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ABSTRACT: 

 
Wild parsnip is an invasive plant that has serious health risks to humans due to the toxin in its sap. Monitoring its presence has been a 

challenging task for conservation authorities due to its small size and irregular shape. Unmanned Aerial Vehicles (UAV) can obtain 

ultra-high resolution (UHR) imagery and have been used for vegetation monitoring in recent years. In this study, UAV images captured 

at Lemoine Point Conservation Area in Kingston, Ontario, are used to test a methodology for distinguishing wild parsnip. The objective 
of this study is to develop an efficient invasive wild parsnip classification workflow based on UHR digital UAV imagery. Image pre-

processing flow includes image orientation, digital elevation model (DEM) and digital surface model (DSM) extractions, and 

orthomosaicking using Simactive’s software. Three vegetation indices and three texture features are calculated and added to the 

mosaicked images as additional bands. Image analysis frameworks namely pixel- and object-based method and three classifiers are 
tested and the object-based Support Vector Machine (SVM) is selected to distinguish wild parsnip from other vegetation types. The 

optimal image resolutions are undertaken by comparing accuracy assessments. The results provide an executable workflow to 

distinguish wild parsnip and show that UAV images, with a simple digital camera, are an appropriate and economic resource for small 

and irregular vegetation detection. This method yields reliable and valid outcomes in detecting wild parsnip plants and demonstrates 
excellent performance in mapping small vegetation. 

 

 

1. INTRODUCTION 

Invasive plants are non-native plants to a specific region with a 

tendency of spreading (Boersma et al., 2006) and can change or 

destroy the local habitat, affect native plants, and potentially 

increase human and animal health risks (Paz-Kagan et al., 2019). 
Wild parsnip is an invasive plant that grows up to 1.5 m high with 

umbrella-shaped yellow flowers of diameter up to 15 cm (“Wild 

parsnip | Ontario.ca,” 2019) (Figure 1). It can be found in large 

patches or a single plant. Due to its edible root, it was brought to 
North America by European immigrants (Zohary et al., 2012). 

Wild parsnip is considered toxic since it causes 

phytophotodermatitis (PPD), which burns the skin of both 

humans and animals through contact with a chemical, called 
furanocoumarins, in the plant’s sap when the person or animal is 

subsequently exposed to ultra-violet radiation (Averill and 

DiTommaso, 2007). The affected area can remain discolored for 

up to two years (Carlsen and Weismann, 2007). Therefore, 
organizations such as the Ontario Invasive Plant Council have put 

greater importance on monitoring and controlling wild parsnip 

(Danielle and Kellie, 2014). Currently, the technique used to 

control the spread of wild parsnip is by eradication before flower 

buds have fully grown. Mowing at the wrong time will result in 

worsening the problem through the increased spread of the plant. 

However, identifying wild parsnip and monitoring its presence in 

a vast region has been challenging for conservation agencies due 
to its small size and irregular shape, especially for single 

scattered plants. 

 

  
Figure 1. Wild parsnip and its flowers (source: 
http://www.invadingspecies.com/wild-parsnip/)     

 

Remote sensing images acquired by satellites or airplanes have 

been applied for monitoring vegetation in different research areas 

for many years (Pande-Chhetri et al., 2017). However, traditional 

satellite or aircraft images cannot capture individual plant-level 
details, especially for scattered and small plants like a wild 

parsnip. Ultra-high resolution (UHR) images (sub-decimetre 

spatial resolution) such as Unmanned Aerial Vehicles (UAV) 

images have been widely applied in vegetation analysis due to 
the advantages of low cost, high resolution, and easier operation 

(Salamí et al., 2014). The UHR images captured by UAV can 

provide detailed features suitable for estimating the location of 

individual vegetation plants within several hectares (Colomina 
and Molina, 2014). As the flying altitude of UAV can be 

adjusted, the resolution of the acquired images can go up to 

centimeters. UAV images are usually captured by a camera 

which can be an inexpensive digital camera, or very expensive as 
with LiDAR equipment (Feng et al., 2015). Commonly, cameras 

used in UAVs contain only three visible bands (RGB bands) and 

have a limited spectral resolution. This limited spectral 

resolution, especially lack of infrared bands makes vegetation 

identification and classification more challenging. 

 

To compensate for the absence of infrared bands, vegetation 

indices (VIs) and texture features calculated from RGB bands can 
be treated as additional bands for vegetation identification. VIs 

have been proven to be useful in land cover classification since 

1972.  Those have significantly improved the classification 
accuracy while analyzing satellite images (Bendig et al., 2015). 

The texture is another feature that analyses the homogeneity of 

images based on scale, uniformity, and regularity (Haralick, 

1979). In recent years, texture features have been utilized in both 
pixel- and object-based image analysis for classifying grassland, 

wetland species, and forest (Dawkins and Esiobu, 2016). 

However, none of the previous studies examined how those 

ancillary features impact on the classification of scattered plants. 
Common image analysis methods can be categorized as pixel- 

and object-based. Pixel-based classification is based on spectral 
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properties of individual pixels and assigns each pixel to a class; 

whereas object-based classification groups pixels based on 

spectral properties, shapes, and sizes (Tarabalka et al., 2009). 
Both methods have some pros and cons such as the pixel-based 

method create a salt-and-pepper problem, do not consider 

neighbours and treat individual pixels as a separate entity (Pu et 

al., 2011). On the other hand, object-based methods require an 
additional step namely segmentation where it warrants user-

defined inputs in grouping pixels (Liu et al., 2015). Accuracy of 

object-based image analysis depends on segmentation quality 

and feature selection for classification. Object-based image 
classification has shown better accuracy in many previous studies 

since it combines spectral and spatial features into the process 

(Hossain and Chen, 2019). Yet, its performance has not been 

tested for identifying individual plants. 
 

The primary objective of this study was to develop an optimal 

workflow of classifying wild parsnip based on RGB bands of 

UAV imagery. This research tested the impact of spatial 
resolution, feature combinations, and classification methods on 

identifying wild parsnip during its flowering season in order to 

determine the optimal/ effective resolution, feature, and 

classification algorithms. After the testing, a workflow using an 
object-based classification method was proposed to map wild 

parsnip based on visible bands. 

 

2. METHODS 

The workflow of this study is shown in Figure 2. It can be divided 

into three parts: data pre-processing, image classification, 

optimal settings, and accuracy assessment.  

 

 
Figure 2. The workflow of distinguishing wild parsnip 

 
Data pre-processing included image ortho-rectification, Digital 

Surface Model (DSM) and Digital Terrain Model (DTM) 

extraction, and image mosaicking. Image classification was done 

using both pixel- and object-based methods utilizing classifiers 
such as Support Vector Machine (SVM), Maximum Likelihood 

(ML), and Random Forest (RF) utilizing RGB bands, texture 

features, and vegetation indices as input variables. Canopy 

Height Model (CHM) was used to remove trees and tall bushes, 
and vegetation indices were used to identify the non-vegetation 

land cover. Accuracy assessment was performed using the 

confusion matrix and finally, the optimal image resolution, 

classifier, and input variables were determined. 

 

2.1 Data & Study Area 

The study area was Lemoine Point Conservation Area, located 

around 44.23° N, 76.61° W, in Kingston, Ontario, Canada, and 

bordered by Lake Ontario and Collins Bay (Figure 3). Lemoine 
Point Conservation Area is a heavily used conservation area used 

for both recreation and natural resources and offers hiking, 

picnicking, cycling, and a series of outdoor activities. Wild 

parsnip has been found increasingly in the conservation area and 
is a growing concern for the Conservation Authority and Invasive 

Species Centre. Some places with large wild parsnip infestations 

were secured from access to prevent people and pets from being 

hurt (“Lemoine Point Conservation Area,” n.d.).  
 

  

Figure 3. The location of the study area and its UAV mosaicked 
sample image 

 

The Cataraqui Region Conservation Authority would like to 

explore the use of UAV technology to detect and locate wild 
parsnip and seek solutions to remove them effectively. Digital 

photographs were collected by a UAV operated by Kingston 

Aerials on July 27, 2016, for the study area (“Lemoine Point 

Conservation Area,” n.d.). This period coincides with the 
flowering season of the wild parsnip. Three-band (red, green, and 

blue) images were acquired with a commercial digital camera 

Sony A7R (Zeiss batis 25mm) at approximately 152m above 

terrain (received special permission from the Ministry of 
Transportation). The individual raw image size was 7360 pixels 

x 4912 pixels with a spatial resolution (GSD) of 0.94 cm per pixel 

and a 70% forward overlap along with a 50% side lap. The flight 

path was mostly parallel along with three gently banked turns to 
reduce the doming effects (Evers et al., 2015). This study did not 

utilize any ground control point for the validation of height 

information. 

 

2.2 Data Pre-processing 

The pre-processing procedure included image orthorectification, 

DSM and DTM extractions, and image mosaicking, which were 

all automatically processed in SimActive’s Correlator3D, a 
commercial photogrammetry software (Pepe and Prezioso, 

2016). Correlator3D mosaicked the photos from different 

positions and angles and stitched the photos into a seamless 

image. The procedures used to mosaic the photos were based on 
previous tie points that were constructed between photos. 

According to the tie points, one of the two photos was rotated to 

match the other, and then the photos were stitched together. The 

spectral values of the mosaicked image were derived from the 
overlapping portions of the photos by taking the average of 

overlapping areas. The mosaicked image is shown in Figure 2 as 

well. Due to the large image size, a subset of the mosaic image 

(Figure 4) containing wild parsnip, trees, roads, grass, and shrubs 
were selected for testing the workflow and illustrating the results. 
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Figure 4. UAV image of the tested subset with the enlarged areas 

with land cover types (a) Parsnip; (b) Road; (c) Grass; (d) Shrubs 
 

DSM is an elevation model with the top of surface objects such 

as buildings, vegetation, and other objects, whereas DEM 

represents the elevation of the bare earth without any objects. 
DSM and DEM have been generated in the software 

Correlator3D in this work. Correlator3D created a grid and 

calculated the correlation score for every elevation point when 

generating DSM. The multi-ray matching method facilitated the 
correlation process. The DEM was generated by applying a 

filtering algorithm on the DSM. The filter identified elevation 

points appeared higher relative to their neighbour. After 

removing those points, the resulting gap was filled by 
interpolation. CHM represents the tree and tall bushes height 

above the topographic surface, and values equal the DEM 

subtracted from the DSM. Due to the height differences between 

wild parsnip, and trees and part of high bushes, only pixels with 
the chance to grow wild parsnip remained. Based on the field 

survey and initial tests, pixels with CHM higher than 1.5 m were 

masked out as trees. 

 
Five different land cover types were identified in the study area 

including wild parsnip, trees, roads, shrubs, and grass. Some 

flowering and other vascular plants, such as ragweed and 

milkweed, growing in the study area were treated as shrubs 
because they were not the focus of this study. Wild parsnip was 

showing higher spectral value in red and green bands compared 

to other vegetation types in the study area. For sampling, some 

easily recognized polygons of each land cover type were first 
drawn in the UAV mosaicked image by selecting the region of 

interest in ENVI 5.2. After the field investigation and validation, 

33 training polygon samples were selected randomly for wild 

parsnip, and 10, 3, 19, and 24 polygon samples were selected for 
trees, roads, shrubs, and grass, respectively. 50% samples for 

each land cover type were used for the training purpose and the 

rest for the validation purpose. As this study used an error matrix 

to express classification accuracy, the multinomial distribution 
was utilized to determine the minimum sample size. While 

implementing the equation proposed by (Congalton and Green, 

2008), based on field survey it was assumed that the proportion 

of wild parsnip would make up 10% of the map area (Π_i= 10%), 
the value for Β was determined from a chi-square table with 1 

degree of freedom and 10% desired precision and 95% 

confidence interval. There were three categories (κ=3) in the 

classification scheme. In this study, the appropriate value of Β 
was 5.731 and 52 total samples were required. 

 

The spatial resolution of raw mosaicked images was 0.94 cm per 

pixel. One of the objectives of this study was to identify a suitable 
image resolution range to distinguish parsnip. The higher spatial 

resolution provides more detailed land cover features. However, 

some redundant detailed information would result in complicated 

processing procedures. On the other hand, the coarser image 

resolution would decrease the ability to distinguish different land 

covers. Myint et al. (Myint et al., 2011) recommended a 

significantly smaller pixel size (higher resolution) than an object 
to identify that object in an image. They also suggested that the 

spatial resolution should be at least one-half of the diameter of 

the smallest object of interest. Therefore, the impact of image 

resolution on distinguishing parsnip was explored in order to 
identify the appropriate pixel size (or GSD) of images that can 

provide enough information for parsnip distinction and reduce 

redundant processing time. The result of this analysis would 

determine whether high-resolution UAV images are applicable to 
wild parsnip identification or not. ENVI 5.2 provided the tool that 

could easily adjust the image resolution defined by the user. As 

mentioned earlier, the average diameter of parsnip flower clusters 

is 15 cm, thus, the image pixels were resampled into 0.01 m, 0.02 
m, 0.03 m, 0.05 m, and 0.1 m (from significantly smaller to 

almost the size of the object of interest) in this study. 

 

2.3 Feature Extraction 

2.3.1 VIs: Three standard VIs based on visible bands were 

tested for separating non-vegetated and vegetated areas. 

Generally, the majority of VIs commonly used in remote sensing 

are calculated based on visible and near-infrared bands, such as 
NDVI (normalized difference vegetation index). The numbers of 

VIs based only on visible bands are limited. Three commonly 

used VIs including NGBDI (Normalized Green-Blue Difference 

Index), EXG (Excess Green), and VEG (Vegetation) (Hague et 
al., 2006) were calculated using ENVI 5.2 software. The 

equations are listed below where G is the green band, B is the 

blue band, and R is the red band: 

 

NGBDI = (G-B)/(G+B)    (1) 

EXG = 2G-R-B       (2) 

VEG = 
G

R
a
B

(1-a)   where a = 0.667   (3) 

 

Each calculation applied to UAV images transformed a combined 

three-band image to a single greyscale band. In greyscale images, 

the values of pixels in vegetated areas show greater intensity 
levels than the non-vegetation area. Therefore, a threshold could 

be applied to vegetation indices to separate vegetation area and 

non-vegetation area. On the other hand, these three vegetation 

indices were included as separate bands for wild parsnip 
identification. Among the VIs, EXG was showing a higher value 

for wild parsnip in the higher resolution, whereas NGBDI was 

able to differentiate wild parsnip from other vegetation when 

resolution became lower. Since wild parsnip only grows in the 
vegetated area, non-vegetated areas could be excluded from 

further study. If the VIs value of a pixel was lower than the 

threshold, then it was placed in the non-vegetated category. Since 

the NGBDI band able to show the most significant differences 

between vegetation and non-vegetation areas (Xu et al., 2019), 

this study applied a threshold of 0.2 to mask out the non-

vegetation areas (roads and bare grounds). Therefore, the cover 
mask with NGBDI larger than 0.2 was applied for further image 

processing. 

 

2.3.2 Texture Features: Texture features have been applied 
in remote sensing for classifying vegetation types, primarily used 

as additional information to compensate for the lack of near-

infrared band in UAV images. Second-order texture metrics 

based on pairs of pixels obtained from the Grey Level Co-
occurrence Matrix (GLCM) are one of the commonly used 

metrics in features analysis (Materka and Strzelecki, 2014). 

Three least correlated texture features such as mean, variance, 

and entropy were used in this study. The GLCM was calculated 
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for the green band only to reduce redundancy since RGB bands 

were highly correlated. The equations were applied as follows: 

 

Entropy = ∑ ∑ p(i,j)× log
2

[p(i,j)]G-1
j=0

G-1
i=0    (4) 

Mean = ∑ ∑ i×p(i,j)G-1
j=0

G-1
i=0     (5) 

Variance = ∑ ∑ (i-Mean i)
2
×p(i,j)G-1

j=0
G-1
i=0     (6) 

Where, G is the number of grey levels, p (i,j) is the matrix 

estimates of the joint probability between pairs of pixels. 

 

The mean represents the average intensity of the texture within 

the image; the variance explains the variation of intensity around 

the mean, and the entropy describes the measure of histogram 
consistency. The calculation procedure for texture features is 

based on a moving window from pixel to pixel. Usually, the 

larger window size, the coarser the information obtained. The 

accuracy of the texture feature calculation is related to the 
appropriate scale that collects pixels within the same class and 

separates pixels from different classes. Since wild parsnip is an 

irregular and small object, only smaller moving window sizes 

(3x3, 5x5, and 7x7) were selected to test. By testing three 
different window sizes, a 3x3 moving window size was chosen. 

Although a different motion of the filter window may provide a 

different result, this study only applied a horizontal moving 

window. Texture features based on the 3x3 window size were 
added as ancillary bands. Among the texture features, the mean 

was showing a different value for wild parsnip than other 

vegetation.  

 

2.4 Image Classification 

2.4.1 Classification Domain: The current study implemented 

and compared both the pixel- and object-based classification 

method. Pixel-based image classification is based on the 
information on a single pixel, but object-based image 

classification is based on the information from a group of similar 

pixels named objects. Each object contains pixels that are 

homogeneous based on either texture, or sizes and shapes, or 
spectral information. The object-based methods require an 

additional step, namely segmentation to generate the object. This 

study utilized the region-based mean-shift segmentation method 

(Hossain and Chen, 2019) to generate objects. While 
implementing this algorithm in ArcGIS 10.6 it requires three 

inputs from the user such as spectral detail, spatial detail, and 

minimum segment size in pixels. The values used for the spectral 

and spatial details were 15 and 20 respectively. In addition, 
minimum pixels in a segment varied based on the image 

resolution. All the values were achieved by the trial-and-error 

method. The mean, standard deviation, compactness, and colour 

attributes were calculated for sample segments while training the 
classifier. On the other hand, pixel-based methods used only the 

statistics of an individual pixel. To make the comparison even, 

this study used a pixel-based accuracy matrix for both object- and 
pixel-based classification methods. 

 

2.4.2 Classification Algorithm: Three classifiers were 

selected for identifying wild parsnips such as ML, SVM, and RF-
based on their efficiency and popularity in remote sensing image 

analysis. The maximum likelihood algorithm is one of the most 

common parametric supervised classifiers and classifies each 

pixel/object into a class based on a Gaussian probability density 
function. Each pixel is assigned to the class with the highest 

probability value (Otukei and Blaschke, 2010). It provides a 

satisfactory result for normally distributed data; however, it faces 

difficulty in classifying non-normal distributed data. Unlike ML 
classifiers, the SVM (Vapnik, 1999) is a non-parametric 

classifier. Due to its high performance using a limited number of 

reference data, SVM is widely used in remote sensing 

(Mountrakis et al., 2011). SVM is a complicated method 

compared to ML and RF since the parameters such as the kernel 
and its properties are all chosen by users (Gaussian Radial Basis 

Function kernel with Gamma value 4 was used for the current 

study). In this study, both ML and SVM were processed in ENVI 

Classic 5.2. RF has advantages of high performance on large data 
sets, handling abundant input variables, estimating the 

importance of ranking input variables, and measuring the 

prediction error (Rodriguez-Galiano et al., 2012). Two 

parameters need to be defined in the RF procedure: ntree and 
mtry (Breiman 2001). The ntree is the number of trees growing 

in the calculation. Usually, the larger ntree determined, the lower 

out-of-bag (OOB) error generated meaning unbiased estimation 

of the true prediction error. Ntree was set to 1300 by trial-and-
error method which provided the highest accuracy. The mtry is 

the number of randomly selected predictor variables. The method 

to calculate mtry in this algorithm is the square root of the total 

input variables numbers. While using RF in ArcGIS 10.6, the 
max tree depth and samples per class were set to 30 and 1000 

respectively. Among the classifiers, RF provides a function of 

input variables rankings, which can be used to evaluate the 

contribution of different input variables to classification. The 
input variables included three original visible bands (red, green 

and blue), three vegetation indices (NGBDI, EXG, and VEG), 

and three texture features (mean, variance, and entropy). 

 

3. RESULTS AND DISCUSSIONS 

3.1 Pixel- Vs Object-based Classification 

Pixel-based classification is widely used for low and moderate 

resolution images where an individual pixel contains one or more 
land covers. By contrast, in high-resolution images, an individual 

pixel contains only a portion of a land cover and neighbouring 

pixels contain the same land cover as well. As a result, due to 

ignoring the spatial relationship between pixels, the pixel-based 
method creates the salt and pepper problem while classifying 

high-resolution images (as illustrated in Figure 5). Object-based 

methods were recommended for analysing high-resolution 

images (Hay and Castilla, 2008). In identifying wild parsnip 
using both pixel- and object-based methods, the object-based 

method provided higher overall accuracy (95.29%) compared to 

the pixel-based method (86.45%). Although the object-based 

method requires an additional step of image segmentation, it 
warrants shorter processing time compared to the pixel-based 

method. 

 

  
(a) (b) 

 

 

(c)  
Figure 5. The Comparison between (a) object-based and (b) 

pixel-based classification result with (c) UAV image 
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3.2 Comparison of Three Classifiers 

The testing procedures used RGB-only, RGB+2 (RGB plus two 

top-ranked features provided by RF classifier), and RGB+6 
(RGB plus six features) images as input, under five different 

image resolutions (0.01 m, 0.02 m, 0.03 m, 0.05 m, and 0.1 m), 

with three different classifiers (RF, ML, and SVM). The overall 

accuracy under different image resolutions with different input 
variables by different classifiers is shown in Table 1. The masked 

UAV image and the classified maps from three classifiers at 0.03 

m resolution (for pixel-based) and at 0.02 m (for object-based) 

with RGB+2 bands as input image are shown in Figure 6 and 
Figure 7 respectively. 
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ML 

0.01 65.5 70.2 77.5 83.0 89.2 89.6 

0.02 72.3 76.8 77.2 83.1 44.2 69.5 

0.03 66.5 72.3 74.4 81.9 53.3 77.4 

0.05 65.5 71.7 78.0 90.0 78.9 79.2 

0.1 60.9 68.2 77.7 74.9 46.8 25.0 

RF 

0.01 74.3 73.5 79.3 86.7 87.4 87.5 

0.02 78.2 78.6 83.1 82.7 80.0 80.5 

0.03 81.1 84.7 86.4 79.0 74.1 75.4 

0.05 77.7 80.6 80.6 74.2 76.5 77.6 

0.1 70.2 74.8 73.7 79.8 78.6 75.4 

SVM 

0.01 68.2 75.6 81.2 89.6 80.6 91.7 

0.02 74.3 78.5 81.0 93.7 94.8 95.3 

0.03 70.9 75.2 74.8 92.5 91.6 93.1 

0.05 69.3 73.7 78.3 93.1 93.3 94.5 

0.1 61.1 70.1 84.0 83.7 84.4 82.9 

Table 1. Overall Accuracy (OA) between three classifiers under 

different image resolutions with different input variables 
 

 

  
(a) (b) 

  
(c) (d) 

 

    
Figure 6. Pixel-based classification result: (a) UAV Masked 
Image (0.03 m resolution), (b) RF, (c) SVM, (d) ML 

 

  
(a) (b) 

  
(c) (d) 

 

    
Figure 7. Object-based classification result: (a) UAV Masked 

Image (0.02 m resolution), (b) RF, (c) SVM, (d) ML 
 

As Table 1 shows, random forest (RF) has achieved higher 

accuracy than other classifiers under the same feature inputs 

while using pixel-based analysis. RF has outperformed ML and 
SVM under the same image resolution irrespective to feature 

combinations and variables used. The overall accuracy was 

increased by 12.37% and 9.46% over ML and SVM under 0.03m 

RGB+2 images respectively. The highest OA was achieved under 
the 0.03 m RGB+6 image, and the second-highest OA was 

achieved at the 0.03 m RGB+2 image using RF as the classifier. 

ML assumes each input variable is normally distributed; 

however, this assumption is rarely met when analyzing real data. 
RF only needed several minutes to process, but SVM needed one-

hour processing time. On the other hand, SVM outperformed the 

other two classifiers when using object-based analysis. RF also 

generated slightly better results in object-based analysis. ML 
produced an inconsistent result in different image resolution and 

input variables. 

 

Since the number of wild parsnips was not the majority in the 
image, the visual differences on wild parsnips in the whole image 

were hard to see between three classification results. To illustrate 

classification results, one small area of the raw UAV image and 

three classification results using the object-based method are 
shown in Figure 8. The yellow parts in Figure 8(b), 8(c), and 8(d) 

were classified as the wild parsnip. As illustrated, the wild 

parsnips were distinguished well from other land covers. SVM, 

in particular, provided more smooth results. In Figure 8(b) and 
(d), wild parsnip was misclassified into grass and shrub, whereas 

in (c), the misclassifications of wild parsnips were decreased 

significantly. It is obvious that SVM classification has produced 

the most accurate results for wild parsnips. As demonstrated in 
Figure 8(c), the wild parsnips, even grown as single plants, were 

distinguished very well from other land covers. Some parts of 

shadows in the image might be misclassified into shrubs or grass, 

but it did not affect distinguishing wild parsnip from other land 
covers. 
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(a) (b) 

  
(c) (d) 

 

    
Figure 8. Detailed 0.02m RGB+2 Image Classification Results 

for a small subset (a) Raw UAV image, (b) ML, (c) SVM, (d) RF 

 

3.3 The Impact of Input Variables 

After selecting the best-performed classifier, the significance of 

the input variables was also evaluated. Since one of the objectives 
of this study was to find the simplest and optimal solution to 

distinguish wild parsnip, nine variables were considered too 

complicated to process in practical applications. To simplify the 

procedure, this study also tested the five most important 
variables. According to the RF variable importance rankings, 

each band in the RGB spectrum was always ranked in the top 

five, and the other two variables varied based on spatial 

resolution. As indicated in Figure 9(a), if image resolution was 
lower than 0.03 m, the most important variables were Red band, 

Green band, Blue band, EXG and Mean. If image resolution was 

equal or higher than 0.03 m (Figure 9(b)), the most important 

variables were the Red band, Green band, Blue band, NGBDI, 
and EXG. When the image resolution was lower than 0.03 m, 

EXG had greater importance than other variables. Mean was also 

crucial since the mean value could reduce the variance in the 

UHR image. When the image resolution was equal or bigger than 
0.03m, texture features were not among the five most important 

variables. Therefore, besides the three original visible bands, 

EXG and Mean features were added as additional bands when 

image resolution was lower than 0.03 m; NGBDI and EXG were 
added as additional bands when image resolution was equal or 

larger than 0.03 m. 

 

 
(a) 

 
(b) 

Figure 9. Input Variables Weight Comparison at image 

resolution of (a) 0.01m & 0.02m (b) 0.03m, 0.05m & 0.1m 

The OA comparison between RGB-only, RGB+2, and RGB+6 as 

an input variable in object-based SVM classification is shown in 

Figure 10(a). In all three combinations of input variables, OA 
showed a similar trend when image resolution was between 0.02 

m and 0.05 m. OA fall when image resolution went beyond that 

range. In addition, there was no significant change (<2%) in OA 

when additional input variables were used. Kappa value (Figure 
10(b)) also demonstrated a similar pattern. Thus, this study 

revealed that the RGB-only input variable is sufficient for 

identifying wild parsnip from UAV images. 

 

3.4 The Impact of Spatial Resolution  

The impact of image resolution on classification was also 

examined. One advantage of UAV images is their very high 

spatial resolution. However, high-resolution images need more 
processing time because of their larger file sizes; therefore, the 

classification accuracy at different image resolutions was 

compared. As shown in Figure 9, with the different input 

variables used by the object-based SVM classifier, the OA 
reached the highest (95.29%), as well as Kappa, which reached 

the highest (0.93) at the image resolution of 0.02 m. Meanwhile, 

the OA was remaining over 90% in image resolution from 0.02 

m to 0.05 m and decreased in both high and low resolution. The 
kappa was over 0.87 in image resolution from 0.02 m to 0.05 m 

and decreased to 0.75 in image resolution 0.1 m. Therefore, the 

optimal image resolution for distinguishing parsnip was around 

0.02 m. Since wild parsnip was growing in irregular and small 
shapes, 0.02 m was an intermediate value for both large patches 

and single plants. Besides OA and kappa value, the other valuable 

information in the confusion matrix was user accuracy (UA) and 

producer accuracy (PA) of each land cover class, which are 
shown in Table 2-6. If only the parsnip is considered, 0.02 m 

resolution has the highest accuracy for both UA and PA. PA 

increased from 88.65% to 94.75% when the image resolution 

changed from 0.01 m to 0.02 m and decreased to 84.91% at image 
resolution 0.1 m. 

 

 Grass Parsnip Shrub Total User's Accuracy 

Grass 19635 1742 267 21644 90.72 

Parsnip 540 14094 106 14740 95.62 

Shrub 3354 62 18746 22162 84.59 

Total 23529 15898 19119 52475  

Producer's 

Accuracy 83.45 88.65 98.05 

OA 89.63 

Kappa 0.84 

Table 2. Error matrix for accuracy assessment at Image 
Resolution 0.01 m. 

 

 Grass Parsnip Shrub Total User's Accuracy 

Grass 5411 203 146 5760 93.94 

Parsnip 133 3866 16 4015 96.29 

Shrub 435 11 4757 5203 91.43 

Total 5979 4080 4919 14034   

Producer's 

Accuracy 90.50 94.75 96.71 

OA 93.70 

Kappa 0.90 

Table 3. Error matrix for accuracy assessment at Image 

Resolution 0.02 m. 
 

 Grass Parsnip Shrub Total User's Accuracy 

Grass 2288 98 58 2444 93.62 

Parsnip 68 1715 1 1784 96.13 

Shrub 278 0 2183 2461 88.70 
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Total 2634 1813 2242 6186 
 

Producer's 

Accuracy 86.86 94.59 97.37 

OA 92.48 

Kappa 0.89 

Table 4. Error matrix for accuracy assessment at Image 

Resolution 0.03 m. 
 

 Grass Parsnip Shrub Total User's Accuracy 

Grass 997 67 78 1142 87.30 

Parsnip 8 662 3 673 98.37 

Shrub 23 0 776 799 97.12 

Total 1028 729 857 2435 
 

Producer's 

Accuracy 96.98 90.81 90.55 

OA 93.15 

Kappa 0.90 

Table 5. Error matrix for accuracy assessment at Image 

Resolution 0.05 m. 
 

 Grass Parsnip Shrub Total User's Accuracy 

Grass 238 28 12 278 85.61 

Parsnip 20 180 24 224 80.36 

Shrub 33 4 205 242 84.71 

Total 291 212 241 623 
 

Producer's 

Accuracy 81.79 84.91 85.06 

OA 83.74 

Kappa 0.75 

Table 6. Error matrix for accuracy assessment at Image 

Resolution 0.1 m. 

 

4. CONCLUSIONS 

This study has developed and tested a simplified object-based 

method to distinguish wild parsnip in vegetation fields based on 

UAV images. The optimal workflows for distinguishing wild 

parsnip from other land covers are (1) first mask out non-
vegetation area and trees, and (2) then apply object-based SVM 

as the classifier with 0.02 m resolution image as input, which 

contains Red, Green, and Blue bands. This study demonstrates 

that UAV is an outstanding platform for vegetation monitoring 
and can provide accurate classification results.  

 

The results provided an optimal and executable workflow to 

distinguish wild parsnip and demonstrated that UAV images are 
an appropriate and economic resource for small and irregular 

vegetation types, even equipped with a simple digital camera. 

This study introduced a reliable and valid method for detecting 

invasive wild parsnip as well as demonstrated excellent 
performance in mapping vegetation. This research has provided 

the Cataraqui Conservation Authority with a practical workflow 

to identify and locate wild parsnip with UAV instead of human 

field surveying. By implementing this workflow, the 
Conservation Authority can quickly identify the locations of wild 

parsnips and develop strategies for eliminating or controlling its 

spread. However, this methodology is not applicable for satellite-

based images as the best resolution so far is 30 cm in 
WorldView4 images. 

 

Even though the workflow performed well, the approach still has 
some limitations. The first is related to the segmentation 

algorithm. This study applied only the mean-shift algorithm to 

generate segments. However, other algorithms such as a 

multiresolution or hybrid method may generate a better result. 
Secondly, land cover types in this UAV acquired area did not 

contain other yellow flowering types of vegetation. This 

workflow may not be suitable for distinguishing wild parsnip 

from other similar-sized plants with yellow flowers. Future study 

will be to test the workflow identified through this research with 

images that contain another similar-sized yellow flowering plant. 
Thirdly, this study used pixel values instead of reflectance for the 

analysis which is a common practice in analysing UAV images. 

However, the reflectance may provide better accuracy and will 

assist in implementing this methodology for multi-temporal 
studies. Thus, our future study will utilize reflectance instead of 

the pixel value. 
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