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ABSTRACT: 
 
Unmanned Aircraft Systems (UAS) are demonstrated cost- and time-effective remote sensing platforms for precision agriculture 
applications and crop damage monitoring. In this study, lodging damage on barley crops has been mapped from UAS imagery that 
was acquired over multiple barley fields with extensive lodging damages in two aerial surveys. A Random Forests classification 
model was trained and tested for the discrimination of lodged barley with an overall accuracy of 99.7% on the validation dataset. The 
crop areas with lodging were automatically delineated by vector analysis and compared to manually delineated areas using two 
spatial accuracy metrics, the Area Goodness of Fit (AGoF) and the Boundary Mean Positional Error (BMPE). The average AGoF 
was 97.95% and the average BMPE was 0.235 m. 
 

1. INTRODUCTION 

Crop lodging is a well-known damage defined as any permanent 
deviation from the normal vertical position of plants and occurs 
mainly in barley, wheat, oat, rice, and other cereal crops. It is 
related to weather events such as strong wind or rain, excess 
fertilizers, irrigation, cultivar, soil characteristics, and disease 
(Pinthus, 1974; Rajkumara, 2008). Crop lodging is usually most 
severe at the heading and ripening growth stages. Lodging 
damage is responsible for significant losses in crop yield. As a 
result, there is a need for an accurate damage evaluation tool to 
determine yield losses for crop insurance paybacks. This 
evaluation can be done by field surveys with hand-held 
equipment that is assisted with Global Navigation Satellite 
Systems (GNSS). However, such field surveys can be laborious 
and time-consuming with a high probability of human errors. A 
suitable alternative is to use remote sensing platforms that 
provide high spatial resolution imagery allowing detailed crop 
lodging mapping. Chauhan et al. (2019) reviewed remote 
sensing studies on crop lodging. Space-borne platforms can be 
used (Chauhan et al., 2020; Shu et al., 2020), but they lack in 
spatial resolution and temporal flexibility due to fixed-time 
overpasses while being prone to weather limitations such as 
clouds for optical instruments. By contrast, UAS campaigns are 
versatile as they can be conducted at any time. They provide 
spatially-accurate imagery, and the data acquisition is easy and 
cost-efficient (Zhang and Kovacs, 2012). Chu et al. (2017) used 
UAS Red-Green-Blue (RGB) and Near-Infrared (NIR) imagery 
to map maize lodging based on plant height thresholds 
estimated with multivariate regression. The same method was 
applied on UAS RGB images for mapping barley lodging 
(Wilke et al., 2019). Rice lodging was mapped with UAS RGB 
imagery and decision tree classification (Yang et al., 2017) and 
with RGB and thermal infrared imagery using support vector 
machine (SVM) classification (Liu et al., 2018). Canola and 
wheat lodging was mapped with multispectral UAS imagery 
using SVM classification (Rajapaksa et al., 2018).  
 
The study aims to develop a method that used multispectral 
MicaSense RedEdge imagery acquired from a UAS to map 

lodging damages in seven barley fields during the ripening 
growth stage. Firstly, we compared the spectral responses of 
lodged and standing barley as a function of the bands. 
Secondly, a robust machine learning and information extraction 
pipeline is built, based on Random Forests and a Geographic 
Information Systems (GIS) vector analysis of the classification 
results, to automatically provide the delineated areas and 
boundaries of the lodging zones. The resulting areas and 
boundaries are then compared to manually delineated areas by 
using two spatial accuracy metrics, the Area Goodness of Fit 
(AGoF) and the Boundary Mean Positional Error (BMPE).  
 

2. MATERIALS AND METHODS 

The lodged barley study sites are in Prince Edward Island (PEI), 
Canada (Figure 1). Two UAS flight campaigns were conducted, 
Flight1 and Flight2 in late August 2018 (2018/08/20), under 
clear sky conditions, with a flight altitude of 120 m. Flight1 
surveyed three barley fields which represent approximately 
120,000m2 while Flight2 surveyed four barley fields which 
represent approximately 170,000m2. All the surveyed barley 
fields had extensive lodging damages (Figure 2, Figure 3). 
 

 
Figure 1. Location of the study sites in Prince Edward Island. 

ESRI Satellite (ArcGIS/World Imagery). 
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The UAS consisted of a DJI Matrice 100 light Unmanned 
Aerial Vehicle (UAV) and the MicaSense RedEdge3 
multispectral camera (MicaSense Inc., U.S.A.) capturing data 
from the nadir (Table 1). The UAS MicaSense image datasets 
were processed using the methodology described in Figure 4. 
First, the images of each survey were individually inserted into 
a photogrammetric pipeline using the Pix4D Mapper software 
(Pix4D SA, Switzerland), performing radiometric correction, 
orthorectification, and stitching to produce a reflectance 
orthomosaic for each band.  

 
Figure 2. Sample ground image of a barley field with lodging 

damage from Flight1 
 

 
Figure 3. Sample ground image of a barley field with lodging 

damage from Flight2 
 

Band Blue Green Red 
Red-
Edge 

NIR 

Range 
(nm) 

465–
485 

550–
570 

663–
673 

712–
722 

820–
860 

Bandwidth 
(nm) 

20 20 10 10 40 

Central  
wavelength 
(nm) 

475 560 668 717 840 

Table 1. MicaSense RedEdge band characteristics 
 

 
Figure 4. Flowchart of the methodology 

 

Each orthomosaic was then inserted into a machine learning and 
vector analysis pipeline. The QGIS software (QGIS, 2019) was 
used for visualization, map generation, and other GIS and 
vector analysis procedures. The orthomosaics were then 
subjected to a supervised classification that has the three 
following classes: Standing Barley, Lodged Barley, and Other 
Vegetation. Representative training areas for each class were 
manually delineated and used to compute the Jeffries-Matusita 
(J-M) distance, which is a measure of the spectral separability 
of the classes. The J-M distance is the distance between random 
probability distributions (Richards and Jia, 2006; Wacker and 
Landgrebe, 1972). It has a range between 0 and 2 and it 
computes using the Bhattacharya (B) distance (Equations 1 and 
2), which has the [0, +∞) range. For a pair of multivariate 
distributions, in our case a pair of classes C1 and C2, the J-M 
distance is computed by: 
 

      (1) 
where B is the Bhattacharya distance that is computed by: 
 

 (2) 
 
where M is the root Mahalanobis distance (Equation 3) 
(Varmuza and Filzmoser, 2016) between the class means with 
respect to σ (Equation 4) 
 

                           (3) 
Where: 

         (4) 
With: 
μ1, μ2 = mean of classes C1 and C2, respectively  
σ1, σ2 = covariance matrices for classes C1 and C2, respectively 
 
The J-M lowest value of 0 indicates that the distributions are 
highly correlated, thus the classes are spectrally not separable, 
whereas the upper asymptotic limit of 2 indicates excellent class 
spectral separability. Since the J-M distance assesses the 
separability of the training datasets before classification, high J-
M distances indicate that photointerpretation and in-situ human 
perception of lodging damage are good enough for the machine 
learning pipeline. 
 
The training areas were then used in a supervised classifier, 
Random Forests (RF). RF was introduced by Breiman 
(Breiman, 2001, 2003) and implemented in R (Liaw and 
Wiener, 2002). RF has been widely used in remote sensing 
(Belgiu and Drăguţ, 2016) due to its demonstrated statistical 
robustness and deployment advantages in parametrization and 
computational needs. RF is a non-parametric decision tree 
ensemble supervised classification model that does not assume a 
normal distribution of the data. In our processing, we set the 
number of trees grown (ntree) at 500 and we kept the number of 
random features selected for the growth of each tree from the 
feature space (mtry) at its default value, which is the square root 
of the size of the feature space used, rounded down. The 
classification accuracy is determined through the RF Out-Of-
Bag (OOB) error rate, which is the aggregation of individual 
OOB error rates from each individual tree grown, when the data 
omitted (~37%) from the training of the decision trees due to 
the random bootstrapping with replacement strategy in the data 
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sampling are parsed and classified by the trees that were not 
trained with them. The OOB error rate is the complementary 
percentage of the overall classification accuracy. The RF OOB 
confusion matrix allows the computation of the class user’s and 
producer’s accuracies (Congalton, 1991). The RF 
implementation in R generates two feature importance matrices: 
1) the MeanDecreaseGini, which represents the mean decrease 
in the Gini index of node impurity when a feature is split at the 
creation of a node and 2) the MeanDecreaseAccuracy, which 
represents the mean decrease of prediction accuracy when a 
feature is permutated. For the graphical representations and 
plots in this study, the ggplot2 (Wickham, 2016) library was 
used.  
 
The resulting classified images were afterward cleaned from 
some salt and pepper noise using a 1-pixel radius Majority filter 
of the System for Automated Geoscientific Analyses (SAGA) 
(Conrad et al., 2015). The resulting classified images were then 
inserted into the vector analysis pipeline. The polygonize 
function of the GDAL library (GDAL/OGR, 2019) was 
employed to vectorize the classified fields, and the results were 
refined by disposing minor patches of mixed lodged and 
standing barley within the damaged areas and finally 
smoothening the borders with equal vector buffering and 
debuffering. The resulting lodged areas were compared to 
lodged areas that were manually delineated over the UAS 
orthomosaics through photo-interpretation. Such delineation 
was made easier thanks to the very high spatial resolution of the 
data (~8cm) and the geolocation accuracy of the UAS data and 
the photogrammetric procedure in the making of the final 
orthomosaics. Following Vlachopoulos et al. (2020a, 2020b), 
the accuracy of the methodology was estimated by two spatial 
accuracy metrics: the Area Goodness of Fit (AGoF) and the 
Boundary Mean Positional Error (BMPE). AGoF computes the 
percentage of area overlap between the manual and the machine 
learning derived polygon areas as follows (Equation 5).   
 

      (5) 
 
Where: 
A = manual delineated polygon area (m2) 
B = machine delineated polygon area (m2) 
C = manual and machine delineated polygons intersection area 
(m2) 
AC = | A - C | 
BC = | B - C | 
 
BMPE calculates the aggregated minimum distances between 
the manually and the geographical points sampled at 0.5m on 
the machine delineated polygons (Equation 6). The smaller the 
BMPE output, the higher the overall positioning accuracy. 
 

       (6) 
 
Where: 

N = number of point samples 

MinDisti = minimum distance between the ith point sample and 

the manually delineated polygons 
 

3. RESULTS AND DISCUSSION 

Table 2 presents the J-M distances between each pair of classes 
computed with all the MicaSense bands and the training data 
related to the three classes (Other Vegetation, Standing Barley, 
and Lodged Barley). The resulting distances indicate excellent 
class spectral separabilities for every pair of classes, given that 
all the J-M distances are greater than 1.9.  
 

Class pair J-M distance 

Other vegetation - Standing Barley 1.966885 

Other vegetation - Lodged Barley 1.995820 

Standing Barley - Lodged Barley 1.915879 

Table 2. Jeffries-Matusita distance for every pair of classes 
computed with all the MicaSense bands 

 
We trained and tested an RF classification model over 
approximately 50,000 randomly chosen pixels for each class 
using spatially dispersed training sites from Flight1 fields. This 
method achieves a spatially robust and minimally biased 
training set for the machine learning algorithm. The RF OOB 
error rate was 0.65% and the overall accuracy was 99.35%. The 
detailed confusion matrix with the User’s Accuracy (UA), the 
Error of Commission (EC), the Producer’s Accuracy (PA), and 
the Error of Omission (EO) is shown in Table 3.  
 

Class 
Other  
Vege-
tation 

Standing 
 Barley 

Lodged  
Barley 

UA 
(%) 

EC 
(%) 

Other  
Vegetation 

49987 24 0 99.95 0.05 

Standing 
 Barley 

30 49646 358 99.22 0.78 

Lodged  
Barley 

0 567 49458 98.87 1.13 

PA (%) 99.94 98.82 99.28 
  

EO (%) 0.06 1.18 0.72 
  

Table 3. Random Forests OOB confusion matrix with User's 
and Producer's Accuracies and Errors of Omission and 

Commission. The bold figures indicate correctly classified 
pixels for each class. 

 
The RF model was finally assessed for its accuracy and 
transferability with a validation dataset, spatially independent 
from the training and testing dataset, using only data from 
Flight2 fields. Approximately 20,000 randomly chosen pixels 
from spatially dispersed training sites for each class were used 
for validation, with an overall accuracy of 99.7%. The related 
confusion matrix with UA, EC, PA and EO are shown in Table 
4. 
 
 
 
 
 
 
 
 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-203-2021 | © Author(s) 2021. CC BY 4.0 License.

 
205



 

Class 
Other  
Vege-
tation 

Standing 
 Barley 

Lodged  
Barley 

UA 
(%) 

EC 
(%) 

Other  
Vegetation 

18571 1 0 99.99 0.01 

Standing 
 Barley 

3 19850 37 99.8 0.2 

Lodged  
Barley 

1 157 19973 99.22 0.78 

PA (%) 99.98 99.21 99.82 
  

EO (%) 0.02 0.79 0.18 
  

Table 4. Random Forests confusion matrix for the validation 
dataset with User's and Producer's class Accuracies and Errors 

of Omission and Commission. The bold figures indicate 
correctly classified pixels for each class. 

 
Our overall validation accuracy of 99.7% is higher than the one 
of Yang et al. (2017), who used a decision tree classification on 
UAV RGB imagery to map lodged rice crops (96.17%), and 
Rajapaksa et al. (2018), who applied the SVM classification to 
multispectral images to map canola (96%) and wheat (92.6%) 
crops. 
 
Figure 5 shows the MeanDecreaseAccuracy and 
MeanDecreaseGini feature importance plots for the 
classification produced by RF. For both metrics, the Red 
reflectance is the dominant feature. The red reflectance is also 
the one that allows the highest graphical discrimination between 
the three classes as shown by the boxplots of the reflectance 
values computed with the training pixels of each class and each 
band (Figure 6).  
 

 
Figure 5. Random Forest MeanDecreaseAccuracy and 

MeanDecreaseGini feature importance metrics 
 
 

 
Figure 6. Boxplots of the mean reflectance values of each class 

extracted from the training areas 
 
Figure 7 presents the spectral signatures of the three classes for 
the five multispectral bands. The plot shows a quite clear 
discriminating signature of lodged barley and the rest of the 
classes for all the bands except the NIR. Both Figure 6 and 
Figure 7 suggest that the Lodged Barley class can be easily 
discriminated using the Micasense bands as feature space. All 
reflectances show on average very higher values for lodged 
barley compared to the other vegetation and the standing 
healthy barley. Compared to the other vegetation which is 
green, the lodged barley which is yellow shows very high 
reflectance in the red due to the loss of chlorophyll. With 
respect to the healthy standing barley, the reflectance difference 
is probably due to a high amount of shadow in the healthy 
standing barley, which decreases the overall reflectance level. 
 

 
Figure 7. Spectral signatures of the three classes 

 
The classifier was trained and validated upon the fields from the 
first flight while the second flight barley fields were exclusively 
used to validate the generated RF classification. Both flight 
fields were used to assess the spatial accuracy of lodging 
damage assessment after the vectorization procedure with the 
AGoF and BMPE metrics. The RGB true color composite and 
the resulting classified image for the Flight1 fields are shown in 
Figure 8 and for Flight2 fields in Figure 9. The vector analysis 
for Flight1 resulted in an AGoF of 96.8% and a BMPE of 
0.17m. For Flight2, the AGoF was 99.1% and the BMPE was 
0.3m. 
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Figure 8. RGB composite and classification image of Flight1 

barley fields with the lodging delineation results 

 
Figure 9. RGB composite and classification image of Flight2 

barley fields with the lodging delineation results 
 

4. CONCLUSIONS 

Two flight campaigns were conducted for surveying seven 
barley fields with lodging damage during the ripening growth 
stage in late August 2018 in PEI, Canada, using a UAS 
equipped with a multispectral MicaSense RedEdge camera. 
Firstly, a photogrammetric pipeline was utilized to produce the 
orthomosaics from each flight. The orthomosaics were inserted 
into a machine learning pipeline that used the RF classification 
model followed by a vector analysis for the delineation of the 
damaged barley areas from the classified images of each flight. 
The overall accuracy of the RF classification was greater than 
99%, showing that the RF classifier is a robust and consistent 
machine learning tool for the classification of UAS imagery in 
three classes (standing barley, lodged barley, other vegetation). 
 
The vector analysis produced automatically delineated areas and 
borders were compared to a photo-interpreted delineation of the 
damaged areas. The comparison produced excellent results for 
both flights and all barley fields, with an average AGoF of 98% 
and an average BMPE of 0.23m. Such results can enable the 
timely and accurate estimation of the damages on barley crops 
for yield estimation and insurance purposes. The proposed 
methodology was limited to the classification of ripening 
lodged barley and similar studies should be undertaken to test 
the method over lodging damages in other growth stages for 
barley and on other crops. Additional information derived from 
spectral data such as textural and vegetation indices should be 
tested in future work, especially when surveying lodging 

damage on different crops and growth stages. Such applications 
will allow early detection of crop lodging and strengthen 
agricultural decision support systems for possibly preventing 
more extensive damages.  
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