperspectral data set. Due to the fact that the test
data are unknown to the 1D-CAE, we can conclude that the
model provides robust generalization.

This paper is structured as follows: Section 2 describes the fun-
damentals of the AE, as well as the characteristics and the ar-
chitecture of the 1D-CAE model. Section 3 describes the hy-
perspectral data sets used for the evaluation. Additionally, the
metrics for comparing the spectral signatures are introduced.
The results are presented and discussed in Section 4. Section 5
gives an outlook on possible improvements of the compression
model.

2. PROPOSED METHOD

In this section, we explain our proposed 1D-CAE structure and
the compression process. The 1D-CAE exploits the high inter-
band correlation in the spectral dimension of the hyperspectral
data for compression. Compression is realized by reducing the
correlation through a transformation of the input spectral signa-
ture to a low-dimensional space, while maintaining the signific-
ant features. In the low-dimensional space the features are less
correlated. Important features and the associated transforma-
tion is automatically learned during the training process by the
1D-CAE model. The samples of the spectral signature, referred
to as bands, correspond to the features which are reduced by the
compression. For this purpose, the 1D-CAE uses unsupervised
learning where the input signal is used as a reference for the
evaluation of the reconstructed signal. Thus, the 1D-CAE does
not need any labeled data for the training process. The model’s
architecture consists of an Input layer, twelve hidden layers and
an Output layer, as shown in Table 1, and can be divided into
two parts. The Encoder part describes the encoder function,
which transforms the input signal x ∈ Rb to a low-dimensional
representation h ∈ Rb̂ with b̂ � b. The task of the decoder
is to reconstruct the input signal x ≈ x̃ ∈ Rb as precisely as
possible from the reduced representation h ∈ Rb̂. The decoder
structure mirrors the encoder structure in reverse order.

The encoder is structured as follows: If the input signal has an
odd number of bands b, the zero padding layer follows the input
layer. This layer adds a zero to the beginning of the input signal
to create an even number of samples. If the number of bands is
even, this step is skipped. A combination of a 1D-convolutional
layer and a max pooling layer is then added to the encoder struc-
ture, as shown in Table 1. The 1D-convolutions are used for re-
cognizing local features from the spectral signature. For this, a
filter with a defined kernel size is shifted over the samples of the
spectral dimension. The 1D-convolutional layer is only used to
find features and not to reduce the features. To gather different
features we use multiple filters in parallel. Figure 1 illustrates
the convolutional filters in the hidden layer by different colors.
Each filter is initialized with random weights, which results in
different features. After the 1D-convolutional layer follows a
max pooling layer. Pooling is used to only pass on the most rel-
evant features to the next layers. For this purpose, a filter with
the kernel size is shifted over the output of the 1D-convolutional
layer, and the maximum value that corresponds to the feature
found within the filter is transferred to the output. Max pooling
is a down-sampling operation on feature maps to reduce dimen-
sionality while maintaining characteristic features. This results
in a more abstract and compressed representation of the con-
tent; additionally, it reduces the number of parameters in the
1D-CAE. By reducing features, we achieve compression within
the 1D-CAE. In the first set of 1D-convolutional layer and max
pooling layer the number of filters increased and the feature
space is reduced. The last column of Table 1 shows the pro-
gression of the number of features and filters throughout the
1D-CAE. The following combination of the 1D-convolutional
layer and the max pooling layer reduces both the feature space
and the number of filters. The encoder structure is expanded
by two additional 1D-convolutional layers, which decreases the
number of filters to 1. The feature space is not reduced any
further because the previously defined compression factor has
already been achieved by the two max pooling layers. The com-
pression is achieved by the fact that the input spectral signature
is represented through a lower number of significant features,
which is called compressed representation h ∈ Rb̂, as shown
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Figure 1. Individual spectral sigature from the 3D hyperspectral data cube are supplied to the 1D-CAE. In the hidden layer, several
filters, shown in different colors, are used in parallel to find features and extract them. The goal is to transform the input spectral
siganture into a lower dimension called compressed representation and then reconstruct the spectrum as accurately as possible.

in figure 1. The layer from which the compressed data can be
extracted, is called the bottleneck (BN). The feature space is de-
termined by the number of features in the BN and the number
of filters. The compression ratio in the BN is then calculated as

cR =
b · Fin

b̂ · F̂BN

, (1)

where b and b̂ denote the number of features and Fin, F̂BN the
number of filter in the input and in the BN layer.

The decoder has the reverse encoder structure. For this the max
pooling layers are replaced by upsampling layers. Two 1D-
convolutional layers are added to the decoder structure. The
1D-convolutions are used for finding local features from the
compressed data by increasing the number of filters that are
used in parallel. After the two 1D-convolutional layers follows
an upsampling layer. The upsampling layers increase the num-
ber of features by repeating the layer’s input element-wise along
the time axis. Then a set consisting of one 1D-convolutional
layer and an upsampling layer is added to the decoder struc-
ture. The layers increase the number of features as well as the
number of filters. The last 1D-convolutional layer reduces the
number of filters to 1. The decoder is finalized with a cropping
layer, which removes the input signal’s first element to resemble
the original input signal’s length, if the original signal dimen-
sionality was odd.
The 1D-convolutional layer of the network utilizes φ1 as activ-
ation function, which is the Leaky Rectified Linear Unit (Leaky
ReLU), to prevent the vanishing gradient problem (Goodfellow
et al., 2016). For the last 1D-convolutional layer, the sigmoid
function is used as the activation function φ2. The sigmoid
function normalizes the output of the 1D-CAE to the range of
values [0, 1] := {ã ∈ R | 0 ≤ ã ≤ 1}. The normalization is
carried out because the input signal has a value range from 0 to
1. This is necessary to compare the reconstructed signal with

the input signal and calculate the error between the two spectral
signatures. Adding non-linear properties due to the activation
functions φ1 and φ2 to the network allows the 1D-CAE model
to approximate non-linear functions. This is necessary to obtain
an accurate reconstruction of the non-linear feature variations in
hyperspectral data (Gross et al., 2019).

For the training process, we initialize the weight matrices with
random values. During the training, the weight matrices are
iteratively updated to minimize the error between the original
and reconstructed signal. The loss function d(x, x̃) measures
the difference between the input x and the reconstructed signal
x̃. To evaluate reconstruction accuracy of the training process,
we use the mean squared error (MSE) as loss function d(x, x̃),
which can be written as

εMSE(x, x̃) = d(x, x̃) =
1

b

b∑
i=1

(xi − x̃i)
2. (2)

After every epoch of the training process, each layer’s weight
matrix are updated using the backpropagation algorithm in
combination with the Adam optimizer (Kingma and Ba, 2014).
The convergence of the loss function towards a local minimum
indicates a successful training process. Since this is not a con-
vex optimization problem, the convergence to a global min-
imum cannot be guaranteed.

3. EXPERIMENTAL SETUP

To evaluate the reconstruction accuracy of the 1D-CAE, the
two hyperspectral data sets Greding Village (Gross et al., 2019)
and Pavia University (Plaza et al., 2006) are used. Both hy-
perspectral data sets have the shape of H ∈ Rm×n×b with b
spectral bands and spatial dimensions m× n. As neither the
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Encoder

Layer type Activation
function kernel size features

filter
- - - b, 1

1D Zero padding - - b̃ =

{
b, if b even
b+ 1, if b odd , 1

1D Convolutional φ1= Leaky ReLU 11 b̃, 64
1D MaxPooling - 2 bb̃/2c, 64

1D Convolutional φ1= Leaky ReLU 11 bb̃/2c, 32

1D MaxPooling - 2 b̂, 32

1D Convolutional φ1= Leaky ReLU 9 b̂, 16

1D Convolutional φ1= Leaky ReLU 7 b̂, 1

Decoder

1D Convolutional φ1= Leaky ReLU 7 b̂, 16

1D Convolutional φ1= Leaky ReLU 9 b̂, 32

1D UpSampling - 2 b̂ · 2, 32

1D Convolutional φ1= Leaky ReLU 11 b̂ · 2, 64

1D UpSampling - 2 b̂ · 4, 64

1D Convolutional φ2= sigmoid 11 b̂ · 4, 1

Cropping1D - - b =

{
b̂− 1, if b even
b̂, if b odd

, 1

Table 1. Structure of the 1D-Convolutional Autoencoder model

1D-CAE model nor the evaluation metrics use spatial neigh-
borhood information, the 3D hyperspectral data set can be re-
organized as a 2D matrix with the following transformation
H ∈ Rm×n×b → V ∈ Rp×b, with p = m · n.

The Greding data set was recorded in 2014 over Greding, Ger-
many. It was recorded with an aisaEAGLE II hyperspectral
sensor with b = 127 bands, covering the electromagnetic spec-
trum from 390 − 990 nm. The data was radiometrically and
atmospherically corrected and georeferenced with a ground
sampling distance of 0.5m. A subset of the data with 670×606
pixel, which shows a part of the village of Greding, is removed
from the data and exclusively used for the evaluation process.
This subset is denoted as Greding Village for the remainder of
the paper. The Greding Village scene includes rural areas with
several vegetation types, as well as roads and residential build-
ings. The remaining data with approximately 1.9 · 106 pixel is
divided into training and validation data for the 1D-CAE model.

The second benchmark hyperspectral data set is the Pavia Uni-
versity data (Plaza et al., 2006). It was acquired by the German
Aerospace Centre (DLR) within the scope of the HySens pro-
ject. The data set was recorded with the ROSIS-03 sensor and
consists of 340× 610 pixels with b = 103 bands. It depicts the
University of Pavia’s Engineering School in Italy. The scene
includes a diverse area of vegetation, buildings and infrastruc-
ture. The Pavia data is also pre-processed to reflectance with a
ground sampling distance of 1.3 m.

The training and evaluation process for the 1D-CAE model is
carried out individually for both data sets, since the data have
a different number of bands. However, all bands are used for
training. The Greding and Pavia University data are randomly
subdivide in 80 % training data and 20 % validation data. The
Greding Village data is only used for the evaluation process, and
thus, unknown to the corresponding 1D-CAE model. The train-
ing process parameters were slightly adjusted depending on the
data set used due to the varying amount of available training
samples. For Greding, the signal’s input dimension is b = 127,
and the number of features in the BN is b̂ = 32. The signal’s
input dimension of Pavia University is b = 103 and the low-
dimensional feature space has b̂ = 26 features. The parameter
α of the activation function φ1 is set to α = 0.3. The com-

pression rate cR from equation (1) is calculated from b and b̂,
because Fin = F̂BN = 1. This results in a compression factor of
cR ≈ 4. The number of epochs is set to 150 and the batch size
to 256. The learning rate for both data sets starts with a value
of η = 0.001 and is multiplied by the factor 0.9 after seven
epochs in which the value of the loss function has not changed
by more than ∆εMSE = 1.0e−07. The learning rate is reduced
to ensure convergence to a local minimum. If a minimum is
reached, which until then has the lowest MSE value, the associ-
ated weight matrices of the model are saved. The weight matrix
of the 1D-CAE for Greding and Pavia University are initialized
with values generated by a Gaussian distribution with µ = 0
and standard deviation σ = 0.05.

To evaluate reconstruction accuracy of the 1D-CAE model, the
results are compared with the DAE and the NLPCA method
on the reconstructed data. The DAE model was introduced in
(Kuester et al., 2020) and shows a high level of reconstruction
accuracy, assessed using various metrics, and in target detec-
tion under challenging conditions even for sub-pixel targets.
The current state-of-the-art method NLPCA from (Licciardi
and Chanussot, 2018) was re-implemented. The basic structure,
as well as the activation function of the individual layers, are
identical to the NLPCA method from (Licciardi and Chanus-
sot, 2018). However, the optimization method was changed
from the original conjugate gradients method to the Adam Op-
timizer. The batch size was increased from 1 to 256, and the
number of epochs was reduced from the original 2500 to 150.
The Signal-to-Noise Ratio (SNR) and the Spectral Angle Map-
per (SAM) are used to measure the 1D-CAE model’s recon-
struction accuracy. The evaluation algorithms are applied to the
original data and the reconstructed data of the different com-
pression methods. The SNR measures the accuracy of the re-
constructed data in decibels (dB) (Fowler and Rucker, 2007).
The SNR is defined as

εSNR(V, Ṽ) =
1

p

p∑
i=1

10 log10

σi(V)2

εεεMSE,i(V, Ṽ)
, (3)

where the MSE is calculated according to equation (2). The
variable V indicates the original data and Ṽ the reconstructed
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data. εεεMSE ∈ Rb is the mean square error between the original
and the reconstructed data, and σ(V)2 ∈ Rb is the variance
of the original data over all pixels for each band. The smaller
the difference between the original and the reconstructed data
set, the larger the SNR value and the better the spectral similar-
ity. The second metric used to calculate the similarity between
the input and the reconstructed spectral signatures is the SAM
(De Carvalho and Meneses, 2000). The SAM calculates the
spectral angle between two spectra and is defined as

εSAM(V, Ṽ) = arccos

b∑
i=1

ViṼi√
b∑

j=1

Vj
2

b∑
l=1

Ṽ2
l

∈ Rp. (4)

The result of the calculation is a vector with one value per
spectral signature in V. The smaller each element’s value,
the higher the spectral similarity, which means less deviation
between the original and the reconstructed signal. To compare
the results, the mean SAM value is computed and used as an in-
dicator of the deviation from the original data. Finally, the land
cover classification is carried out using an SVM. For this the
libSVM MATLAB package is used as a multi-class SVM with
optimized step size selection (Chang and Lin, 2011). The SVM
is trained exclusively on the original data sets and then applied
to the reconstructed data for the land cover classification. The
results are evaluated by comparing the and Cohen’s Kappa to
the land cover results of the original data. For the SVM training
process, the original Greding Village and Pavia University data
sets are used.

4. RESULTS AND DISCUSSION

The reconstruction accuracy of the 1D-CAE outperforms the
DAE and NLPCA for every used metric for the Greding Vil-
lage data set as well as Pavia University data set. The focus lies
on the compression of the spectral signature for a fixed com-
pression ratio of ≈ 4 : 1. Table 2 shows the reconstruction
accuracy measured by the SNR and the SAM for the Greding
Village data set. The SVM classification results were calculated
by applying the previously trained SVM model to the recon-
structed data. The baseline indicates the hypothetical results
for a perfect (loss-less) reconstruction. The 1D-CAE model sur-
passes the DAE by 2.9 dB and the NLPCA method by 7.1 dB,
shown in Table 2. Furthermore, the spectral angle of the 1D-
CAE model is smaller compared to the two other methods. With
the land cover classification, the compression with the 1D-CAE
model leads to a higher classification accuracy compared to the
other methods. The classification result of the proposed ap-
proach almost reaches the results of the baseline. Overall, this
concludes that the 1D-CAE compression method achieves the
highest reconstruction accuracy among the tested methods on
the Greding Village data.

The corresponding evaluation of the Pavia University data in
Table 2 shows that the 1D-CAE model achieves an SNR value
that is 5.0 − 5.5 dB higher compared to the other two meth-
ods. Furthermore, the spectral angle of the 1D-CAE approach is
≈ 40 % smaller than the spectral angle of the DAE and NLPCA
method. In the land cover classification, the proposed approach
achieves an overall classification that is 4 % higher than the
DAE and NLPCA method. The overall accuracy of the 1D-
CAE model is less than 2 % lower than that of the baseline.

Table 2. Comparison of the different compression methods
based on SNR, SAM, and land cover classification. The baseline
in the second row indicates the hypothetical results for a perfect
(loss-less) reconstruction. A high SNR value and a small spectral

angle indicate a good reconstruction accuracy of the original
data. The best values for each metric are highlighted in bold.

Greding Village
Compression

method
SNR
in dB

SAM
in degree

SVM
classification

baseline ∞ 0 OA: 0.964 κ: 0.955
1D-CAE 42.79 0.266 OA: 0.963 κ: 0.954

DAE 39.89 0.311 OA: 0.960 κ: 0,950
NLPCA 35.70 0.471 OA: 0.958 κ: 0.948

Pavia University
Compression

method
SNR
in dB

SAM
in degree

SVM
classification

baseline ∞ 0 OA: 0.779 κ: 0.717
1D-CAE 33.21 0.714 OA: 0.765 κ: 0.699

DAE 27.72 1.180 OA: 0.717 κ: 0.639
NLPCA 28.14 1.189 OA: 0.717 κ: 0.638
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Figure 2. Comparison of the original spectrum of vegetation
with the reconstructions of the 1D-CAE, DAE and NLPCA.

The Pavia University data set’s reconstruction accuracy is gen-
erally lower compared to the Greding Village data set. This
can be explained by the lower number of classes and the higher
number of available training samples per class in the Greding
Village data set, which is an important factor in training neural
networks.

Figure 2 shows the original spectral signature of a vegetation
sample in the Pavia University data set compared to the cor-
responding reconstructed spectra of the proposed 1D-CAE, the
DAE and the NLPCA model. There are small differences in the
reconstruction accuracy, which can be seen, e.g., for the bands
5 to 20, as shown in Figure 3 and for the bands 35 to 60, as
shown in Figure 4. The reconstruction error between the ori-
ginal and the reconstruction of the spectral signature from the
DAE and NLPCA is higher. This is especially evident for the
bands from 5 to 20 and for 35 to 60 as shown in Figure 3 and
Figure 4, respectively. Figure 5 shows the original and recon-
structed spectral signature of a factory’s roof. The dotted red
line of the 1D-CAE reconstruction has the highest accordance
with the original spectral signature. Especially in the areas of
bands 1 to 20 and 70 to 90, the reconstruction error of the 1D-
CAE is lower compared to the other methods. Figure 2 and
Figure 5 confirms the results from Table 2.

The main difference between the model architecture of 1D-
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Figure 3. Comparison of the original spectrum of vegetation
with the reconstructions of the 1D-CAE, DAE and NLPCA in

the bands 5 to 20.
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Figure 4. Comparison of the original spectrum of vegetation
with the reconstructions of the 1D-CAE, DAE and NLPCA in

the bands 35 to 60.
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Figure 5. Comparison of the original spectrum of the factories
roof with the reconstructions of the 1D-CAE, DAE and NLPCA.

CAE and the other methods are the utilized layer types.
Through the use of 1D-convolutional layer with its local fil-
ter, the important features in the spectrum can be found more

easily. Another advantage is that a once recognized pattern at
a specific position in the spectral signature, can be automatic-
ally identified at a different position. This attribute makes the
1D-convolutions translation-invariant towards features. By us-
ing multiple filters stacked in parallel, a large number of differ-
ent features can be found. The 1D-convolutional layer is fol-
lowed by a max pooling layer, which is used to extract only the
most significant features. Thus, the total amount of features is
reduced, which results in the desired compression. Two addi-
tional benefits are a substantial reduction of the computational
cost for the following layer, and the prevention of overfitting.
Since the DAE and NLPCA do not use any local filters, they
lack the property of translation invariance. This means that two
identical features must be found separately from one another in
different bands. Furthermore, they do not have filters stacked
in parallel, which results in a smaller amount of features found.
With the improved feature extraction of the 1D-CAE, the im-
portant features for the compression can be found. The same
applies to the reconstruction from the extracted features. The
focus lies on the compression of the spectral dimension. The
spatial dimension is not used in the compression in order not to
falsify the correlation between the spectral dimension and the
accuracy of the reconstruction.

For large and deep neural network structures, a lot of training
data is required to robustly find and extract the important fea-
tures. In the case of convolutional networks, high reconstruc-
tion accuracies can still be achieved for small amounts of train-
ing data. This can be explained by the translation invariance of
the convolutional kernels with respect to features. However,
it is also advantageous to train the model with many hyper-
spectral signatures of different materials in order to optimize
performance for all materials and their spectral variations in
the data. The 1D-CAE shows a good training process because
the weight matrices are optimized the most in the early epochs,
which means that the MSE values are rapidly decreasing in the
beginning. This behavior is observed for the training of the
1D-CAE model on both data sets. Since the Greding Village
data were entirely unknown for the compression method, the
model shows a good generalization capabilities, as the training
was performed in a predominantly agricultural area while the
test took place with rural scene including a small village. In the
evaluation of the 1D-CAE on the Pavia University data set the
same area is utilized for the validation and the evaluation pro-
cess. This is not detrimental to the evaluation process, as the
training and validation data are disjoint.

The generalization capability of the 1D-CAE is also given for
the Pavia University data set. During the training process, the
error for the validation data is in the same order of magnitude
as the error for the training data, and there are no significant
outliers, it is assumed that there is no oveoutliers. This indic-
ates that the training process does not result in overfitting. At
this stage, the scalability of the proposed method is limited by
the fixed number of spectral bands for the Input layer. This can
be solved by specific modules to adjust the spectral dimension
of the input data to the model, in case of different sensor mod-
els. In conclusion, the 1D-CAE model’s performance surpasses
the DAE and the state-of-the-art NLPCA method and is able to
efficiently and accurately compress the spectral dimension of
hyperspectral data.
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5. OUTLOOK

This paper proposes a 1D-CAE model to efficiently compress
the spectral dimension of hyperspectral data. A high level of re-
construction accuracy was achieved and demonstrated by com-
paring the SNR and the spectral similarity, as well as an evalu-
ation by land cover classification between the original and the
reconstructed data for the Greding Village and the Pavia Uni-
versity data sets. In order to examine the overall generaliza-
tion capability, data with more diverse setting have to be tested.
Additionally, the impact of the correlation, which can change
significantly from scene to scene, will be investigated. More
test data is required for reliable results. In future research,
higher compression rates will be investigated to compress the
spectral dimension. It will be investigated whether the com-
pression rate can be increased after applying additional spatial
compression, while simultaneously maintaining a comparable
reconstruction accuracy. The spatial dimension’s compression
can be carried out using a classic method such as a 2D-DWT
or a 2D-AE that takes the spatial properties into account. With
a 3D-convolutional neural network, spatial and spectral com-
pression can be carried out simultaneously. This could allow a
combination of spatial and spectral features, and thus improve
feature extraction. Additionally, we plan to compare our res-
ults to compression methods from the field of signal processing,
such as the cosine transformation and wavelet transformation.

Depending on the use-case, it can be beneficial to introduce ad-
ditional evaluation metrics as loss functions to extract specific
features for a desired target application. Additionally, the trans-
fer of data sets to a compression model with a different number
of bands is an important topic, because the number of input fea-
tures cannot be changed. Finally, the development of a model
that can handle input data of arbitrary dimensionality is an im-
portant research topic, as the current models are tailored to a
specific number of input features. This would allow the com-
pression of data from different sensors and greatly facilitate us-
ability.
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