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ABSTRACT:

Routine pavement inspection is crucial to keep roads safe and reduce traffic accidents. However, traditional practices in pavement
inspection are labour-intensive and time-consuming. Mobile laser scanning (MLS) has proven a rapid way for collecting a large
number of highly dense point clouds covering roadway surfaces. Handling a huge amount of unstructured point clouds is still a very
challenging task. In this paper, we propose an effective approach for pavement crack detection using MLS point clouds. Road surface
points are first converted into intensity images to improve processing efficiency. Then, a Capsule Neural Network (CapsNet) is
developed to classify the road points for pavement crack detection. Quantitative evaluation results showed that our method achieved
the recall, precision, and F;-score of 95.3%, 81.1%, and 88.2% in the testing scene, respectively, which demonstrated the proposed
CapsNet framework can accurately and robustly detect pavement cracks in complex urban road environments.

1. INTRODUCTION
1.1 Motivation

Pavement cracks are common damages on pavement surfaces,
which are signed for potential damages in the supporting
structures (Lee, 1991). Road surface defects may cause severe
troubles in traffic, such as congestion, delay, and even safety
problems. Ragnoli et al. (2018) indicated that there would be an
increasing demand for Pavement Maintenance and
Rehabilitation programs worldwide. Road cracks tend to
deteriorate due to environmental factors (Chen et al., 2004). If
the cracks are not sealed in time, water infiltration into the
lower layer, especially during the period of snowmelt freezing-
thawing mix, will exacerbate the damage of the road and lead to
the formation of network cracks. Therefore, it is important to
prevent and repair early cracks in the pavement. However,
traditional road crack detection usually relies on human
inspection, limiting the accuracy and efficiency of the
measurement (Li et al., 2019). Most of the common practice in
the road is usually time-consuming, dangerous, labour-intensive,
and subjective. Thus, it is a trend to replace traditional crack
detection methods with automated or semi-automated ones.
Semi-automated methods combine human intervention and
machine, while automated methods require minimal human
assistance. Automated and semi-automated technologies make it
possible to develop real-time pavement distress detection.

Mobile laser scanning (MLS) provides high-density data by
close-range acquisition, which ensures even the smallest of
features are captured in the resulting point clouds. The densities
of such point clouds vary significantly depending on several
factors, including the driving speed during acquisition, distances
from the laser beams to the surfaces reflecting the laser’s energy
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and laser repetition rate. It is common that densities are
measured in the hundreds or even thousands of points per
square meter. Moreover, comparing with traditional image data,
MLS data can provide highly accurate spatial information (Li et
al., 2020). The laser scanners used in the high-end MLS systems
are typically accurate to a few millimeters. Positioning accuracy
of 1 to 2 centimeters is possible with careful planning, quality
hardware, favorable GPS conditions, and supplemental ground
control. Additionally, MLS systems enable the mobile data
collecting of the roads and constructions and provide affordable
3D databases for GIS analysis (Li et al., 2019). To be specific in
the crack detection, instead of the color differences in the RGB
images, the intensity differences of the generated 2D images of
MLS present the crack clearly.

1.2 Objectives of the study

This paper aims to propose an efficient deep learning-based
framework to provide pavement crack feature detection, which
can be used to maintain and manage road construction. The data
used in this paper is 3D point cloud data obtained from an MLS
system. The main objectives of this study are as follows: (1)
Applying Capsule Neural Network (CapsNet) to pavement
inspection and (2) Analyzing the advantages and disadvantages
of applying the CapsNet to pavement crack detection.

1.3 Related Work

1.3.1 Rule-Based Methods: Rule-based crack detection
was one of the earliest functions presented for the semi-
automated pavement crack (Mei et al., 2020). Tsao et al. (1994)
proposed a rule-based system containing facts and variable rules
created by prominent features of different types of distress. In
addition, the major processes were gathering information on the
input image and then deciding the efficient pattern. The results
achieved accuracy at about 85% to 90%. Moreover, Amhaz et al.
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(2016) stated a rule based on the minimal path selection
algorithms with a redefined artifact filtering step to estimate the
thickness of the crack pattern. Gavilan et al. (2011) proposed an
approach combining a series of image processing techniques.

In this approach, the image was preprocessed to enhance the
linear features, and confusing area, like joints on pavements,
will be eliminated. Moreover, a seed-based approach combining
multiple directional non-minimum suppression with symmetry
check was proposed. In general, rule-based crack detection was
casy to verify the pavement crack, as it did not require an
annotation and training process (Mei et al., 2020). However, in
this kind of methods, most of the features were created
artificially in some original datasets, in which not all the
variation in real-life images could be considered, especially
illumination changes or irregular shape of cracks. Thus, these
rule-based methods could not work well in changeable
situations.

1.3.2 Learning-based methods: As stated above, the rule-
based methods for pavement crack could be improved into more
efficient and accurate ways. The deep learning-based algorithms
were studied by many researchers in the last decade. Tensor
voting included two major steps, representing data using tensor
calculus, and data combining by nonlinear voting, including
sparse tensor voting and dense tensor voting (Guan et al., 2014).
In addition, the iterative tensor voting (ITV) contained three
steps, preprocessing of the MLS data, GRF image generation
and ITV-based crack detection, in which the third step included
the core algorithm of the whole process. The ITV method
achieved much more accurate results. However, this method
required intensive computation (Guan et al., 2014). The major
processed of tensor voting and ITV were shown.

CNN had become state-of-the-art for various image analysis
tasks (Mei et al., 2020). A basic neural network normally
consisted of three layers: an input layer, hidden layers, and an
output layer (LeCun et al., 1999). In a typical CNN model, the
hidden layer constituted a group of convolutional layers. The
convolution layer would be multiplied with other layers (LeCun
et al., 1999). The activation function was commonly a RELU
layer following additional convolutions such as pooling layers,
fully connected layers and normalization layers. These layers
referred to hidden layers because the activation function and
final convolution masked inputs and outputs.

A geometric graph CNN was based on the MLS data established
by Li et al. (2019). To learn the major features from the MLS
point sets, they combined the Taylor Gaussian mixture model
network. This algorithm could reduce the computation cost with
guaranteed  segmentation  performance. However, the
multiobject connected area labeling was limited because of the
limited receptive field for TGConv. Furthermore, real-time road
crack mapping was introduced based on MLS technology
(Naddaf-Sh et al., 2019), which combined the CNN and
Bayesian optimization algorithm to improve the precision and
decrease processing time. As a result, they achieved over 90%
accuracy with real-time images and videos.

In conclusion, there were two main types of data for crack
detection, i.e., images and MLS data. The rule-based and deep
learning-based methods could be used for-based crack detection
(Mei et al.,, 2020). Moreover, for MLS data-based crack
detection, there were two main methods, 2D georeferenced
feature (GRF) image-driven detection and 3D point-driven
detection functions (Ma et al., 2018).

2. METHOD

This experiment used MLS point clouds and converted them
into intensity images. The generated images were then divided
into training, validation, and testing datasets. Finally, the
CapsNet was proposed for pavement crack detection. The
CapsNet model has three stages, which are the Rectified Linear
Unit (ReLU) convolution, primary capsules, and convolution
capsules. Additionally, the evaluation metrics used in the
experiment are recall, precision, and F;-score.

2.1 Data

The MLS data, which was collected in April 2012 by a RIEGL
VMX-450 MLS system, was smoothly integrated with two
RIEGL VQ-450 scanners. The scanners’ laser pulse repetition
rates are up to 550 kHz (Guan et al., 2014). The average speed
of the traveling vehicle was 50 km/h. The two laser scanners
were symmetrically settled on the left and right sides, which
orient the rear of the vehicle at a heading angle of
approximately 145° in the “Butterfly” configuration pattern,
which can also be called the “X” configuration pattern. With
this pattern, RIEGL VQ-450 can scan in a 360° circle owing to
the motorized mirror scanning mechanism.

According to the RIEGL website (2013), the system can provide
a measurement rate of 1.1 million pts/sec and a scan frequency
of 400 lines/sec. The density sharply drops perpendicular to the
travel lines, which means the closer to the vehicle trajectory will
lead to a higher point density level. The average point density
on the road is about 3,300 points/ m? . The dataset with 8.4
million points in the length of 105 m is selected from the whole
survey. In addition, it covers a two-lane cement-paved road
segment of about 3,105 m. All the MLS data used in this
experiment has been pre-processed with registration operations.
Figure 1 shows the generated georeferenced intensity image of
the road and Figure 2 shows the labeled pavement cracks
highlighted in yellow. A comparison of part of the
georeferenced intensity image and classified image are shown in
Figure 3.

Figure 1. Georeferenced intensity image of pavement surface.

Figure 3. Compare of georeferenced intensity image (left) and
classified images (right).
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2.2 Pavement Crack Detection

2.2.1 Overview of workflow: A basic neural network usually
consists of three layers: an input layer, hidden layers, and an
output layer (Hinton, 2017). Specifically, in the CNN
algorithms proposed for pavement crack, the input layer’s input
data are tensors, while the hidden layer contains convolutional
layers, RELU layers, and pooling layers. In the CNN algorithms,
the most important part is convolution, in which the input tensor
data and convolution kernel are multiplied to obtain the
improved results. In this paper, the proposed CapsNet uses the
capsules to replace the simple layers in the traditional neuron. It
mainly includes two stages, linear combination and dynamic
routing (Jiménez-Sénchez et al., 2018). Furthermore, the
CapsNet builds the multi-dimensional squashing function and
creates tensors by grouping multiple feature channels. CapsNet
includes dynamic routing mechanisms (Hinton et al., 2018).

Figure 4 shows the processing workflow. The proposed method
can be divided into three steps, which are road segmentation
using intensity image generation, data preprocessing, and
CapsNet model. The CapsNet contains four parts, they are the
convolution layer, the primary capsule layer, the convolution
capsule layers, and the full capsule layer.

2.2.2 Road Segmentation and Intensity Image Generation:
As stated above, the collected MLS data contain a large volume
of 3D points with which the entire road scene is covered. In
order to narrow the searching region and improve efficiency, we
only focus on the processing of road surface points. The cracks
are on the road surfaces, and these road surfaces can be
regarded as planes. Therefore, we projected MLS point clouds
onto the road surface to generate georeferenced intensity images
without height information. The computational efficiency can
be improved effectively.

The curb-line-based road segmentation method was adopted to
separate road surface points from the entire point cloud data
(Guan et al, 2014). Instead of processing the discrete,
unordered road surface points in 3D space, we rasterized them
into a 2D georeferenced intensity image using the inverse
distance weighted (IDW) interpolation method. In this
experiment, road surface points were vertically partitioned into
a series of grids with a specific spatial resolution. The spatial
resolution was determined according to the point cloud density.
Then, the grid points were interpolated into a single pixel. The
gray value was determined by the distances to the grid center
and intensities of these points. If a grid contains no points, the
associated pixel value is set to be zero.

To divide and classify the data into suitable sizes, the cracks
were marked in yellow, as shown in Figure 2. Then, it was
divided into pieces using the same method as Figure 1 is
divided. With the labeled dataset, the unlabeled one can be
easily classified. The numbers of the images with a crack after
clipping can be recorded based on the labeled one’s information,
and they will be selected from the labeled data set. The labelled
dataset in this study is called Pavement Crack (PC) data.

The training, validation, and testing data were fed into the
model in the Incremental Design Exchange (IDX) data format.
The format of the PC dataset is similar to the MNIST dataset,
which is a handwritten digit classification dataset used for
machine-learning training. The total image size of the generated
intensity image is 377 % 3770. Additionally, the segmented
pieces were labeled as pavements and cracks. Furthermore,
1,000 pieces of segmented pavement were selected as the

training data, while 316 pieces were selected as validation data,
and 176 pieces were used as testing data. The training, testing,
and validation data were all randomly selected. Moreover, the
data ratio is 67%, 21%, 12% of the total dataset.
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Figure 4. Flowchart of the proposed method.
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2.2.3  Proposed Model: The first layer, called ReLU Convl,
is a convolution layer, by which the simple features can be
detected and inputted to the primary capsules. In addition, there
are 256 kernels, each of which is in the size of 9*9 (Sabour,
Frosst & Hinton, 2017). With this convolution, the parameter is
in the size of K2*K2*256 (Sabour et al., 2017). Moreover, the
second layer, called primary capsules, combines the
convolutional layer features (Yu et al., 2019). Each of the
primary capsules converts the data with eight convolutional
kernels in the size of K3*K3*8. Furthermore, with the
convolution capsules and the full capsule, the 8-D vector is
converted into 16-dimensional.

In the capsule layer, the transformation is shown and calculated
by the following equation:

S= 0 Cil
6]
In Eq. (1), Sj shows the entire input to the j-tk capsule. In
addition, the Cj; is the weight for the connection of the i-th and
the j-th capsules, and Uj; is the transformed input to the j-th
capsule. Moreover, Ujji can be calculated by:

Ui = Wi

@
As is mentioned above, Uj; is the input of the j-#4 capsule. In
addition, Wj; is the weights of the transformation from the i-th
to j-th capsule, and U; is the output of the i-th capsule. These
transformations allow learning the whole relationship, instead of
detecting independent features by filtering at different scales
portions of the image (Hinton et al., 2011).

In routing by agreement, the outputs from one capsule are
routed to capsules in the next layer according to the child
capsule's ability to predict the parent capsule's outputs (Hinton
et al., 2011). The squashing function, which is a non-linearity
function, is combined by an additional scaling and a unit scaling
(Ma et al., 2020):

2
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where Uj is the vector output of j-th capsule, and §j is its input.

2.2.4 Performance Assessment: In this experiment, the
performance assessment on training and validation date will be
based on the loss equation. During the training, the loss function
is:

Ly = Tiemax (0, m* — [Ivi|D?
+ (1= Hmax(O ] - 7)?

)

In the loss equation, k means the number of classes of the digit,

and a is set to 0.5 for the balance of loss. Additionally, only if

m*=0.9 and m™=0.1, it meets Ty =1 (Hinton et al., 2018).

Moreover, using the testing data to do the evaluation is also part
of the performance assessments. The main difference between
the evaluation and the training is the processing dataset, as the
evaluation is based on the testing data while the training is
based on the other two datasets. Additionally, both of them use
the capsule steps as provided above during the test.

Furthermore, the accuracy is also assessed by comparing the

extracted road crack markings with the manually ground-truth.
The results are quantitatively evaluating by the following three
measures: recall, precision, and Fscore. Recall describes if the
pavement crack markings are completely extracted, while
precision indicates the percentage of the valid markings. The
recall and precision are defined as (Guan et al., 2014):

L0
)

where Cp means the number of pixels belonging to the actual
pavement cracks, Rf shows the amount of ground-truth collected
by the manual interpretation, and Ep represents the number of
pixels extracted by the proposed algorithm. ;-score shows an
overall score, which is defined as (Guan et al., 2014):

Fi-score = 2 x E i

(6)

3. RESULTS AND DISCUSSION
3.1 Experiment Results

Figure 5 shows the overall accurate of the classification . To
compare and visualize the result, several scatter diagrams with
trend lines are created.

a e e g AT P A o N Koo o gt P

Figure 5. Training accuracy of the proposed model.

Figures 5 and 6 show the accuracy of the corrected experiment
and the iteration is set as 3. To clearly present the trends of
accuracy, the accuracy of the first step is not shown in Figures 5
and 6, as the accuracy of them close to 0. They both present
upward trends during the training. In Figure 5, the initial
accuracy is relatively dispersed and unstable, but the accuracy
gradually increases with the increase of training. In Figure 6, the
validation accuracy is increasing stably between 0.980 and
0.995. In addition, when the epoch is set to 50 and the iteration
is set to 3, it spends about two hours training the dataset.
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Figure 6. Validation accuracy of the proposed model.
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3.2 Loss Value

Figure 7 presents the best loss value trend, in which the iteration
is set as 3 rather than 1 or 2. It shows a relatively concentrated
of data. Figures 7 and 8 show the loss value of the experiment
and the trend during the training. The loss function in this
experiment is used to optimize the CapsNet. The loss accuracy
provides the sum of errors made for each example in training or
validation sets. If the model’s prediction is perfect, the loss will
be zero, while the greater value indicates a worse prediction.

Figure 8 shows a trend line graph that presents the comparison
of the loss value with different iterations. All three lines show
the overall decreasing trend. The orange line is the trend line of
loss when the iteration is equal to three. The green line shows
the loss value with three times iteration, while the blue one is
with two times iterations. The loss values of these three
experiments are in the trend from 0.0005 to 0.0003. Comparing
these three lines, the orange line keeps lower than the other two.
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Figure 7. Best loss value of the proposed model.
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3.3 Training,Validation and Test Accuracy

The training and validation accuracy is the accuracy of a model
that it was constructed on. Figures 5, 6, and 9 illustrate the
training and validation accuracy. Figure 9, a sample training
accuracy of the overfitting model, shows a trend from 0 to
100%, as after step 530, the accuracy is 100%. As the training
accuracy meets 100% in training, this shows that the model is
overfitting. Overfitting refers to a model that has learned the
training dataset too well, including the statistical noise or
random fluctuations in the training dataset. However, the
problem with overfitting is that the more specialized the model
becomes to training data, the less well it can generalize to new
data, resulting in an increasing generalization error. This
increase in generalization error can be measured by the
performance of the model on the validation dataset. In

conclusion, the three main reasons for the model’s overfitting
are the high complexity of the model, the insufficient training
data, and the big data noise. Specifically, in this experiment, the
overfitting is caused by the inaccuracy of the training data.
After re-selecting the crack datasets, the overfitting problem can
be solved.

Training Accuracy with Three Times Accuracy

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Steps
Figure 9. Train Accuracy of the overfitting model.
3.4 Accuracy Assessment

Table 1. Results of performance assessment.

Iteration Times | Recall (%) |Precision (%) score (%)

1 88.4 80.3 81.4
2 932 80.9 87.7
3 953 81.1 88.2

The performance of our proposed method was evaluated by the
following three measures: recall, precision, and Fq-score. As is
shown in Table 1, the recall, precision, and F,-score values are
all greater than 80.0%. Moreover, all of them increase with the
increasing of the iterations. The highest values of the accuracy
assessment in this experiment are 95.3%, 81.1%, and 88.2%.

4. CONCLUSIONS AND RECOMMENDATIONS

In this paper, we proposed a CapsNet-based model for
pavement crack segmentation for applications of the pavement
management system. The proposed methods contain three main
steps. They are road segmentation using intensity image
generation, data preprocessing, and crack detection using the
proposed CapsNet model. Then, the accuracy assessment is
presented based on recall, precision, and F; -score, which
achieved an average score of 95.3%, 81.1%, and 88.2%,
respectively. Moreover, the comparison result shows that the
higher iteration value can provide a better proposed model, but
consume more computational costs and spend more time. The
experimental results show an overall high accuracy through the
testing process.

In conclusion, the CapsNet is efficient to encode inherent
features from MLS point clouds, contributing to effective and
accurate pavement crack detection, especially in urban road
scenarios. This experiment can be improved by optimizing the
methods of inputting variable types of data, especially general
remote sensing types. For example, if the BMP format data can
be extracted and tested directly, it will be possible to achieve
real-time crack detection.
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