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ABSTRACT: 

 

Ground surface extraction is one of the classic tasks in airborne laser scanning (ALS) point cloud processing that is used for three-

dimensional (3D) city modelling, infrastructure health monitoring, and disaster management. Many methods have been developed 

over the last three decades. Recently, Deep Learning (DL) has become the most dominant technique for 3D point cloud classification.  

DL methods used for classification can be categorized into end-to-end and non end-to-end approaches. One of the main challenges of 

using supervised DL approaches is getting a sufficient amount of training data. The main advantage of using a supervised non end-to-

end approach is that it requires less training data.  This paper introduces a novel local feature-based non end-to-end DL algorithm that 

generates a binary classifier for ground point filtering. It studies feature relevance, and investigates three models that are different 

combinations of features. This method is free from the limitations of point clouds’ irregular data structure and varying data density, 

which is the biggest challenge for using the elegant convolutional neural network. The new algorithm does not require transforming 

data into regular 3D voxel grids or any rasterization. The performance of the new method has been demonstrated through two ALS 

datasets covering urban environments. The method successfully labels ground and non-ground points in the presence of steep slopes 

and height discontinuity in the terrain. Experiments in this paper show that the algorithm achieves around 97% in both F1-score and 

model accuracy for ground point labelling. 

 

 

1. INTRODUCTION 

Ground surface point filtering in laser scanned point clouds 

closely relates to generate a digital terrain model (DTM) or 

digital elevation model (DEM), which is essential for many 

applications including three-dimensional (3D) city modelling, 

urban infrastructure monitoring, flood and earthquake 

management, change detection, and corridor mapping 

(Weinmann et al., 2015; Vosselman et al., 2017; Zhang et al., 

2018). Ground surface can be defined as the boundary surface 

between the solid ground and off-ground objects (such as 

buildings, trees, and bridges). Filtering the ground points means 

a classification of the laser scanning point clouds into ground 

(terrain) and non-ground (off-terrain) points. Filtering ground 

points and removing them from the non-ground points can 

reduce huge data volumes, saves cost and labour, and simplifies 

further relevant analysis such as segmentation and feature 

extraction for above ground objects modelling and scene 

understanding. Similar benefits arise from removing non-ground 

points when interested in getting information about ground 

points such as details about the road surface, kerbs, and footpaths 

in road environment. 

 

Over the years, many ground point filtering methods have been 

developed in georeferenced laser scanning measurements known 

as point clouds. One of the first methods for filtering ground 

points in aerial laser scanning (ALS) point clouds was developed 

by Lindenberger (1993) that used the concept of mathematical 

morphology (Haralick and Shapiro, 1992). Later progressive 

densification and surface-based filtering approaches were 

developed for ground point filtering. The International Society 

of Photogrammetry and Remote Sensing (ISPRS), Working 

Group III, organized a performance test of eight different 

filtering algorithms (c.f., Sithole and Vosselman, 2004) in ALS 

point clouds. The test report concludes that although some 

methods perform better than the others in rural areas where 

terrain is flat, there are still a lot of opportunities for significant 

improvement of filtering methods in areas of complex urban 

environment and in the presence of steep slopes and height 

discontinuity.   

 

The deep neural network (known as deep learning; DL) has been 

recognized as the most successful machine learning (ML) 

approach in applications of areas in computer vision, image 

processing, pattern recognition, semantic analysis and many 

more. Recently, DL has become the most dominant technique for 

3D point cloud classification and semantic analysis. The most 

popular form of DL is the supervised learning approach that 

requires a sufficient number of reliable training data to learn the 

underlying data pattern of the unseen area. Two general 

categories of DL are end-to-end and non end-to-end approaches. 

The most common approach in DL is the Convolutional Neural 

Network (CNN), which brings an unprecedented success in 

image classification. Classic CNN architecture needs a regular 

data format like those of image grids or 3D voxels, unfortunately 

point clouds are not in a regular format. Most existing works 

typically transform such data to regular 3D voxel grids, however 

this renders the resulting data unnecessarily voluminous. One of 

the pioneering end-to-end DL works is PointNet (Qi et al., 

2017a), used for segmentation and classification. This method 
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directly feeds a point cloud to the network without any 

transformation. 

 

Alternatively, to the transformation into a regular format (like 

voxel grids), many researchers transform the raw data to get 

useful features and develop DL architectures based on the 

features. The feature-based DL architecture can be categorized 

as a non end-to-end approach. The main advantage of using a 

non end-to-end approach is that it requires less training data. 

However, feature-based approaches do depend on a clear 

understanding of the features and their relation to the underlying 

problem. Feature-based DL has been used in point cloud 

classification (Zhang et al., 2018; Kumar et al., 2019). Kumar et 

al. (2019) developed a multi-scale non end-to-end method for 

classification of terrestrial laser scanning (TLS) data. In (Kumar 

et al. 2019), because of multi-scaling, four normal vector based 

features (normal, plane-fit quality, eigenvalues and eigenvectors) 

are used a number of times. The authors claim that their method 

performs better than PointNet++ (Qi et al., 2017b), which is a 

multi-scale approach. Since, the method (Kumar et al., 2019) 

requires local features from multiple (radii) sizes of 

neighborhoods, it increases the computational burden. 

Additionally, we do not see any specific guideline on how the 

authors (Kumar et al., 2019) fix the size of the different radii to 

get the local neighborhood and corresponding features of multi-

scale interest points.  

 

In this paper, we are inspired by the feature-based DL approach, 

and develop an efficient non end-to-end DL algorithm that 

creates a binary classifier for ground and non-ground points 

classification in ALS point clouds. This method does not require 

transforming data into regular 3D voxel grids nor any 

rasterization. The scientific contributions of the paper are as 

follows. The method can successfully label the ground and non-

ground points in cases of: (i) unstructured and unordered point 

clouds having inconsistent point densities, (ii) a smaller number 

of points comparing with the end-to-end DL approach, (iii) 

densely populated complex urban areas, (iv) presence of steep 

slopes, and (v) height discontinuity in the terrain.  

 

The remainder of the paper is arranged as follows. Related works 

are briefly reviewed in Section 2. Section 3 proposes the 

methodology of the new algorithm. Section 4 demonstrates the 

proposed algorithm through two experiments on ALS point 

clouds, and presents analyses, evaluation and discussions on the 

experiments. Section 5 concludes the paper.   

 

 

2. RELATED LITURATURE 

Existing ground filtering methods can be categorized into 

morphological, progressive densification, surface-based, and 

segment-based filtering (Nurunnabi et al., 2016a; Qin et al., 

2021). Morphological filtering is based on the idea of 

mathematical morphology, which is a set-theoretical approach of 

image analysis that provides information about geometrical 

structures. In connection with morphological filtering, 

Vosselman (2000) developed a slope-based filter incorporating 

the idea of planimetric distance as the neighborhood criteria. 

Morphological filters generally investigate height differences 

between neighboring points, whereas surface-based filters 

consider the surface inclination as well.  Zaksek and Pfeifer 

(2004) noticed that the morphological filtering algorithm is 

active in areas with small differences but struggles in areas with 

steep slopes. Progressive densification begins with a small subset 

of the given data and iteratively increases the amount of 

information used to classify the whole data. Axelsson (2000) 

introduced a progressive triangular irregular network (TIN) 

densification combining the offset of a point with respect to the 

TIN. In contrast to the progressive densification, surface-based 

filtering assumes that all given points belong to the terrain 

surface and then iteratively remove the points that are 

inconsistent to the surface model by a step-by-step refinement of 

the surface characteristics. Robust interpolation based filtering 

integrates the filtering and DTM interpolation to determine an 

individual weight for each irregularly distributed point in such a 

fashion that the modelled surface represents the terrain (Kraus 

and Pfeifer, 1998). Sithole and Vosselman (2005) introduced 

segment based filtering approach in ALS data. Besides, there are 

many algorithms developed based on statistical tools, for 

example, skewness balancing was proposed by Bartels et al. 

(2006) for DTM generation. Nurunnabi et al. (2016a) introduced 

a statistically robust filtering algorithm using robust locally 

weighted regression. The authors (Nurunnabi et al., 2016b) also 

developed a region growing based robust segmentation 

algorithm that can be used for ground points filtering.  In 

Nurunnabi et al. (2016b), the robust principal component 

analysis (PCA) is used for region growing based segmentation 

that starts from a seed point and examines k neighborhood points 

to see whether they fulfil certain criteria to be in a same region 

or not. The method provides robust segmentation in the presence 

of outliers and noise.  

 

Among many other ML approaches, Random Forest (Chehata et 

al., 2009), Conditional Random Field (Vosselman et al., 2017), 

Support Vector Machines (Zhang et al., 2013), and Multi-Layer 

Perceptron (Weinmann et al. 2015) have been used to develop 

classification algorithms. Weinmann et al. (2015) conducted a 

study to investigate the performance of different ML techniques. 

Nowadays, DL is the most dominant ML technique. The two 

most well-known and revolutionary end-to-end DL techniques 

used in point cloud classification are PointNet and PointNet++ 

(Qi et al., 2017a, b). They have been evaluated mainly with 

indoor point clouds. These are the first attempts to feed 3D points 

to the network without any transformation. The basic idea behind 

the PointNet algorithm is to learn each and every point’s spatial 

encoding and then combine all individual point features to a 

global signature. One important criterion that was missing in the 

PointNet algorithm, was that it did not consider local structure 

induced by the metric. Soon after the publication of the PointNet, 

Qi et al. (2017b) improved the PointNet algorithm, by exploiting 

local metric space distances where points are present, leading to 

PointNet++. Rizaldy et al. (2018) used a fully Convolutional 

Neural Network (FCNN) approach for ground point 

classification. The authors claimed that their method reduces 

computational cost on typical CNN based methods. Soilan et al. 

(2019) used the PointNet algorithm for automatic classification 

in ALS point clouds of an outdoor environment. Inspired by the 

idea of using different sizes of local neighborhoods in 

PointNet++ (Qi et al., 2017b) architecture, Kumar et al. (2019) 

developed a non end-to-end feature-based multi-class 

classification algorithm in TLS point clouds. Interested readers 

are referred to Guo et al. (2014) and Biasotti et al. (2016) for an 

overview on hand-crafted point features. Xiu et al. (2019) 

developed an algorithm based on PointNet together with 

intensity and color (red, green and blue; r, g, b) information. 

Wang et al. (2019) introduced a promising approach named 

dynamic graph CNN (DGCNN) for learning in point clouds 

including classification and segmentation. This approach acts on 

graphs, dynamically calculated in each layer of the network. Ma 

et al. (2019) provided a feature extraction framework for 3D 

point cloud segmentation. This method designs a 3D point-based 

convolutional operation together with an adaptive graph CNN 

using both local and global features in multiple scales. 
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Widyaningrum et al. (2020) developed a dynamic graph CNN 

based semi-automatic algorithm that uses LiDAR features as 

well as color information to increase the accuracy of the 

proposed classifier.  
 

 

3. METHODOLOGY 

Some researchers believe that modern DL techniques do not 

need feature engineering, because end-to-end DL can extract 

useful features automatically from raw data. This is not always 

true, many feature-based algorithms evidence that appropriate 

features can solve the problems more smartly while using fewer 

resources with far less numbers of training data. Moreover, 

feature based DL can make a problem easier if the user has a 

deep understanding about the problem and knowledge of useful 

features. This section proposes a feature-based DL architecture 

to label the ground and non-ground points in ALS point clouds. 

The proposed architecture develops a binary classifier, and 

follows the basic workflow of a DL approach.  

 

We derive the algorithm in three steps. First step is for feature 

engineering that consists of two stages: extraction of relevant 

features, and finding the optimum feature space. Second step 

develops a binary classifier by constructing a DL architecture. 

The third step evaluates the classifier and fine-tunes the 

necessary hyper-parameters for the network.  

 

3.1 Step 1. Feature engineering  

This section comprises two tasks: generating related local 

features and selecting the optimum feature set. Local saliency 

features have been used for many fundamental tasks in point 

cloud processing including high level and global feature 

extraction, classification, segmentation, geometric primitive (e. 

g., planes, and circles) fitting, and surface reconstruction 

(Nurunnabi et al., 2016b, 2018, 2019). We extract 1D, 2D and 

3D local saliency features. Local saliency features are usually 

estimated by studying the characteristics of the points in a local 

neighbourhood. Getting optimum neighbourhood is a crucial 

issue (Weinmann et al., 2015). In this paper, we empirically 

study similar data to fix neighbourhood size (radius). We use a 

spherical neighborhood to get 3D local shape features (e.g., 

normal and curvature), such neighborhood is obtained by 

considering all the points in a sphere with a predefined radius. 

The shape features are derived from the local covariance matrix 

generated by the neighbors of an interest point. The most 

common 3D shape features are known as Covariance Features 

(CovF). Principal component (PC) analysis is used to get the 

saliency features, mainly because of its computational 

simplicity. The local covariance matrix 𝛴 based on a local 

neighborhood of an interest point 𝑝𝑖  (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) is defined as  
 

 Σ3×3 =  
1

𝑘
 ∑ (𝑝𝑖 − 𝑝̅)(𝑝𝑖 − 𝑝̅)𝑇𝑛

𝑖=1     (1) 

 

where k and 𝑝̅ are the number of points and the mean of the 

points in the neighborhood (sample), respectively. The 

covariance matrix is decomposed into three eigenvectors 

(principal components; PCs) denoted by 𝜈2, 𝜈1 and 𝜈0 that are 

sorted w. r. t. their corresponding eigenvalues 𝜆2, 𝜆1 and 𝜆0 that 

are arranged usually in descending order, i.e., (𝜆2 ≥ 𝜆1 ≥ 𝜆0 ≥
0). The first and third PCs (𝜈2 and 𝜈0) explain the directions of 

the most and the least of the data variability for the sampled 

surface. The 𝜈0 approximates the surface normal. Pauly et al. 

(2002) define the variation along the surface normal as 𝜆0, and 

surface curvature as 𝜎(𝑝𝑖) = 𝜆0 (𝜆0 + 𝜆1 + 𝜆2)⁄ . In this 

paper, the eigenvalues are normalized by their totality and 

defined as 𝑒𝑖 = 𝜆𝑖 ∑ 𝜆𝑖
2
0⁄  (i = 0, 1, 2). The most common 3D 

shape features are: three eigenvalues, first eigenvector (PC1), 

surface normal, curvature, linearity, planarity, scattering, 

omnivariance, eigentropy, plane offset and verticality of the 

point of interest (Weinmann et al., 2015; Becker et al., 2017; 

Kumar et al. 2019; Ozdemir et al., 2019).  
  
We are interested to extract ground points, and the ground points 

likely lie on a locally planar surface. Therefore, we consider 2D 

features. These features are generally derived by using a 

cylindrical neighborhood, where the neighbor points are those 

for which the 2D projection onto the ground (x-y) plane are 

within a circle with a given (same to sphere) radius. Most 2D 

features for filtering ground points are based on points’ height 

(z) information, namely z-features (zF): the minimum, range, 

mean, variance, point height (𝑃𝑧) values, and relative position 

(RP) of the interest point w.r.t. the neighbors. Point density (PD), 

positive openness (PO), and echo ratio (ER) are additionally 

useful (Kumar et al., 2019). Point density is the number of points 

per unit volume of the 2D cylindrical neighborhood. The 

openness is a measure to express the degree of power or 

enclosure of a location on an irregular surface (Yokoyama et al., 

2002). According to viewer’s perspective, positive openness 

expresses openness above the surface. The ER is defined for local 

transparency and roughness, which is an improved version of the 

point density ratio (Hofle et al., 2009). Furthermore, we consider 

two 1D LiDAR features (LiF): intensity (I) and return numbers 

(RN) in search of an appropriate feature space (Soilan et al., 

2019). The feature sets are summarized in Table 1. To balance 

between the feature vectors, we standardize all the feature 

vectors before feeding them into the network. Since, we have a 

number of features to get the optimum set, it is not possible to 

evaluate every combination of the features. We investigate the 

relevance of the features by grouping them into three models, 

and train the architecture based on the models. Model 1 considers 

all features. Model 2 studies the features that were considered for 

a multi-scale feature-based method in TLS point cloud 

classification, proposed by Kumar et al. (2019). Unlike Model 2, 

Model 3 emphasizes on linearity, planarity, scattering, 

omnivariance and eigentropy rather than distinct eigenvalues. 

Table 2 defines the three models. In our experiment, we follow 

Kumar et al. (2019)’s rules for selecting multi-scale features for 

the feature combination from multiple neighborhoods. 

 

3.2 Step 2. Developing deep learning architecture 

In this step, we create a binary classifier by developing a DL 

architecture. Our inputs for the network are the feature vectors 

and the targets: 1 and 0 (1 for ground and 0 for non-ground). 

Dense layers are used to generate the network. We use the 

Rectified Linear Unit (ReLU) activation function for the hidden 

layers, and the Sigmoid function for the output layer 

(Goodfellow, et al., 2016). We use binary cross entropy as the 

loss function and the Adam (a method for stochastic 

optimization) optimizer to train the model. We use the ‘He 

initialization’ strategy with the ReLU activation function, and 

Batch Normalization is used to reduce the influence of vanishing 

and exploding gradients. We perform the proposed network for 

the three feature sets (Models 1, 2 and 3) in Python software 

supported by the TensorFlow DL module.  

 

3.3 Step 3. Tuning hyper-parameters 

We conduct an extensive study based on our input data, and 

evaluate developed architecture to fine-tune the necessary hyper-

parameters. The hyper-parameters used in this proposed network 
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are: number of hidden layers, number of neurons for the hidden 

layers, number of epochs and the mini-batch size. We start to fit 

the model form 7 layers and 70 neurons for each hidden layer. 

After an extensive empirical study, we see 5 layers with 50 

neurons for the hidden layers are good enough to fit the model 

with the optimum level of accuracy. We train the model with 10 

epochs and a mini-batch size of 128. We investigated L2 

regularization with a learning rate 𝛾= 0.2, 0.1, and 0.01 and 

finally fix with 𝛾 = 0.01 to avoid the possible of overfitting 

during training the model. At the end of every epoch, the model 

computes its’ evaluation metrics (loss and accuracy) on the 

validation dataset. We finalize the hyper-parameters of the 

architecture with the least and highest values of loss and 

accuracy, respectively. 

  
 

Features Definition 

C
o

v
ar

ia
n

ce
 F

ea
tu

re
s 

(C
o

vF
) 

Three eigenvalues 𝜆2,  𝜆1,  𝜆0 

1st Eigenvector, PC1 𝜈2 

Surface normal 𝜈0 

Curvature, 𝜎𝑝 𝜆0 (𝜆0 + 𝜆1 + 𝜆2)⁄  

Linearity, 𝐿𝜆 (𝑒2 − 𝑒1)/𝑒2 

Planarity, 𝐿𝑝 (𝑒1 − 𝑒0)/𝑒2 

Scattering, 𝑆𝜆 𝑒0/𝑒2 

Omnivariance, 𝑂𝜆 √𝑒0𝑒1𝑒2
3  

Eigentropy, 𝐸𝜆 − ∑ 𝜆𝑖𝑙𝑛(𝜆𝑖)2
𝑖=0   

Plane offset  

(PO) 
Sum of the residual  

distances to the fitted plane 

Verticality,  

𝜃 

The angle between the normal and 

the x-y plane 

Z
 F

ea
tu

re
s 

(z
F

) 

Minimum z, 

𝑀𝑧 

Lowest z value among the 

neighbour points  

Range, 

𝑅𝑧 

Distance between the maximum 

and the minimum z values of the 

neighbours 

Mean z,  

𝑧̅ 
Average of z values of the 

neighbour points 

Variance z, 

 𝜎𝑧
2 

Variance of z values of the 

neighbour points 

Point height (z), 𝑃𝑧 z distance from the local  

x-y plane 

Relative position 

(𝑅𝑃𝑧) 

Relative position of z value of the 

interest point from x-y plane 

 Point density (PD) No. of points per unit volume in 

2D neighborhood 

 Positive openness 

(PO) 

Openness above the surface 

 Echo ratio  

(ER) 

The ratio (in %) of no. of points in 

3D and 2D neighborhoods 

L
iF

 

Intensity  

(I) 

Return strength of a  

laser pulse 

Return number (RN) ith return number for a  

given pulse  

Table 1. Extracted features used in the proposed network.  

Models Required Features 

Model 1 All features;  
(𝐶𝑜𝑣𝐹 ∪  𝑧𝐹  ∪  𝐿𝑖𝐹) ∪ ( 𝑃𝐷, 𝑃𝑂, 𝐸𝑅) 

Model 2 (𝐶𝑜𝑣𝐹 ∪  𝑧𝐹  ∪  𝐿𝑖𝐹) ∪ (𝑃𝐷, 𝑃𝑂, 𝐸𝑅) 

−(𝜃, 𝜎𝑝,  𝐿𝜆,, 𝐿𝑝, 𝑆𝜆 , 𝑂𝜆 , 𝐸𝜆 , 𝑧̅, 𝑅𝑁) 

Model 3 (𝐶𝑜𝑣𝐹 ∪  𝑧𝐹  ∪  𝐿𝑖𝐹) ∪ (𝑃𝐷, 𝑃𝑂, 𝐸𝑅) 

− (𝜆2, 𝜆1, 𝜆0, 𝜈2, 𝑀𝑧, 𝑅𝑃𝑧, 𝑅𝑁) 

Table 2. Three groups of features; Models 1, 2 and 3. 

 

4. EXPERIMENTS, EVALUATION AND DISCUSSION 

This section demonstrates the proposed algorithm. We 

conducted several experiments. Here, we analyse and explain the 

results of two ALS datasets, and evaluate the performance of the 

new algorithm for Model 1, Model 2, and Model 3.  

 

We analyse and discuss the quantitative and qualitative outcomes 

of the experiments. Once the model is developed and trained 

with an optimum level of success, the trained model is used to 

classify the test data. We get the required predicted labels 

(ground and non-ground) for each point in the dataset. 

Quantitative performance for the developed methods is 

evaluated through four well-known performance metrics used in 

the classification task. We compare the results (predicted labels) 

with the ground truth and calculate the values for the 

performance metrics: precision, recall, F1-score and model 

accuracy. The metrics are defined as follows.  

 

            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
,                            (2) 

 

           𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
,                                   (3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
,                 (4) 

 

                      𝑀𝑜𝑑𝑒𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
,                  (5) 

 

where the number of True Positive, False Positive, True 

Negative, and False Negative cases are abbreviated as TP, FP, 

TN and FN, respectively.  

 

4.1 Data set 1: AHN data 

We perform our first experiment on the Actueel Hoogtebestand 

Nederland (AHN) data. This is a well-known open source data 

used in Soilan et al. (2019) and available at   

https://www.pdok.nl/nl/ahn3-downloads. AHN data is acquired 

by an ALS system, covers the whole area of The Netherlands. It 

has an average point density of around 20/m2, and records up to 

five returns. The data come with class labels (ground, vegetation, 

building, water, and bridge) and is divided into tiles of 

500m × 500m. We select two tiles in urban areas with complex 

objects like residential-commercial buildings, vegetation, car 

and a big church. Ten training, one validation and one test 

samples (Figure 1) are sampled from different locations. Test and 

validation sets are chosen randomly. Training sets are chosen of 

different sizes and from different locations to cover different 

landscape and to contain various objects. The selected areas 

contain 6,968,776 points in total, 14% of them are used for the 

test set, and the rest are used for the training and validation sets. 

Excluding the test set, the validation set contains 13% of the 

points.  
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Figure 1. AHN test dataset in a complex urban area with trees, cars, small-large residential-commercial buildings, and a church. 

 
 

 

Figure 2. (a) Presence of steep slopes at a drainage system in the terrain, (b) extracted ground surface; ground points (blue), false 

positives (yellow) and false negatives (red). 

 

Radius 

(cm) 
Model 

 Ground   Non-Ground  Model 

Precision 

(%) 

Recall  

(%) 

F1-score 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Accuracy 

(%) 

100 

Model 1 92.5 99.8 96.0 99.8 95.0 97.4 96.7 

Model 2 89.9 98.9 94.6 99.9 93.0 96.3 95.6 

Model 3 93.3 99.7 96.2 99.7 95.6 97.6 97.2 

50 

Model 1 93.0 99.6 96.2 99.8 95.4 97.5 97.0 

Model 2 89.8 99.2 94.2 99.9 92.4 96.0 95.3 

Model 3 93.8 99.7 96.7 99.8 95.6 97.7 97.3 

100  

∪  

50 

Model 1 91.6 99.7 95.7         99.9 94.3 97.1 96.5 

Model 2 92.0 99.7 95.7 99.8 94.6 97.1 96.4 

Model 3 93.3 99.7 96.5 99.8 95.8 97.7 97.2 

Table 3. Results show the performance of the proposed algorithm for the AHN test dataset. 
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Figure 3. ACT test dataset in an urban area with trees, cars, and small-medium residential-commercial buildings. 

 

 

 

Figure 4. Results for ACT data; (a) Presence of height discontinuity in the terrain, (b) classified ground (blue) and non-ground 

points (purple), (c) false positives (yellow) and false negatives (red) cases.  

 

Radius 

(cm) 
Model 

 Ground   Non-Ground  Model 

Precision 

(%) 

Recall  

(%) 

F1-score 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Accuracy 

(%) 

100 

Model 1 99.6 98.0 98.8 96.2 99.4 97.7 98.4 

Model 2 99.7 93.5 96.5 89.7 99.2 94.2 95.7 

Model 3 99.7 98.4 99.0 96.8 99.6 98.2 98.6 

50 

Model 1 99.7 97.2 98.4 96.5 98.6 97.5 98.1 

Model 2 99.7 93.8 96.6 90.2 99.5 94.6 95.9 

Model 3 99.7 97.6 98.7 96.1 99.6 97.8 98.4 

100  

∪  

50 

Model 1 99.4 97.1 98.2        96.2 99.0 97.6 98.4 

Model 2 99.0 96.2 97.6 93.7 99.2 96.4 96.3 

Model 3 99.6 97.9 98.7 96.4 99.4 97.9 98.5 

Table 4. Results show the performance of the proposed algorithm for the ACT test dataset.  
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The test dataset consists of different sizes of complex objects 

including big and small trees, many cars, small-large buildings, 

and a large church (Fig. 1). According to our interest of 

classifying data into ground and non-ground points, all given 

labels are grouped into two: one group is only for ground points, 

and all the other points are re-labelled as non-ground points. We 

calculate features sets with the help of OPALS (Pfeifer et al., 

2014) and the MATLAB software. The proposed network is 

trained using the training and validation datasets, and the trained 

model is used on the test dataset. Quantitative performance for 

the developed method is evaluated through the metrics: 

precision, recall, F1-score and model accuracy. The performance 

of the algorithm is assessed through the three models using the 

features from neighbourhoods of radii 100cm, and 50cm, and 

combining (multi-scale) features from radii 100cm and 50cm 

following Kumar et al. (2019). Results are shown in Figure 2 and 

Table 3. For every case of radius 100cm, 50cm, and (100cm ∪ 
50cm), Model 1 and Model 3 perform almost similar for every 

metric, and sometime Model 3 performs slightly better than 

Model 1. However, both of Model 3 and Model 1 are better than 

almost all evaluation metrics of Model 2. For ground filtering 

with 50cm radius, Model 3 achieves the best value for precision, 

F1-score and model accuracy of 93.8%, 96.7% and 97.3%, 

respectively. Model 3 also produces a better F1-score than the 

others for non-ground surface extraction. With 50cm radius, 

Model 3 has recall and F1-score of 95.6% and 97.7%, whereas, 

for non-ground surface, Model 2 gets the metric values of 92.4% 

and 96.0% respectively. Fig. 2(a) indicates the presence of steep 

slopes (of a drainage system) in the data. Fig. 2(b) shows the 

identified ground points, with false positive and false negative 

cases using the Model 3. 

 

4.2 Data set 2: ACT data 

In the second experiment, we use the LiDAR 2019 data, the 3D 

survey of the Luxembourg territory and provided by 

Administration of Cadastre and Topography (ACT). These are 

available at https://data.public.lu/en/datasets/lidar-2019-releve-

3d-du-territoire-luxembourgeois/. We name it ACT data. They 

come from a 3D aerial survey based on LiDAR technology. They 

have an average point density of around 15/m2 with a horizontal 

precision of ± 3 cm and vertical precision of ± 6 cm. The data 

are structured into 500m×500m tiles, which contain on average 

five to seven million points. The raw tiles are grouped together 

up to nine tiles representing a spatial extent of 1500m×1500m. 

The points in the ACT data are usually labelled into soil, low 

vegetation, medium vegetation, high vegetation, buildings, low 

points (noise), water, bridges, footbridges, viaducts, high voltage 

lines and unclassified points.  

 

We selected two tiles of 500m×500m in urban areas. The 

training dataset is selected from one tile, and the test dataset is 

from the other tile. To get more accurately classified data, 

further, we manually edit the data using the LAStools software. 

Following our objective in this paper, we reclassified the data as 

the previous experiment: ground and non-ground points. The 

data we consider for our experiment contain 5,110,261 points. 

The training dataset is collected by five segments (samples) 

consist of 4,131,522 points. From the five training segments, we 

randomly choose one segment with 650,764 points as validation 

dataset to validate the developed model. The validation set is 

15.75% of all the training points. In the test set, there are 

977,739 points, which is the 19.13% of all the points selected for 

the experiment. The necessary feature vectors for the data are 

calculated as the previous experiment. We perform the proposed 

algorithm for the Models 1, 2, and 3. This time, we get slightly 

better results for Model 3 with radius of 100cm than 50cm and 

their combination (100cm ∪ 50cm). Using the features generated 

from the neighborhood size of 100cm, Model 3 achieves F1-score 

of  99.0% and 98.2% for labelling ground and non-ground points, 

respectively, and model accuracy of 98.6%.  Model 2 finds 

ground and non-ground points with significantly less F1-score 

than Model 1 and Model 3 for each neighbourhood size. With 

100cm radius, Model 2 achieves recall of 93.5% for ground point 

labelling, whereas Model 1 and Model 3 achieve recall of 98.0% 

and 98.4%, respectively.  

 
 

5. CONCLUSIONS 

This paper proposes a non end-to-end DL algorithm to classify 

ground and non-ground points in ALS point clouds. The new 

algorithm constructs a fully connected deep neural network to 

develop a binary classifier. The algorithm performed on three 

models which are the combinations of extracted pointwise local 

features. The inputs for the networks are point features, rather 

than the raw point clouds (x, y, z). In the results of the first 

experiment in Section 4, of 50cm radius, it is explored that Model 

3 is the best group of features that achieves more than 97% model 

accuracy with F1-score for ground and non-ground point filtering 

are 96.7% and 97.7%, respectively. Similar decisions (better 

performance of Model 3) can be made from Experiment 2. The 

algorithms perform better for ACT than AHN data, e.g., in terms 

of model accuracy; Model 3 achieves highest performance of 

97.3% and 98.6% for AHN and ACT data, respectively. Model 

1 and Model 3 perform almost similar, but the advantage of the 

Model 3 is that it uses 19 features, whereas Model 1 uses 28 

features. Therefore Model 1 creates more computational burden 

for the proposed architecture. The new algorithm does not 

require multi-scaling, as the models developed from the features 

generated by multi-scaling (radius) do not perform better. 

Reasonably, all the models also make a significant amount of 

computational complexity when features are from multi-scale 

(radii) neighborhoods. We finally suggest Model 3 as the best for 

labelling ground and non-ground points in ALS data. 

Experiments in Section 4 show that the proposed filtering 

methods finds both ground and non-ground points successfully 

in the presence of steep slopes and height discontinuity in the 

terrain. Potential applications of the proposed algorithm include 

city modelling, building footprint identification, digital surface 

and terrain modelling, disaster like flood management, corridor 

mapping and urban assets monitoring and management.  
 

Like other non end-to-end DL methods, the proposed algorithm 

needs through understanding about the related features. Future 

research will continue to classify non-ground objects like 

vegetation, buildings and road-corridor infrastructure.  
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