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ABSTRACT:

This work describes a control solution for real time object tracking in images acquired for a RPAS on an object inspection environ-
ment. This, controlling a 3-axis gimbal mechanism to control a camera orientation embedded to a RPAS, using its image processed
for feedback. The objective of control is to maintain the target of interest at the center of the image plane. The proposed solution
uses a YOLOv3 object detection model in order to detect the target object and determine, thru rotation matrices, the new desired
angles to converge the object’s position to the center of the image. To compare results of the proposed control, a linear control was
tuned using a linear PI algorithm. Simulation and practice experiments successfully tracked the desired object in real time using
YOLOv3 in both control approaches presented.

1. INTRODUCTION

The use of RPAS (Remotely Piloted Aircraft System), also
named UAV (Unnamed Aerial Vehicle) equipped with multiple
sensors has been increasing over the last few years in a wide
range of industrial applications, included the oil and gas (O&G)
industry, to perform tasks such as visual inspection of structures
and components in areas where human access is limited (i.e.,
offshore platforms) and the activities are expensive, dangerous
and high time-consuming. In that context, one of the main com-
ponents in the offshore platforms are the flexible risers, which
are pipelines in charge of transporting oil, gas, water and cables
between subsea structures and the platform on water surface
(Salazar et al., 2020) (Wang et al., 2016). The inspection of this
type of component, as shown in Figure 1, is done by industrial
climbers who perform manual measurements and photographic
record of point of interest. In this case, the RPAS can be used
to perform inspection of risers and the others components in the
offshore platform.

Figure 1. Industrial climbers inspecting the emerged riser
section.

In that context, the introduction of RPAS in the visual inspec-
tion processes helps to perform inspections of different types
of components quickly, safely and economically. Despite these
∗ Corresponding author. tiago.pinto@ufsc.br

advantages, quantitative or geometric studies of the structures
and components have not been conducted to date. In this way,
techniques such as photogrammetric 3D reconstruction can be
used to perform geometric measurements of risers from images
captured by RPAS. In order to generate a good measurement
result using photogrammetry, a set of requirements must be ful-
filled, such as sequential and overlapping image acquisitions,
spatial resolution, object texture and camera positioning net-
work (Luhmann et al., 2014) (Buschinelli et al., 2020) (Salazar
et al., 2020). For overcome that, the RPAS must execute spe-
cialized trajectories, varying its position and orientation keep-
ing the object within the field of View (FoV) of the camera.

One of the most challenging problems to execute the special-
ized trajectories by RPAS at offshore oil and gas platforms is
maintaining the interest object for inspection centered within
the FoV of the camera. This is due to uncontrollable envir-
onment variables, like wind, that reduce the flight time of the
RPAS and produce unexpected movements making it difficult
to image acquisition. Another variable is the proximity of the
robot to the large metal structure of the offshore platform, this
condition makes the robot more susceptible to electromagnetic
interference and intermittent GNSS signal loss. Therefore, are
necessary highly skilled pilots to prevent possible accidents
with the aircraft. Additionally, this type of inspection requires a
second pilot to control the gimbal (that leads with camera move-
ments) maintaining the interest object of inspection within the
FoV of the camera. Thus, reducing the impact of the variables
mentioned above.

In this paper, an object tracking solution using existent hard-
ware is proposed in order to maintain an interest object (e.g. the
riser) centered within the FoV of the camera, compensating the
RPAS movements while performing the specialized trajectories
for photogrammetric inspection processes. For this, a state-of-
art convolutional neural network (CNN) based model YOLO
(version 3) ) (Redmon and Farhadi, 2018) is used for detect-
ing interest object in the image. Once it detected, a controller
based in inverse kinematic from rotation matrix determines the
new angles positions to be applied by the gimbal mechanism,
maintaining the object centered within the Field of view. As
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a result, this control helps the photogrammetric image acquisi-
tion processes. Thus, taking another step towards the automatic
inspection processes using RPAS.

2. RELATED WORK

With the increased use of RPAS for inspections, monitoring and
obstacle avoidance specialized tasks. A system for tracking ob-
jects through image processing has been increasingly developed
in order to automate the aircraft’s flight path and keep the ob-
jects within the FoV of the camera (Altan and Hacıoğlu, 2020)
(Cunha et al., 2019).

Similar researches has been conducted to process the images
acquired by the RPAS and tracking the target objects. (Yuan et
al., 2015) uses RPAS to process images and detect forest fires
to posterior track it. While (Greatwood et al., 2017) presents
a track control of RPAS to follow an desired object moving on
ground to determine its path, differently than (Kendall et al.,
2014) that describes a RPAS path planning of a stationary ob-
jects. Thus, in this paper is described an object (riser) tracking
strategy to perform an inspection on an offshore platform us-
ing the detected object to determine the camera orientation to
maintain it on gimbal’s camera FoV to acquire images in a spe-
cialized trajectory for photogrammetry processes.

2.1 You Only Look Once (YOLO) and YOLOv3

Nowadays, RPAS are increasingly being used with different
deep learning techniques, and more specifically, those related to
convolutional neural networks (CNNs). In that context, YOLO
(You Only Look Once) is one of the state-of-the-art CNN-based
object detection models for computer vision task in real time. It
is has been used for a range wide of applications, such as traffic
monitoring (Benjdira et al., 2018), fire detection (Jiao et al.,
2020), industrial inspection (Salazar et al., 2020), and rescue
applications (McGee et al., 2020)

The YOLO algorithm adopts a single CNN backbone to directly
predict bounding boxes and class probabilities from the entire
images in one evaluation. Compared with the Faster R-CNN
network (Ren et al., 2017), the YOLO network transforms the
detection problem into a regression problem. As shown in Fig-
ure 2, the input image is divided into an S x S grid, and each
grid is responsible for predicting only one object. If the center
of the object falls into a grid cell (for example, the yellow dot
represents the center of the riser in the input image), that cell is
responsible for the detection of that object. Each grid cell pre-
dicts B bounding boxes and confidence scores for those boxes.
These confidence scores reflect how likely the box contains an
object and how accurate is the boundary box. Simultaneously,
C conditional class probabilities are predicted in each cell, re-
gardless of the number of the bounding box number (B). The
conditional class probability is the probability that the detec-
ted object belongs to a particular class (Redmon et al., 2016)
(Salazar et al., 2020).

The YOLOv3 (Redmon and Farhadi, 2018) network is an im-
provement from its predecessors YOLOv1 (Redmon et al.,
2016) and YOLOv2 (Redmon and Farhadi, 2017). It uses multi-
scale prediction to detect the final target using the Feature Pyr-
amid Networks idea (Lin et al., 2017). It backbone named
Darknet-53 is a 53 layered CNN that uses skip connections net-
work ideas inspired by Reset network (Szegedy et al., 2017)
to extract features from the images to improve the trade-off
between the speed and accuracy.

Figure 2. YOLO detection.

2.2 Robot Operating System (ROS)

The Robot Operating System (ROS) is an open source frame-
work with a diversity of libraries and tools collections to stand-
ardize a software communication between robot components
on a distributed computing resources (Open Source Robotics
Foundation, 2010a) (Yoonseok Pyo, 2017) (Joseph, 2018). The
concept aim to simplify the task of creating complex and ro-
bust robot behavior across a wide variety of robotic platforms
(Quigley et al., 2015).

2.3 Simulation Environment

Gazebo is a 3D dynamic simulator performing physics simu-
lation at a much higher degree of fidelity, similar to game en-
gines. Also has the ability to simulate populations of robots
in complex indoor or outdoor environments. Contains a suite
of sensors, and interfaces for both users and programs (Open
Source Robotics Foundation, 2014).

2.4 Gimbal mechanism

The gimbal is a mechanism used to control the position of
the camera. It is a mechanical device which is designed us-
ing rings mounted on axes at right angles to each other. The
gimbal’s end effector (typically a camera), is in an unstable en-
vironment arranged in a stable position using this mechanical
device to rejects disturbances such as RPAS motor friction, un-
balanced aerodynamics, spring torque forces and structure vi-
brations (Jakobsen and Johnson, 2005). A traditional use for a
Gimbal mechanism, Figure 3, is to stabilize the camera attached
on a RPAS for improve images acquisitions.

Figure 3. Example of Three Degrees of Freedom (DoF) Gimbal
mechanism used on RPA.

If the position of the camera is not compensated or stabil-
ized during the image acquisition process or autonomous target
tracking, problems such as blurred images and focal loss can
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generated. (Rajesh and Kavitha, 2016). In this work a 3-axis
gimbal is mounted above or under the body of the aircraft and
it has an individual controller to each motor to move the gim-
bal’s angles yaw-roll-pitch from Z-X-Y axis, respectively. The
schematic diagram of gimbal kinematics with 3 revolute joints
is shown in Figure 4 (Rajesh and Kavitha, 2016) (Kulkarni and
Mohanty, 2013).

To simplify, the intersection of gimbal’s coordinate system axis
is on the center of camera’s optical center, compensating for all
the angular movements of the hull It is attached to, and the gen-
eral principle of the axes arrangement assures it is able to avoid
the gimbal lock state during its operation. The configuration,
yaw over pitch over roll, allows up to 90 degrees of roll or pitch
movement by the aircraft before a gimbal lock occurs, which of
course is unlikely to ever happen (Tiimus and Tamre, 2010).

Figure 4. A three revolute joints Gimbal’s Kinematic.

To control the position of the gimbal, it must be determine the
Gimbal forward kinematics based on rotation matrix of each
angle’s axis. Initially body (0) is attached to hull, and the trans-
formation from body (0) to body (3) can be described as a mul-
tiply of rotation matrices Z-X-Y at gimbal coordinate system.

The rotation matrix of yaw angle from the frame of body (0) to
the frame of body (1) is:

R0
1 =

cos(yaw) −sin(yaw) 0
sin(yaw) cos(yaw) 0

0 0 1

 (1)

The rotation matrix of roll angle from the frame of body (1) and
the frame of body (2) is

R1
2 =

1 0 0
0 cos(roll) −sin(roll)
0 sin(roll) cos(roll)

 (2)

The rotation matrix of pitch angle from the frame of body (2)
and the frame of body (3) is

R2
3 =

 cos(pitch) 0 sin(pitch)
0 1 0

−sin(pitch) 0 cos(pitch)

 (3)

The forward kinematics is given multiplying (10) (2) (3), res-
ulting in matrix R0

3.

R0
3 =

CyCp − SySrSp −CrSy CySp + CpSySr

CpSy + CySrSp CyCr SySp − CyCpSr

−CrSp Sr CrCp

 (4)

where the variation of each angles results in a new X-Y-Z point
to the gimbal end effector, the camera’s FoV.

The Gimbal mechanisms are controlled using a fixed coordinate
system, (Siciliano et al., 2009) describes a different multiplica-
tion order to fixed coordinate system, resulting in R

0
3 matrix.

R
0
3 =

CyCr + SySrSr CrSySr − CySr CrSr

CrSy CyCr −Sr

CySrSr − CrSr CrCySr + SySr CrCr

 (5)

3. PROPOSED TRACKING CONTROL

The system of the aircraft communicate between peripherals
using ROS. When the RPAS is started a ROS node initializes
topics that provide data from sensors embedded in the aircraft,
such as position of the gimbal and image acquired from camera,
allowing to perform YOLOv3 object detection inference and
use the proposal track model to determine the gimbal’s angles
based on object position in the image.

To compare the performance of the proposed control method
were tuned two different approaches of control techniques,
a non-linear (inverse kinematic), and conventional linear
(proportional-integral).

The optical center of the camera will be positioned at the in-
tersection of gimbal’s axis to simplify the problem (Figure 5).
Here, the FoV of the camera is projected along Xg axis, thus
reducing the system to a robotic problem of two DoF. When
varying pitch angle result in a movement of the FoV along Yc

axis from image frame, respectively occurs when varying yaw
angle of gimbal mechanism, the movement between object and
camera’s FoV is given along Xc.

The proposal control approach is based on gimbal’s inverse kin-
ematic formulation using (5). The initial position of the mech-
anism is centered at [0 0 0]T , we can determine the distance of
the object detected from camera as a nominal distance called
xfov , where, usually, is a fixed distance between RPAS and
risers, this to guarantee parameter robustness in the inspection
process. Considering the FoV of the camera, the initial condi-
tion is [xfov 0 0]

T , resulting in [Xg Yg Zg]
T matrix solution:

Xg

Yg

Zg

 =

 CyCp −CySp Sp

Sy Cy 0
−CySp SySp Cp

xfov

0
0

 (6)
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where roll angle does not change the position of the FoV, just its
orientation (portrait or landscape), it has been held at 0 degrees.

From angles matrix of Forward Kinematic, it is determined the
Inverse Kinematic formulas of angles based on desired spatial
coordinate X-Y-Z. Y aw and pitch can be defined as second and
third row of (6)

sin(yaw) =
Yg

xfov
(7)

sin(pitch) =
−Zg

xfov cos(yaw)
(8)

representing the new angle’s position:

yaw = arcsin
(

Yg

xfov

)
(9)

pitch = arcsin
(

−Zg

xfov cos(yaw)

)
(10)

The inverse kinematic formulation angles position are described
as (9) and (10), two non-linear dependently equations to predict
the angles values based on spatial X-Y-Z of gimbal’s frame. Al-
though the position data is provided at image coordinate system
in pixel, we must transform it to meters. The new angles are de-
termined to move the center of image above to object position,
resulting in a reject of disturbance controller when is using an
incremental value of angles.

The image projection of the camera and its coordinate system
are illustrated in Figure 6. Although the image of the camera is
projected along Xg axis at a nominal distance xfov , the frame
of gimbal G will always be centered at frame image C. Axis
Yg and Zg from gimbal mechanism are, respectively, parallel
constrained to Xc and Yc axis of image plane.

To determine the position error of the object related to gimbal’s
frame, two error function based on desired reference (center of
image) were described. Gimbal’s axis Zg and Yg are expressed
as the references less the object position O:

Zg =
(
pixel width

2
− Xo

)
SR (11)

Yg =
(
pixel height

2
− Yo

)
SR (12)

where Xo and Yo are coordinates from the bounding box detec-
ted by YOLOv3, pixel width

2
pixel height

2
are the reference posi-

tion of gimbal’s frame and SR a sensitive parameter of error.

The parameter SR, spatial resolution, used to convert the error
signal from pixel to meters and determine the sensibility of er-
ror signal. Spatial resolution is a measure of the smallest object
that can be resolved by the sensor, or the ground area imaged
for the camera’s FoV, or the linear dimension on the ground rep-
resented by each pixel (Liang et al., 2012). Although a known
distance between optical sensor and object is necessary to de-
termine precisely the parameter, it has been used a distance of
one meter for the error sensitive parameter.

Figure 5. Gimbal mechanism and camera’s FoV projected at a
xfov distance and the image coordinate.

Figure 6. Image coordinate system (C), the gimbal frame (G)
projected and detected object (O).

The proposed control was compared to a conventional linear
Proportional-Integral (PI) solution. The PI controllers were
tuned to work independently to each axis of image’s frame. A
PI controller, (13), acts on error signal from difference between
desire set-point and measured data (Åström and Hägglund,
1995). The errors signals of (13) are (11) and (12).

PI(t) = Kc e(t) +
Kc

Ti

∫ t

0

e(t)dt (13)
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From (13), a discrete variant equation can be described using
Z-transformation (Lathi, 2009). The discrete control equation
has two parameters to tune performing a reference track and
rejecting disturbances with a setting time of one second and 5%
overshoot signal. To adjust the PI parameters to achieve the
specifications were used a dynamic model from pixel position
sensor.

4. MATERIALS

The proposed control were tested in simulation environment
using Gazebo Simulator to tune the algorithm and later made
practical tests with an aircraft and camera from DJI company,
allowing the usage of Software Development Kit (SDK) from
DJI (DJI, 2019b). The SDK uses ROS to communicate between
sensors and peripherals with a ROS node (Open Source Robot-
ics Foundation, 2010b) when aircraft is initialize. The usage or
ROS nodes also guarantee YOLOv3 opens its own ROS nodes
to process input images.

The Gazebo environment consists in a CAD model repres-
entation of the aircraft Matrice 200 RTK v2 using a ro-
tors simulation package (Furrer et al., 2016) as flight control-
ler. RotorS is a Micro Air Vehicle (MAV) gazebo simulator, it
provides some multi-rotor models such as the AscTec (Gurdan
et al., 2007) Pelican or Firefly, four and six rotors respect-
ively. The simulator is not limited for the use with theses
multi-copters, it allows some parameters modification to use on
Matrice 200 RTK v2 aircraft. Figure 7 shows the simulation of
RPA Matrice 200 RTK v2 and the gimbal mechanism focused
on an interest object (e.g. riser).

Figure 7. Matrice 200 v2 at Gazebo simulation.

A real experiment was conducted using the DJI Matrice 200
series RTK v2 (DJI, 2019a) with a camera Zenmuse Z30 (DJI,
2019c) attached to a gimbal mechanism, and a Jetson TX2
(NVIDIA, 2019) used to process all data as an onboard com-
puter due to its graphic process unit able to real time process
images.

5. EXPERIMENTS AND RESULTS

The Gazebo software environment was used to tests communic-
ation between YOLOv3, DJI SDK and control nodes to perform
image processing and control gimbal’s angles.

Based on experimental results of (Salazar et al., 2020). The
YOLOv3 performance evaluation was realized employing a
total of 3000 RGB images with 1920x1080 and 4096 x 3000
resolutions. These images were obtained from virtual and real

environments scenarios for riser inspection . They were di-
vided into training and test sets according to the ratio 90:10
(90% training and 10% testing). To avoid overfitting, a simple
data augmentation is performed randomly in the training data-
set. In that context, the images were pre-processed in terms of
brightness, contrast and zoom. Considering the fact that CNNs
require a lot of training data before achieve a good perform-
ance (training with small dataset affects the generalization of
the CNNs) and noticing that the dataset used contains 3000 im-
ages, was used the strategy of deep learning, transfer learning.
The principal idea of transfer learning is to apply the knowledge
learned from certain domain with a large amount of training
data to a target domain with insufficient training data. In this
case, the backbone network Darknet-53 is pre-trained on the
COCO dataset (principal domain) and then the object detection
task is transferred into the target domain (the riser detection).

To evaluate the performance of the model we have used the
mAP metric. It is calculated by computing the AP (average
precision) for different classes and averaging them. AP is a
measure that combines recall and precision parameters. They
are defined below:

Precision(P ) =
TP

TP
+ FP (14)

Recall(R) =
TP

TP
+ FN (15)

In these formulas, True positive (TP) indicates the number of
correctly detected risers, true negatives (FP) indicate the num-
ber the wrong detections, and (FN) indicates the number of
missed detections, respectively. Thus, P represents the percent-
age of right risers detections among all those identified as risers.
R refers to the correct rate of detections among all the GT in
the dataset. Finally, the AP is approximate to the area under
the PR curve. Considering the evaluation metrics, the detector
was able to detect risers in the test dataset (300 images) with
99,4% mAP. This high value indicates that when the YOLOv3
algorithm classifies an object as riser, is very highly probable
that this object is a riser.

The photogrammetry trajectory performed by the RPAS is a
combination of vertical and horizontal displacements (serpent-
ine trajectory) as shown in Figure 8, maintaining constant dis-
tance to the riser, keeping spatial resolution constant and cam-
era centered on the object of interest (the riser). (Buschinelli et
al., 2020) detail the photogrammetry trajectory used.

Figure 8. Vertical serpentine with a fixed distance from object.
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The Figure 9 illustrates the object detection results using
YOLOv3 model on a virtual environment. The riser is detected
satisfactory, thus allowing to perform experiments to tracking
of risers while RPAS performing the serpentine trajectory. The
results of tracking algorithm were able to maintain the object
mostly of the time centered at image’s resolution. As the riser
fills the entire vertical length of the image, the controller prac-
tically keeps fixed the value of pitch for each vertical step of the
path. This value is changed when YOLOv3 detects an anomaly
of the object and loses reliability.

Figure 9. Riser detection at Gazebo simulation using YOLOv3.

The experiments performing on the virtual environment for
both control theory strategies had similar responses to maintain
the object centered at image resolution, the PI controller rejec-
ted slightly faster the disturbances from trajectory acquisition,
Figure 10 shows the object pixel position over time to each axis
on image resolution.

Figure 10. Pixel comparation of different track controllers at
Gazebo environment.

Comparing the angle’s position of controllers (Figure 11), every
moment a vertical serpentine alters the yaw angle change to
maintain the object centered, performing a fixed distance to
riser inspected.

Due the complexity of performing experiments with real risers
on an offshore platform (transporting the RPAS is too time con-
suming and expensive), in this study the different experiments
were performing moving the RPAS manually on a reduced ver-
tical serpentine trajectory using a chair representing the target
object (the riser). For detecting the chair a YOLOv3 imple-
mentation trained on COCO dataset was used. To achieve a

Figure 11. Angle comparation of controllers vertical serpentine
trajectory with fixed distance.

good frame rate on Jetson TX2 the input images size was re-
duced to 192 x 192 pixels. The Figure 12 illustrates how the
experiment was carried out.

Figure 12. Practical experiment using YOLOv3 dataset.

To circumvent the small object detection problem, were used a
chair to represent the desired object to check if the algorithm
will be tracking the object while the RPA is performing its tra-
jectory represented in Figure 13.

Figure 13. Practical experiment trajectory.

The results of both controllers (Figure 14) were functional to
validate algorithm embedded on an onboard computer (Jet-
son TX2 platform), although it was necessary to reduce the
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YOLOv3 input image size to perform the tracking were pos-
sible to maintain a real time object tracking using both con-
trol approaches. It has some slightly differences between ap-
proaches, the non-linear formulas of inverse kinematic demands
a strong computational effort, taking more time to reject dis-
turbance of aircraft movement as the PI controller.

Figure 14. Comparison of pixel position using Inverse
Kinematic and PI controllers.

6. CONCLUSIONS AND PROSPECT WORKS

In this paper, we presented the design and implementation of a
tracking control algorithm at an gimbal mechanism attached to
the DJI M210 RTK v2 RPAS. The state-of-the-art YOLOv3 de-
tection model was used for detecting an object of interest. The
CNN-based model detected risers in a scenario that presents
different environment conditions with 99.4% mAP in a dataset
containing real and virtual images. The bounding box result
obtained from the detection process is used to determine the
angles of the gimbal to maintain the object centered at the field
of view of the camera. The controller proposed used Kinematic
matrices to formulate the angle’s Inverse Kinematic expression.

Experiments were performed in Gazebo environment to tune
and validate the proposed controller from rotation matrices with
similar response as the linear controlled using PI. The algorithm
was able to detect risers in simulation environment and keep on
tracking object while the aircraft was performing its specialized
trajectory. Results of different controllers approaches were sim-
ilar with a faster disturbance rejects of linear controller due to
its computational effort.

Practical laboratory experiments were also conducted to valid-
ate the algorithm outside the simulation environment. For that,
a reduced vertical serpentine trajectory was performed manu-
ally with the RPAS and the target object was a chair repres-
enting the riser. Also using the onboard computer (Jetson TX2
platform) to process data from sensors of aircraft position and
gimbal’s mechanism.

The algorithm achieves the goal of maintaining the target ob-
ject at the field of view of the camera while the RPAS perform
the serpentine trajectory, rejecting disturbances from aircraft’s
movement remotely piloted, it is an initial step to automate spe-
cialized inspection processes based in photogrammetric tech-
niques.

Future works includes the optimization of computational effort
to process YOLOv3 on an onboard computer, utilize the track
theory when RPAS is flying, and posterior test on an offshore
riser inspection.
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