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ABSTRACT:

The application of image-based methods in inspections and monitoring has increased significantly over recent years. This is espe-
cially the case for the inspection of large structures that are not easily accessible for human inspectors. Here, unmanned aircraft
systems (UAS) can support by generating high-quality images, that contain valuable information about the structure’s condition. To
guarantee high quality and completeness for the acquired data, inspection missions are planned in advance by computing a flight
path for the UAS, that covers the entire structure with the required quality. Many approaches on this topic exist that aim to solve
this planning task. Nevertheless, each publication on this matter mostly stands on its own, working with its own criteria and no
comparison to other approaches. Therefore, it is currently not possible to compare different approaches and select the most suitable
for a specific scenario. To solve this problem, this work proposes an evaluation pipeline that applies well defined quality criteria on
flight paths for close-range image-based inspections. These criteria are limited to fundamental aspects for the evaluation of paths
that were created for diverse scenarios with diverse criteria and still find common ground for comparison. As experiments show, this
pipeline allows the comparison of different approaches, objectifying the performance and working towards a common understand-
ing of the current state of the art. Finally, the Bauhaus Path Planning Challenge is presented, inviting submissions to a comparison
based on this pipeline to collaborate on an objective ranking, available under https://uni-weimar.de/pathplanning.

1. INTRODUCTION

The application of unmanned aircraft systems (UAS) in vari-
ous scientific and industrial settings has increased significantly
in recent years (Jeong et al., 2020), mainly due to increased
performance, reliability, and availability (Grubesic and Nelson,
2020). Equipped with modern sensors, such as cameras or Li-
DAR scanners, UAS are especially used in different monitoring
and inspection tasks, for example in forestry (Yrttimaa et al.,
2020), agriculture (Santos et al., 2020), environmental sciences
(Tmušić et al., 2020), and civil engineering, where many ap-
plications in the maintenance of infrastructure have been devel-
oped, that improve existing processes and allow for new value
generation by levying this new technology. An overview is
given in (Brilakis and Haas, 2019). The usefulness of UAS
was shown for example for the inspection of pipelines in the
combination with virtual reality (VR) tools (Liu et al., 2019),
residential building roofs (Silveira et al., 2021), or infrastruc-
ture inspection (Morgenthal et al., 2019).

While different sensors are used on unmanned aerial vehicles
(UAV), this work focuses on RGB cameras, as they are an ac-
cessible and widely used payload. Nevertheless, most consid-
erations also apply to other sensors, respecting their configu-
rations and possibilities. To process the generated data, differ-
ent procedures can be employed. Apart from manually viewing
generated images to support human analysis, a very common
and powerful tool is the Structure-from-Motion (SfM) pipeline
(Schönberger and Frahm, 2016), used to compute 3D recon-
structions from the images. This allows for analyses of the
geometry of structures, changes to the geometry, and measure-
ments of different quantities. Images and 3D models can further
be evaluated using modern Deep Learning (DL) algorithms that
are able to analyze images faster and more accurately than hu-
mans. They can detect different defects on the structures, for
example cracks (Valença and Júlio, 2018, Benz et al., 2019).
∗ Corresponding author

Each deployment of UAS has the objective of answering spe-
cific questions about a structure that require certain data with
adequate quality and resolution. To be able to produce this data,
strong constraints have to be imposed on the acquisition of the
images and especially the flight path of the UAV. To achieve
a certain resolution, a specific constant distance between the
object and the camera has to be maintained. To fully cover a
structure with the images, it is necessary to take images from
specific viewpoints, specific positions of the UAV with specific
orientations of the camera that take the scene geometry into ac-
count. To allow for an accurate and stable 3D reconstruction
using SfM, the orientation of the images has to be considered,
such that there is sufficient overlap and suitable relative orien-
tation of adjacent images. With these requirements, it becomes
obvious to take careful consideration before starting the data ac-
quisition, as without a suitable flight path the questions relevant
for the UAS deployment cannot be answered.

Two general approaches for designing suitable flight paths are
commonly used, either preparing the route in advance based on
available information, for example existing 3D models, aerial
images, or construction plans, or creating the route “on the fly”.
The latter requires either a skilled pilot with good spatial aware-
ness to cover the entire structure without gaps or very powerful
autonomous controls that solve the planning in real-time while
considering the geometry and the task-specific requirements.
For large structures like bridges and very strict quality require-
ments, human pilots are generally not able to steer the UAS
on a path that achieves the desired results, especially when the
geometry is complex and images from a very close distance
are required. While autonomous control promises to remedy
this, no such solutions exist to the authors’ knowledge, and au-
tonomous flight is not allowed in many countries, especially
not around critical infrastructure. Further, methods that only
operate on real-time data have no possibility to work towards
a global optimum as the entire scene will only be known after
a successful mission. Therefore, truly optimal routes can only
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be computed based on complete scene knowledge. Therefore,
this work focuses on pre-planned flight paths that have been
computed based on available rough 3D models, either from
the building’s design stage or from previous inspections. This
means, the resulting evaluation is mostly applicable to this spe-
cific setting of complete information and not transferable to
planning in unseen, unknown environments that need to be ex-
plored.

Many researchers and practitioners have devised strategies to
compute such flight paths, often with special requirements and
limitations that are specific to their use case. This work intro-
duces an open path planning challenge in Section 2, inviting
contributions to establish a common state of the art, founded
on the evaluation metrics described in Section 4. To give an
overview of existing approaches, Section 3 organizes previous
works based on their considered constraints and requirements,
while highlighting the challenge in comparing them based on
available information. This section further introduces works
that assess the quality of the data created from UAS images and
some foundations for the analyses proposed in this work. In
Section 4, a benchmarking system and evaluation pipeline are
introduced that use fundamental criteria, which can be applied
to all flight path generation approaches and build a common
ground for analysis and ranking. In Section 5, the proposed
pipeline is applied to a test scene and two flight paths to evalu-
ate the performance and suitability of the chosen criteria, high-
lighting the benefit of computing localized quality measures.
Finally, Section 6 lines out the results of this work and rein-
forces the call for participation in the path planning challenge.

2. BAUHAUS UAS PATH PLANNING CHALLENGE

Several researchers, for example (Zhang et al., 2020) or (Roberts
et al., 2017) have mentioned in their works that no established
method exists to compare the results of different flight path
planning approaches. This is confirmed by the literature study
in Section 3, where it shows that existing analysis procedures
only evaluate their own contribution based on a specific sce-
nario and only sometimes compare them to different approaches,
using expensive simulations in specific settings, for example
in (Roberts et al., 2017). Furthermore, these approaches com-
pare the author’s own contribution in form of a carefully crafted
method with very simple and often superficial implementations
of different ideas that will not perform to the same level.

The Bauhaus UAS Path Planning Challenge for close-range im-
age based inspection invites contributions from researchers and
practitioners for the evaluation, comparison, and ranking of flight
paths for specific inspection tasks, inspired by common bench-
marks like the Middlebury Stereo Vision Benchmark (Scharstein
et al., 2002). These tasks are defined in the challenge through
the resolution and accuracy requirements as described in this
work for specific 3D scenes. Submissions will automatically
be evaluated using the benchmark described in Section 4 and
ranked by the final score S from Equation 12.

The scenes used in the challenge cover a variety of different
scenarios to test the submissions in different settings. The first
scenario is the bridge pier presented in this work, shown in Fig-
ure 3a, as a very simple geometry but with strict resolution and
accuracy requirements. The second scene is a model of a school
building, shown in Figure 1a, with its surroundings, obtained
via SfM from UAS images. It has a more complex geometry

but less strict requirements, since the scenario is not about sub-
millimeter effects but larger phenomena. The third model is a
synthetic scene of a house modeled to have special geometri-
cal features like slanted and curved surfaces, different levels,
and an underpass, shown in Figure 1b. This more challenging
geometry is to test the adaptability of the algorithms to strong
geometric features.

(a) A school building from SfM (b) A synthetic house

Figure 1. Scenes for the path planning challenge.

To improve availability, reproducibility, transparency, and open-
ness, all data and information for the challenge will be avail-
able on the corresponding website https://uni-weimar.de/
pathplanning. This encompasses detailed descriptions of the
scenarios, the 3D models of the scenes, the scores of previous
submissions and the source code used for the evaluation, so the
results can be verified by everyone. To appropriately present
all submissions, they each will have a dedicated page where the
authors can provide a detailed description and reference the cor-
responding publications, source codes, and additional materials
if publicly available.

The goal of the challenge is to compare existing approaches
to UAS flight path planning on the same scenes with the same
quality parameters, so that a scientifically founded state of the
art can be established. This benchmark also aims at providing
important information for users when deciding which algorithm
can be used for their specific setting. Finally, it is an invitation
to start a conversation about how to measure the quality and
success of a flight path, based on the measures proposed in this
paper. While this work decidedly only uses very basic and fun-
damental aspects for the evaluation, it can be fruitful to include
more complex aspects into the evaluation and expand the scenes
to a more diverse set with different requirements in future.

3. EXISTING APPROACHES

With the rise of UAS applications for monitoring and inspec-
tion purposes, researchers as well as practitioners have identi-
fied and addressed the need for carefully selected viewpoints
for a successful inspection in various ways. While this is the
case for any measurement setup using images (Luhmann et al.,
2019), mounting the camera on a moving UAS introduces new
challenges and constraints, for example legal regulations im-
posed by many countries, for instance the European Union (EU,
2019). To address these constraints and requirements, many
approaches have been developed in recent years to plan UAS
flight paths that are suitable for the different use cases in in-
spection and monitoring, an overview of which was compiled
in (Bolourian and Hammad, 2020). While most approaches are
part of the same cosmos of applying UAS in the monitoring
and inspection of structures, the underlying constraints and con-
siderations differ widely between the different publications, as
shown in (Almadhoun et al., 2019).

A number of contributions stay with classical aerial images from
a constant height looking in nadir direction. In (Majeed and
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Lee, 2019), the authors plan inspections in urban settings, where
they avoid obstacles and optimize the ground coverage with a
minimal number of images using a sweep pattern. While the
results for their use case are promising, the flight path cannot
capture real 3D scenes, as vertical planes like facades cannot be
sufficiently covered by nadir imagery. Other approaches such
as (Peng and Isler, 2019), (Zhang et al., 2021) or (Bolourian
and Hammad, 2020) do not limit the viewpoint positions to a
simple plane above the scene with nadir views, but to other
geometric primitives like spheres, 3D polygons, 3D boxes, or
adaptive rectangles. Even though this allows for better adap-
tion to the real scene geometry, it does not work well for more
complex or concave geometries and does not give special con-
sideration to geometric features like edges. Therefore, other ap-
proaches have been developed that take the complete geometry
of the structure into account and compute complex free-form
paths. In (Besada et al., 2018) a path planning procedure for
tower-like structures is introduced that produces suitable routes
for the inspection with thermal images by fitting multiple cylin-
der shapes with fixed viewpoint configurations into the scene,
though photogrammetric constraints are not considered. Sim-
ilarly, in (Zhang et al., 2020) a planning procedure based on
full coverage is proposed that optimizes the precision of the re-
construction, by iteratively adding viewpoints to achieve com-
plete coverage and then high precision. In (Koch et al., 2019)
and (Roberts et al., 2017), two powerful methods are proposed
that select optimal viewpoints on a grid of candidates, achiev-
ing full coverage and high quality while considering additional
constraints like semantic annotations or visual quality. In those
works, different heuristics for the selction of the viewpoints are
applied that form a submodular reward function for the addi-
tion of more viewpoints. Other approaches use completely free
placement of the viewpoints by computing viewpoint candi-
dates for each triangle of a polygonal mesh of the object and
reducing them to an optimal route, for example via clustering
with regard to the viewing angle (Hoppe et al., 2012) or via
greedy selection of the viewpoints that provide most new cov-
erage, until complete coverage is achieved (Debus and Rode-
horst, 2020). The two approaches used in Section 5 have been
proposed by (Morgenthal et al., 2019), placing fronto-parallel
viewpoints around the structure, based on either intersecting
the scene with parallel planes and using the intersections as
viewpoint positions or sampling a grid of viewpoints around
the structure, considering photogrammetric requirements for a
good 3D reconstruction, such as image overlap, limited rota-
tion, minimum basewidth, and constant resolution.

In addition to computing suitable flight paths, many researchers
have conducted analyses into the quality of the produced data
that can be achieved using UAS. Generally, these analyses are
based on performing the full analysis pipeline and comparing
the results to a known ground truth. In (Saponaro et al., 2019),
(Roberts et al., 2017) and (Cwiakala, 2019) the authors test re-
construction performance on real images from UAS missions,
while in (Hoppe et al., 2012), (Peng and Isler, 2019) and (Koch
et al., 2019) simulated images are used. In all these cases, a
3D reconstruction with SfM is computed and certain points are
compared to their kown true position.

The evaluation pipeline proposed in this work builds on estab-
lished methods from the fields of computer vision and scien-
tific computing. Algorithms for projective geometry and image
analysis are described in (Förstner and Wrobel, 2016), (Luh-
mann et al., 2019) and (Heuel, 2004) and provide the compu-
tational foundations for this work. Implementations of these

algorithms exist for many software tools such as CloudCom-
pare (Girardeau-Montaut et al., 2005) and programming envi-
ronments, for example in (Kovesi, 2020) for the Julia program-
ming language (Bezanson et al., 2017). A modern technique in
computing is automatic differentiation (AD), a method to au-
tomatically determine derivatives of computer programs. It is
very commonly used in machine learning (Baydin et al., 2018),
but also in many other fields of scientific computing (Rack-
auckas et al., 2020), and implemented in efficient software li-
braries (Revels et al., 2016).

4. PROPOSED BENCHMARK

Evaluating the performance of flight paths for photogrammet-
ric 3D reconstruction is important for the application of UAS
and having trust in the results. From a scientific perspective,
comparability of ideas and implementations is important to es-
tablish current practices, a shared state of the art, and finally
progress. As lined out in Section 3, the principal task in UAS
flight path planning is the same over all existing contributions:
Computing efficient flight paths that cover the entire structure
with constant resolution and accuracy that enable answering
specific questions about the structure, as defined in (Koch et
al., 2019). However, the specific constraints can be very dif-
ferent between them, for example semantic constraints on the
scene, specific hardware configurations, or only using classical
aerial images. Finding a common measure that is able to use-
fully assess all different scenarios requires extracting general
criteria that are expressive, conclusive, and concern only the
core task. Therefore, the evaluation cannot include very com-
plex measures, as they require non-fundamental considerations.

Two fundamental use cases can be defined for image-based in-
spection of structures: The detection of certain effects in the
images and the reconstruction of a 3D model using SfM. From
this, two criteria can be derived that can characterize flight paths
qualitatively, together with a common optimization target, the
length of the flight path or respectively the number of images.
The required object resolution dobj is a measure for the smallest
effect on the surface that is to be visible in the images. It di-
rectly defines the optimal distance between the camera and the
object. In traditional aerial photogrammetry, the resolution is
also known as ground sampling distance (GSD), whereas this
work uses the more general term resolution. Computing a 3D
reconstruction from images using SfM is not without errors, as
measurements in images are not without errors and can accu-
mulate depending on the geometry of the image bundle. An im-
portant requirement for a successful inspection is the admissible
accuracy e, a measure for the admissible variance in the posi-
tions of the reconstructed 3D points. With these two require-
ments - resolution and accuracy - defined, the requirements for
the flight paths are clear.

Another very important and commonly applied criterion is the
complete coverage of the structure of interest. In the proposed
benchmark however, this criterion is not used, as it is implicitly
contained in the other two criteria. The structure has to be com-
pletely covered for the resolution to be achieved at all points
and for all points to be reconstructed with the required accu-
racy. Further, these constraints do not make any additional as-
sumptions, but focus only on photogrammetric and image anal-
ysis aspects. Accordingly, some aspects that can be relevant for
specific settings are not considered, for example the influences
of wind, motion blur, semantic constraints or flight properties
and orientation limitations of the UAS. Especially the on-site
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lighting conditions and surface properties cannot be considered
in an abstract benchmark. Therefore, these aspects have to be
considered outside of this work during the mission to achieve
optimal results. This makes the benchmark applicable regard-
less of the used UAV (fixed wing or multirotor), as long as it is
able to reach the computed viewpoints with sufficient precision.

This work proposes methods to measure these criteria from a
computed flight plan, a simple camera model with constant pa-
rameters for the entire mission, and a 3D model of the scene
to be inspected. This model of the scene is to be considered a
rough representation of the correct geometry in the sense that
it is sufficient for navigating the scene without collisions and
capturing all parts of interest, while not containing the infor-
mation that is of interest for the inspection due to being not
detailed and accurate enough. It could for example be a CAD
model, which abstracts the geometry to a certain degree, or re-
constructed from aerial images, not containing details of the
scene. The content of the scene, whether it is a single struc-
ture like a tower or a building or a larger area, for example
a city quarter or a large bridge, should have no effect on the
method, so that it is applicable in all scenarios. While a polyg-
onal mesh representation of the scene is used for many pur-
poses, for some computations a set of n surface points P is
computed and used as a representation of the scene, also called
object points. These points are sampled randomly on the sur-
face of the mesh, kept the same for all evaluations to increase
comparability, and projected into the images of the flight path
to simulate feature points. In the context of this work, a flight
path consists of an ordered set of viewpoints C, camera posi-
tions and orientations that the UAS will follow in order. Finally,
a combined score is proposed that can be used in ranking dif-
ferent approaches, while the partial measures can support the
selection of an approach for a specific use case.

The measurement of the criteria requires the pairwise visibil-
ity relations of all viewpoints and all object points, computed
by projecting the object points into the images and checking
for occlusions using raycasting. This resulting image bundle
contains the information normally obtained by SfM without
having to compute the expensive SfM pipeline, which would
also require either real images that limit the applicability of the
method through enormous efforts required and make it unus-
able as a tool for predicting reachable qualities, or simulated
images that only add computational effort and would introduce
the influence of rendering, feature extraction, and SfM into the
analyses. The visibilities are represented as:

Vij =

{
1, if 3D point j is visible from viewpoint i
0, otherwise

(1)

where Vij = visibility relations between the object points
and viewpoints,

ci ∈ C = set of m viewpoints in the flight path,
pj ∈ P = set of n 3D points on the object surface

4.1 Resolution on the Surface

In order to detect effects of interest in the images, a certain res-
olution on the surface of the scene is required. With a defined
camera model, this directly translates into a maximum distance
between camera and object that is admissible to achieve this res-
olution, shown in Equation 2. To minimize the number of im-
ages required to cover the entire structure, the distance should

be as close to this optimum as possible:

d∗ = f
dobj

dpix
(2)

where f = focal length [mm],
dobj = target resolution on the object surface [mm/px],
dpix = size of one pixel on the sensor [mm/px],
d∗ = optimal distance between object and camera [mm]

(a) Distances d∗, dnear, and dfar (b) Schema of the accuracy
measure

Figure 2. Schematic relations and measures for the evaluation.

Since precisely achieving this computed distance is practically
not feasible and to deal with slanted surfaces, a range dε around
it is defined instead as the accepted distance to reach the re-
quired resolution. The range places a near limit dnear = d∗−dε
and a far limit dfar = d∗+dε on the accepted distance to include
the depth of field of the camera, as shown in Figure 2a. The res-
olution requirement δj for an object point pj is computed via the
distance of the point and all viewpoints from which the point is
visible, implicitly requiring each point to be visible from at least
one viewpoint:

δj =

{
1, if dnear ≤ dij · Vij ≤ dfar for any ci ∈ C
0, otherwise

(3)

where dij = distance between viewpoint ci and pj

The global fulfillment of the object resolution requirement is
computed as the proportion of object points, for which the res-
olution requirement is satisfied:

δ =
1

n

∑
pj∈P

δj (4)

4.2 Accuracy of the 3D Reconstruction

While the object resolution measure can be computed by eval-
uating single visibility relations, the accuracy requirement in-
volves the relative orientations of adjacent images, as a narrow
baseline between two images can lead to a glancing intersec-
tion for the object point triangulation, schematically shown in
Figure 2b. This criterion concerns the expected accuracy of the
3D reconstruction from SfM using the computed flight path. To
quantify this, measurement errors are propagated through the
triangulation, the covariance of the triangulated 3D position is
determined, and a principal component analysis (PCA) is per-
formed to find the largest variance of the triangulation. The lin-
ear triangulation computes the position of a 3D point from cor-
responding measurements in multiple images. Here, a view of
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an object point is only used in the triangulation, if the projection
lies in the image, the visibility is not occluded, and the distance
between camera and point is close to the optimal distance d∗,
similar to Equation 3. This provides a near constant resolution
of the resulting 3D model over the entire structure. This im-
plicitly requires sufficient coverage of the structure, such that
each object point is contained in at least three images for the
triangulation.

First, the Jacobian matrix Jj containing all partial derivatives
of the triangulation with regard to the image measurements is
computed using automatic differentiation. For the triangulation
of point pj on the scene, Jj is a 3 × 2c matrix, where c is the
number of views that contain the object point. 2c parameters
are used in the triangulation and 3 coordinates are the result.

To perform the non-linear uncertainty propagation through the
triangulation, Jj is multiplied with the covariance matrix ΣI
of the input to obtain the covariance matrix of the output ΣP,j
according to (Ochoa and Belongie, 2006):

ΣP,j = Jj · ΣI · JTj (5)

where ΣI = covariance matrix of the image points,
ΣP,j = covariance matrix of the triangulated point pj

With the assumption that the measurements in the images are
within 1px of the true position and uncorrelated, the covariance
matrix for the input ΣI is set to the identity matrix. Performing
the PCA, the largest eigenvalue of the output covariance ma-
trix emax,j is determined, quantifying the largest variance of the
output and serving as a measure for the achievable accuracy.

The local fulfillment of the accuracy criterion Φj for each point
pj ∈ P is computed by comparing emax,j to the admissible vari-
ance e∗:

Φj =

{
1, if emax,j ≤ e∗

0, otherwise
(6)

The global fulfillment of the accuracy requirement is computed
as the proportion of object points, for which the accuracy re-
quirement is satisfied:

Φ =
1

n

∑
pj∈P

Φj (7)

4.3 Path Length and Image Count

The previously described measures are externally defined qual-
ity criteria that have to be fulfilled for the flight path to be usable
for the specific purpose and can be considered as boundary con-
ditions for the path planning problem. For efficient inspections,
the objective is to minimize the mission duration by minimizing
the number of required images and the distance the UAS has to
travel along the flight path. Accordingly, these two aspects can
be combined into a cost function for the path planning problem,
which aims to minimize this cost. As the relative cost of the two
components - what is more expensive, a longer flight or more
images? - is not easily determined, the simplest combination as
the sum is used to compute the path cost L:

L =
∑
ci∈C

||ci − ci−1||+m (8)

where ‖ci − ci−1‖ = Euclidean distance between two
successive viewpoints,

m = |C| = number of images in the path

The flight length does not consider the specific flight properties
of a UAS such as minimum curve radius, downstream forces,
line of sight for pilot intervention, or intermediate stops to recharge
the batteries, as these are use case dependent and cannot be in-
corporated objectively.

4.4 Combined Score

A benchmarking system aims to make different approaches com-
parable along objectively measurable criteria, for which this
work has proposed the described measures. Ideally, the ob-
ject resolution δ and accuracy Φ measures are used as bound-
ary conditions, violations of which invalidate a computed flight
path, and the only comparison measure is the path length L,
where lower values are better. However, to the knowledge of
the authors, no existing approach is reliably able to satisfy the
quality criteria, so no admissible solutions would exist under
this consideration. To remedy this, the boundary conditions are
included in the cost function similar to a Lagrangian relaxation,
such that flight paths that do not fulfill the quality requirements
obtain a reduced score. The quality Ψ of the flight path is com-
puted as the product of the two single quality measures:

Ψ = δ · Φ (9)

This multiplication punishes flight paths that do not come close
to fulfilling the requirements, providing zero reward, if one of
the constraints is not satisfied at all. The quality measure Ψ is
combined with the path length L and measures from the scene
to compute the score of the path. The path length L is included
as the divisor, so shorter paths receive a higher reward. To nor-
malize the score Ŝ for different models, the surface area of the
model of the scene is used as a factor, since it is roughly propor-
tional to the path length and the number of images - doubling
the size of the model requires double the number of images.
The target distance between camera and object d∗ is used to nor-
malize the score for different inspection scenarios, as the path
length and the number of images are roughly inversely propor-
tional to its square - doubling the distance quadruples the area
covered by one image:

Ŝ = Ψ
A

L · d∗2 (10)

where Ψ = quality factor of the flight path,
L = cost of the flight path length,
A = surface area of the 3D model of the scene

As the path cost L goes into the denominator of the score cal-
culation, very short paths result in badly defined behavior of the
function. To compensate this, short paths of less than 10 view-
points are excluded from the evaluation, as those paths can only
be suitable for very small and special scenes that do not warrant
the complex considerations applied here.

With no optimal solutions for the path planning problem being
known, an optimal value for the score Ŝ is also not known and
may only be the result of continuous improvement of the plan-
ning approaches. To provide an upper bound for the achievable
score, a minimum length path for a very simplified setting can
be computed. Assuming that both resolution and accuracy are
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perfectly achieved, the score only depends on the path cost L.
For these considerations, the model of the scene is simplified
to a planar strip with the width exactly covered by one image
from the optimal distance d∗ in landscape orientation and the
height such that the total surface area of the model is main-
tained. As three-view visibility is required for all object points,
as described in Section 4.2, the minimal number of required
images can be computed as:

mmin =
3 ·A

d2obj · (rx · ry)
(11)

where rx and ry are the horizontal and vertical resolution of
the images and their product with the squared object resolution
dobj is the area covered by one image. The length distmin of
the flight path is the height of the planar strip, as it has to be
traversed once. With these assumptions a minimal path cost
Lmin = mmin + distmin can be computed and used for an upper
bound of the achievable score Smax, as in Equation 10. This
bound can be used for the normalization of a score in the range
[0, Smax] to the range [0, 1], although the strong simplifications
applied for computing the upper bound make it impossible to
reach the maximum score. The final score is calculated as:

S =
Ŝ

Smax
(12)

5. APPLICATION OF THE BENCHMARK

To validate the benchmarking system proposed in Section 4,
it is applied to two flight paths computed for a simple scene
of one bridge pier, shown in Figure 3a. It is 30m high, with
rectangular cross section, slightly slanted sides and a surface
area of 456m2. For the point-wise evaluation of the measures,

(a) Mesh of the pier
used for analysis

(b) Route from
slicing the mesh

(c) Route from grid
placement

Figure 3. Routes for evaluating the benchmark. Areas with
removed viewpoints highlighted in the second image.

a set of 45000 points is randomly sampled on the surface of the
mesh and used for the evaluation of both methods. The camera
used for the inspection has the following geometric properties:

• Resolution: 7360× 4912px (36MP)

• Sensor size: 35.8× 23.9mm (full frame)

• Focal length: 55mm

The application scenario used for the evaluation is acquiring
images for the detection of small cracks on the surface and lo-
cating them on a 3D reconstruction of the object. To achieve
this, the quality requirements are set to a resolution dobj =
0.2mm/px, which results in a target distance d∗ = 2.621m ac-
cording to Equation 2 and a distance range dε of 10% = 0.26m,
and an admissible accuracy e∗ = 1mm.

Two flight paths are computed using two different yet simple
approaches from (Morgenthal et al., 2019). They have been
used in different settings with good results and can serve as a
baseline. For the first path, the mesh is intersected with hori-
zontal slicing planes and viewpoint rings are computed around
the intersection shape. For demonstration purposes, one view-
point ring in the upper third of the pier and one at the bottom are
manually removed from the solution to show the effect of miss-
ing coverage, resulting in a flight path with 2313 viewpoints, as
shown in Figure 3b. The second approach places viewpoints on
a regular grid around the object, selects those that have roughly
the required distance d∗ to the surface, and moves them to have
the required distance, looking directly towards the object sur-
face. This route consists of 2556 viewpoints and is shown in
Figure 3c.

Both paths are analyzed using the benchmark described in Sec-
tion 4 and evaluated on all criteria. The results for the two path-
planning methods are summarized in Table 1. As both routes
were computed for the same model and scenario, surface area
A and the reference distance d∗ are equal and the upper bound
score Smax for this scenario is 0.05284.

Route δ Φ Ψ L S

Slice 0.9647 0.7819 0.7544 3345 28.4%
Grid 0.9939 0.9290 0.9344 3840 30.3%

Table 1. Results of the evaluation of the two routes.

The values for the path length L show that the higher number
of images for the second route also results in a higher length
cost. Nevertheless, this higher number of images also results
in a significantly higher quality score Ψ, especially for the ac-
curacy Φ. Accordingly, the total score S is higher for the sec-
ond method, showing it is able to produce an overall better re-
sult. As the criteria are also evaluated for the sampled object
points on the surface, the individual values can be used to val-
idate the results. Figure 4 shows visualizations of the results
for some select cases. Figure 4a shows that the resolution for
the grid method is satisfied for the entire structure, except for
some points at the very top of the pier, reflecting the 99% ful-
fillment for that criterion. Figures 4b and 4c show the effect of
the removed rings of viewpoints for the slice method, where the
accuracy is decreased, resulting in an accuracy score of around
78%, an effect which does not occur in the grid method without
removed viewpoints.

Overall, this evaluation shows that the chosen criteria are able
to identify errors and difficulties in the computed flight paths
and the visualization can be useful in locating those issues, pro-
viding valuable feedback during the design and implementation
of new approaches. At the same time, the resulting final score
is suitable to compare the quality of the flight paths and there-
fore suitable as a ranking method, even though no optimum is
known to exist.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-157-2021 | © Author(s) 2021. CC BY 4.0 License.

 
162



(a) Resolution
for the grid

method

(b) Accuracy
for the slice

method

(c) Accuracy
for the grid

method

Good
fulfillment

Close
fulfillment,

over 90% of
the limit

No
fulfillment,

over the limit

Figure 4. Color coded point-wise results of the evaluation of the
resolution and accuracy measures. Close fulfillment is only used

for accuracy, as resolution can only be achieved or not.

6. CONCLUSIONS AND CALL FOR PARTICIPATION

This work proposes a benchmarking and ranking system to eval-
uate pre-computed flight paths for close-range image-based UAS
inspections. After reviewing the current state of the art, recent
contributions to the problem of flight path planning, and exist-
ing evaluation methods in Section 3, a set of fundamental and
simple criteria was identified in Section 4 that can be used for
the evaluation. Acknowledging the variety in the application
scenarios for which flight paths are computed, these criteria are
elementary and can therefore be applied to all use cases by only
considering core requirements.

The chosen quality criteria concern the object resolution and ac-
curacy that can be achieved with a flight path and the implicitly
measured coverage of the entire scene. A measurement proce-
dure is proposed for each criterion, together with an equation
for computing a combined quality score, which measures the
satisfaction level of the quality requirements. The quality score
can be combined with the length of the route and the number
of images into a final benchmark score of the flight path that
assesses the performance of the computed path. The proposed
benchmark is evaluated on a simple model and two computed
paths in Section 5, where the scores of the benchmark show
that significant differences between the paths can be detected
and therefore support the analysis of intuitive visual assessment
of the paths.

The proposed performance assessment procedure forms the ba-
sis for the Bauhaus UAS Path Planning Challenge for close-
range image-based inspection, in which researchers and prac-
titioners are invited to contribute their solutions for the UAS
flight path planning problem in predefined scenarios to iden-
tify valuable contributions and methods and establish an ob-
jective state of the art. This open challenge is available under
https://uni-weimar.de/pathplanning, where all informa-
tion is provided, including the detailed scenario descriptions,
the source code of the evaluation pipeline and a ranking of pre-
vious submissions. Finally, this challenge, the resulting ranking
of approaches, and the experience with the underlying evalua-
tion are an invitation for the community to contribute to further

improvements and adjustments to the benchmark to establish it
as the measure for future contributions.

After gathering experience with the current proposed bench-
mark, it can be expanded to also include more complex mea-
sures and aspects, determining finer differences when a base-
line performance can be established. This extension can include
adding more details to the proposed measures, like also using
the incidence angle of the viewpoints on the surface, the over-
lap of adjacent images or the photogrammetric network design,
but also introducing new criteria such as no-fly zones, semantic
aspects of the scene, or the reliability of the UAV in reaching
the correct positions. This allows the future expansion of the
benchmarking scenarios to additional scenes that capture those
aspects, creating a useful and established reference for the prob-
lem of UAS flight path planning.

ACKNOWLEDGEMENTS

The research in this paper was funded within the AISTEC re-
search project by the German Federal Ministry of Education
and Research (BMBF) under the grant number 13N14657.

REFERENCES

Almadhoun, R., Taha, T., Seneviratne, L., Zweiri, Y.,
2019. A survey on multi-robot coverage path planning for
model reconstruction and mapping. SN Applied Sciences, 1(8).
http://dx.doi.org/10.1007/s42452-019-0872-y.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., Siskind, J. M.,
2018. Automatic Differentiation in Machine Learning: a Sur-
vey. Journal of Machine Learning Research, 18(153), 1-43.
http://jmlr.org/papers/v18/17-468.html.

Benz, C., Debus, P., Ha, H. K., Rodehorst, V., 2019.
Crack Segmentation on UAS-based Imagery using
Transfer Learning. 2019 International Conference on
Image and Vision Computing New Zealand (IVCNZ).
http://dx.doi.org/10.1109/IVCNZ48456.2019.8960998.

Besada, J. A., Bergesio, L., Campaña, I., Vaquero-Melchor, D.,
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